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ABSTRACT

In this paper, we present a comprehensive study of ges-
tation length (GL) in 16 cattle breeds by using large gen-
otype and animal record databases. Data included over 
20 million gestations since 2000 and genotypes from one 
million calves. The study addressed the GL variability 
within and between breeds, estimation of its direct and 
maternal heritability coefficients, association with fit-
ness and several economic traits, and QTL detection. The 
breed average GL varied from 279.7 to 294.4 d in Hol-
stein and Blonde d’Aquitaine breeds, respectively. Stan-
dard deviations per breed were similar and ranged from 
5.2 to 5.8 d. Direct heritability (i.e., for GL defined as a 
trait of the calf) was moderate to high (h2 = 0.40–0.67), 
whereas the maternal heritability was low (0.04–0.06). 
Extreme breeding values for GL were strongly associated 
with a higher mortality during the first 2 d of life and 
were associated with milk production of dams for dairy 
breeds and precocity of females. Finally, several QTL 
were detected affecting GL with cumulated effects up to 
a few days, and at least 2 QTL were found to be shared 
between different breeds. Our study highlights the risks 
that would be associated with selection toward a reduced 
GL. Further genomic studies are needed to identify the 
causal variants and their association with juvenile mor-
tality and other economic traits.
Key words: gestation length, cattle, genetic parameters, 
GWAS

INTRODUCTION

Gestation length (GL) is a trait of increasing interest 
to the cattle industry, as a way to manage calving periods 
in seasonal reproduction systems (Norman et al., 2009; 
Washburn and Mullen, 2014; LIC, n.d.). Differences in 

average GL are also a source of competition between 
breeds, either for the choice of purebred mating and 
above all for beef-on-dairy crossbreeding, where shorter 
GL are preferred to reduce nonproductive time and the 
risk of dystocia (Berry, 2021; Basiel et al., 2024). For 
these reasons, over the past 20 years, several breeding 
organizations have developed genetic evaluations for GL 
(Haile-Mariam and Pryce, 2019), proposing either tar-
geted use of bulls with shorter gestation breeding values 
(for example, in New Zealand; Winkelman and Spelman, 
2001) or selecting for an intermediate optimum objective 
(Hansen et al., 2004; Norman et al., 2011; Eaglen et al., 
2013).

Gestation length can be easily measured as the inter-
val between successful insemination or mating and the 
calving date, and probably for this reason it is one of 
the oldest traits to arouse interest in animal science, with 
the first article on the subject being published in 1899 
(Andersen and Plum, 1965). Since then, several studies 
(Gilleland et al., 2021; Stachowicz et al., 2023) have 
been devoted to the statistical and genetic analysis of 
GL in several breeds. In particular, the large number of 
breeds reared in France, combined with the centraliza-
tion of livestock records in a unique national database, 
has allowed 4 comparative studies to be carried out over 
the last 50 years (Bougler and Derveaux, 1969; Marion, 
1995; Guerrier et al., 2007; Ledos and Moureaux, 2013). 
The latter reported a high variability in mean GL across 
23 breeds, ranging from about 280 d for Holstein to 
295 d for Blonde d’Aquitaine. The ranking of breeds 
was particularly stable over time (Brakel et al., 1952; 
Signoret et al., 1956; Andersen and Plum, 1965; Bou-
gler and Derveaux, 1969; Marion, 1995; Guerrier et al., 
2007; Ledos and Moureaux, 2013), as was the variability 
within breeds, with SD ranging from 5 to 6 d. However, 
this variability hides extreme phenotypes that have often 
been associated with adverse effects on calf survival or 
subsequent milk production and reproductive disorders 
of the dam (Hansen et al., 2004; Norman et al., 2011; 
Jenkins et al., 2016; Vieira-Neto et al., 2017; Corbeau et 
al., 2024).
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The direct heritability (as a calf trait) of GL has been 
reported to be moderate in approximately a dozen breeds 
with h2 estimates ranging from 0.2 to 0.5 (Wray et al., 
1987; Mujibi and Crews, 2009; Norman et al., 2009; 
Kumar et al., 2016), whereas the maternal genetic effect 
has been less studied and found to be of lesser magnitude 
(~0.05). Finally, with the development of genomic evalu-
ations and the availability of growing genotype datasets, 
several articles have been published in the last decade 
dedicated to the detection of QTL for GL (e.g., peak in 
BTA18 in Maltecca et al., 2011; Fang et al., 2019; and 
Purfield et al., 2019).

In this article, we present a comprehensive analysis of 
GL in 16 cattle breeds, taking advantage of the wealth of 
records (i.e., dates of insemination, births, and deaths) 
and genotype data generated for genomic evaluation in 
France. In particular, we present genetic parameters for 
direct and maternal effects, report environmental factors 
influencing GL, investigate the possible consequences 
of a selection using GEBV, and perform individual 
GWAS and a meta-analysis to identify QTL influencing 
direct GL.

MATERIALS AND METHODS

Phenotypic Data

Insemination and calving dates, as well as additional 
information (breed, pedigree over 3 generations, herd ID, 
age and parity of the cow, stillbirths, twinning events, 
embryo transfer, milk production, and type traits mea-
sured after calving) were obtained from the French na-
tional cattle database.

Gestation Length

The dates of AI and subsequent calving were com-
pared for each female to calculate GL. Calving events 
occurring between January 1, 2000, and December 31, 
2021, in parity 1 to 5 for dairy breeds and 1 to 10 for 
beef breeds were considered. For each calving, the GL 
record with the value the closest to the breed reference 
(Ledos and Moureaux, 2013) was kept. If 2 AI had the 
same gap from the reference GL, only the second one 
was considered. Gestation lengths within ± 17 d of 
this reference were retained, as it is classically done in 
France for parentage certification. Data from twin births 
were excluded because their GL is shorter than for single 
births by 3.2 to 6.2 d, depending on the breed (Ledos and 
Moureaux, 2013), and it is not possible to identify which 
calf induced parturition. Pregnancies following embryo 
transfer were also excluded. The declared sire of the calf 
had to be the same as the bull used in the selected AI, 
and the parents had to be of the same breed. This resulted 

in 39,955,142 GL records. Note that during this period, 
most AI in France were made by AI center technicians, 
and AI dates were very accurately recorded. Errors in the 
estimation of GL are therefore expected to be low. The 
distribution between breeds is shown in Table 1.

Calving events between 2000 and 2009 were used only 
for long-term statistics, in order to observe the trends in 
GL change over several years. All other analyses were 
performed with data corresponding to calves born be-
tween 2010 and 2021. This edit was made with the aim 
of analyzing animals that are genetically close to the cur-
rent population, and because the number of genotyped 
animals born before 2010 was small. As the datasets were 
already large, this time limitation also limited the com-
putational burden.

Genotypic Data

A SNP genotyping dataset of 2,205,594 animals was 
used, of which 1,321,383 had a direct GL phenotype. 
These genotypes were obtained from different Illumina 
SNP arrays over time (LD [7k; 1.8%], custom LD [10–
20k; 29.3%], BovineSNP50 [50k; 10.1%], EuroGMD 
[63k; 58.6%] and HD [777k; 0.2%]). Raw genotypes 
were all phased and imputed for 53,469 autosomal SNPs 
(including those genotyped with larger density panels) 
using Fimpute3 (Sargolzaei et al., 2014), as part of the 
French routine bovine genomic evaluation, as described 
in Mesbah-Uddin et al. (2019). The genomic markers 
used were mapped according to the current ARS-UCD1.2 
bovine genome assembly (Rosen et al., 2020).

Statistical Analyses: Genetic Parameters

Genetic parameters were estimated by restricted 
maximum likelihood within each breed using Wombat 
(version 25-02-2020; Meyer, 2007). As GL is influenced 
by the calf and by its dam, the animal model included 
correlated genetic direct and maternal effects. The model 
included the fixed effects of the combinations of herd-
birth year, region-month-year, and calf sex with parity 
and dam age, and the random permanent environment 
effect of the dam:

y = Xβ + Zd + Vm + Wp + ε,

where y is the vector of GL phenotypes; β is the vector of 
fixed effects as defined above; d is the vector of random 
direct genetic additive effects; m is the vector of random 
maternal genetic effects; p is the vector of random per-
manent maternal environmental effects; X, Z, V, and W 
are the corresponding incidence matrices; and ε is the 
vector of random errors. Genetic effects d and m were 
assumed to be normally distributed with 0 mean and 
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the direct-maternal genetic covariance. To limit the com-
putational burden, 3 generations (the calf itself, and its 
parents and grandparents) were traced in the pedigree. 
For genetic parameter estimation in the Holstein, Mont-
béliarde, Normande, Charolaise, Limousin, and Blonde 
d’Aquitaine breeds, a random sample was drawn in the 
phenotype dataset. This sampling based on herd ID aimed 
at keeping the number of animals in the pedigree below 2 
million.

Direct and maternal GEBV were calculated for each 
animal using a single step animal model with the HSSG-
BLUP software (version 26; Tribout et al., 2020).

Association with Other Traits

To estimate the potential impact of GL as a trait on 
other selected traits in cattle, GEBV were distributed 
into 9 classes defined by breed-specific genetic SD (i.e., 
<−3.5, −3.5 to −2.5, −2.5 to −1.5, −1.5 to −0.5, −0.5 to 
0.5, 0.5 to 1.5, 0.5 to 1.5, 1.5 to 2.5, 2.5 to 3.5, and ≥3.5) 
and the class mean was calculated for each trait analyzed.

Mortality Rates. Juvenile mortality rates were calcu-
lated separately for the perinatal (0–2 d), postnatal (3–14 
d), preweaning (15–55 d), and postweaning (56–365 d) 
periods, as described in Besnard et al. (2023).

Growth and Age at AI. The relationship between the 
direct GEBV of each female calf and its own age at the 
first insemination was then computed. We hypothesized 
that age at first insemination would be linked to growth, 
because on dairy farms, breeders are advised to man-
age the age at first insemination based on heifer weight. 
Inseminations are typically performed when the heifer 
reaches 60% of her estimated adult weight (Le Cozler et 
al., 2008), which led us to consider age at first insemina-
tion as a proxy for growth.

Milk Production. The effect of the GL calf GEBV 
class on the 305-d milk yield of the dam following calf 
birth was analyzed. Milk yield was first corrected with a 
model that included the fixed effects of age at first calv-
ing, herd, and year of calving. Only lactations of 305 d 
or more were considered. Annual correlations are calcu-
lated and summarized as a weighted average based on the 
number of events recorded each year (i.e., calving of the 
cow or birth of the calf).

Genome-Wide Association Studies

For each breed, a GWAS at the 50k SNP level (using 
the 53,469 autosomal SNP dataset that is routinely used 
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for national genomic evaluation) was performed for GL 
as a calf trait using the GCTA software (version 1.26; 
Yang et al., 2011). Yield deviation corrected for the fixed 
effects were obtained as a byproduct of the genomic 
evaluation. For large breeds, we limited the size of the 
cohort to 20,000 genotyped individuals randomly se-
lected across the dataset.

The mixed linear model association (MLMA) ap-
proach was used. The genomic relationship matrix was 
built with all 50k markers with minor allele frequencies 
(MAF) larger than 0.02. The MLMA analysis was carried 
out on all markers, but results were interpreted only for 
variants with at least 20 copies of the minor allele in the 
sample (i.e., MAF had to be 0.001 for large breeds with 
>20,000 animals, and 0.05 if the number of data points 
available was only 400). This level of MAF was fixed to 
avoid false discovery in small breeds and allow discover-
ing rare variants in large breeds.

To account for the multiplicity of tests, a Bonferroni 
correction was applied. The significance threshold (P = 
0.05) was adjusted for 53,469 tests, resulting in a −
log10(P-value) of 6.03. The inflation factor was estimated 
from the median of P-values as follows:
λ χ χ= ( ) ( )



1

2
1
2 0 5median valueP - . . Inflation is considered 

as not significant if this factor is below 1.10 (Sahana et 
al., 2023).

The GWAS results were then combined in a meta-
analysis using the fixed effects approach as implemented 
in the METAL software (version 2011-03-25; Willer et 
al., 2010). In this approach, the fixed effects from each 
within-breed analysis are combined with weights equal 
to the inverse of their standard errors. The new estimates 
are divided by the square root of their new error vari-
ance to define new t-tests. The fixed effect approach is 
especially appropriate here because it is slightly more 
powerful than the z-score and because the trait is defined 
exactly in the same way in the different breeds.

Genes in the detected regions and that may contain 
variants associated with variability in GL were listed 
using the UCSC Genome Browser (https: / / genome .ucsc 
.edu/ ). We then searched literature data that mention ges-
tation length, parturition, fetal growth, juvenile mortal-
ity, and affiliated (i.e., any disease or characteristic that 
could lead to these losses).

RESULTS AND DISCUSSION

Basic Statistics on Raw Data and Determination  
of Factors Influencing GL

Results from the raw GL data of more than 21.6 million 
cattle from 16 breeds born in France between 2010 and 
2021 were consistent with those from studies on older co-
horts (Brakel et al., 1952; Signoret et al., 1956; Andersen 

and Plum, 1965; Bougler and Derveaux, 1969; Marion, 
1995; Guerrier et al., 2007; Ledos and Moureaux, 2013; 
Figure 1), with mean GL ranging from 279.7 ± 5.3 d in 
Holstein to 294.4 ± 5.8 d in Blonde d’Aquitaine (Table 
1; Supplemental Figures S1 to S16; see Notes). However, 
our estimates are all lower than these references and on 
average 1.2 d shorter than those of Ledos and Moureaux 
(2013). We hypothesize that the difference with Ledos 
and Moureaux may be because we filtered out extremely 
long gestation, possibly due to errors in AI records, 
which does not seem to be the case in their study. This 
observation led us to look at the evolution of GL means 
per breed over the last 2 decades. Overall, their trend has 
been stable to slightly decreasing (Supplemental Table 
S1; see Notes) possibly because of coselection with other 
traits. The biggest change concerns the Simmental breed, 
whose mean GL decreased from 290.7 d in 2006 to 287.2 
d in 2018 (Student t-test P < 2.2 × 10−16). For Holstein, 
the GL decreased from 282.0 d in 2001 to 279.5 in 2014 
(P < 2.2 × 10−16) and seems to have stabilized thereafter. 
The Jersey breed is the only exception, with a significant 
increase from 280.6 d in 2002 to 282.9 d in 2021 (P < 2.2 
× 10−16). It is noteworthy that this breed has expanded 
strongly in France during this period, with 1,092 calvings 
recorded in 2002 to 8,984 in 2021, and the gene pool of 
the breed may have changed in the meantime.

Our study also confirmed and strengthened previous 
findings on the effect of various factors influencing GL 
(Figure 2). The sex of the calf contributes to a difference 
of about 1.2 d (Supplemental Figures S1C to S16C) and 
up to 1.8 d in Brown Swiss cattle. On average, gestation 
is longer for male calves than for female calves in all 
breeds. GL is one day shorter if birth occurs in spring 
and summer than in fall and winter. Cow parity is also 
an important factor, with a difference of up to 2 d be-
tween primiparous and multiparous cows (Supplemental 
Figures S1F to S16F). In almost all breeds, primiparous 
cows had significantly shorter GL than multiparous cows. 
Moreover, the youngest quartile of first-calving females 
had a systematically shorter GL than the oldest across the 
16 breeds (Supplemental Figures S1E to S16E). Thus, 
the real effect behind the effect of the parity on the GL 
appears to be caused by the age at calving, as the oldest 
first-calving females have a longer GL by ~3 d than the 
opposite group. Taken together, these results support an 
effect of maternal stature (and thus of the space left to the 
developing fetus) on GL in cattle, as previously reported 
in humans (Myklestad et al., 2013).

Genetic Parameters

Estimates of genetic parameters are shown in Table 2. 
Estimates of direct heritability ranged from 0.40 in Hol-
stein to 0.67 in the regional Vosgienne breed (mean and 
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SD across the 16 breeds: 0.51 and 0.07, respectively), 
which was consistent with previous studies (e.g., Nor-
man et al., 2009). Despite relatively high heritability co-
efficients, the genetic variability was low, with a genetic 
SD of about 3.5 d and a genetic coefficient of variability 
(genetic SD/mean) of less than 1%. Maternal heritability 
was low but significantly different from 0, ranging from 
0.04 in Jersey to 0.10 in Vosgienne (mean and SD equal 
to 0.06 and 0.02, respectively). These results indicate 
that the genetics of the calf have a much greater effect on 
its own GL than the genetics of its dam. In addition, the 
direct and maternal genetic effects appeared to be slightly 
negatively correlated, with values ranging from −0.05 to 
−0.37 in all breeds except Holstein, for which this cor-
relation was +0.05. Only 5 coefficient estimates ranging 
from −0.24 to −0.37 were significantly different from 
zero (Table 2). This balance between direct and maternal 
effects has been reported previously in cattle (Hansen et 
al., 2004; Ibi et al., 2008; Mujibi and Crews, 2009) and 
in other species, such as horses (Vassilev et al., 2002). 
However, the magnitude of this negative correlation is 
moderate and consistent across our datasets and weaker 
than that reported in Ibi et al. (2008) in Japanese black 
cattle (−0.73).

Interestingly, several breeds of common ancestry and 
geographic origin showed close direct and maternal h2. 

This was the case, for example, with the Alpine breeds 
(Abondance, Simmental, and Montbéliarde), or for the 
Northwestern breeds, that used Durham bulls in the 
19th century (Normande and Rouge des Prés [formerly 
Maine-Anjou]).

The genetic change in GL over the years was estimated 
by averaging the EBV per year of birth. Among the dairy 
breeds (Figure 3), the direct GL of the Simmental breed 
decreased by more than 2 genetic standard deviations 
since 2000. The Holstein breed followed a similar trend. 
Conversely, the level of the maternal genetic effect has 
increased, which is consistent with the observed negative 
correlation previously reported. Furthermore, the change 
in Holstein is in agreement with the observations of Gal-
luzzo et al. (2024) and Stachowicz et al. (2023), who 
found that the genetic trend of direct GL genetic level 
decreased by approximately 1 to 6 d between 1995 and 
2020 depending on the country of evaluation.

Relationships with Other Traits

Because the relationship between GL and other traits 
of interest is suspected to be nonlinear, we preferred to 
study the evolution of these traits according to GL GEBV 
categories. In all breeds, reduced GL was associated with 
increased perinatal mortality. For example, in the Hol-
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Figure 1. Average gestation length for 12 breeds in the literature data and in the present results across breeds and studies (Brakel et al., 1952; 
Signoret et al., 1956; Andersen and Plum, 1965; Bougler and Derveaux, 1969; Marion, 1995; Guerrier et al., 2007; Ledos and Moureaux, 2013; our 
results for 2024). Blonde Aq = Blonde d’Aquitaine.
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stein breed, animals with a GEBV in the lowest 5% had 
a mortality rate of 7.4% before 2 d of age, corresponding 
to a +57% increased risk compared with the intermedi-
ate category (4.7%). This effect was not symmetrical: 
the 10% of calves with the highest GEBV had only a 
slightly increased mortality rate (5.0%, corresponding to 
a 6% increased risk). For all breeds, intermediate genetic 
values (GEBV from −1.5 to +1.5 SD) for GL seem to 
be optimal to avoid perinatal mortality (Figure 4). For 
instance, in the Brown Swiss breed, the perinatal mortal-
ity rate was 6.7%, 3.9%, and 4.9%, for low, intermediate, 
and high GL GEBV, respectively. Extreme GL were also 

linked with increasing neonatal mortality in the Holstein 
breed in Nogalski and Piwczyński (2012). Calves with 
low GEBV are more prone to die in connection with 
their short gestation, as in humans, where the risks and 
causes of death associated with late preterm parturition 
have been extensively studied (Engle, 2011; Parikh et al., 
2014). The mortality rate also increases with the highest 
GEBV, most likely due to calving difficulties associated 
with a larger size of the calf with longer gestation or pla-
cental insufficiency, as it is described in humans (Camp-
bell et al., 1997; Galal et al., 2012). This is consistent 
with Nogalski and Piwczyński (2012), who demonstrated 
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Figure 2. Factors influencing the gestation length (GL) of the Holstein breed. (A) Change in GL by year of birth of the calves since 2000 (number 
of births considered listed below boxes [1,033,627 < n < 1,293,061]; yearly average listed above boxes and represented by the red curve). (B) 
Seasonal change in GL (yearly order: winter, spring, summer, autumn). (C) Change in GL according to the sex of the calf (1 = male calf; 2 = female 
calf). (D) Distribution of GL by age at first calving (divided by breed-specific quartiles). (E) Change in GL as a function of cow parity. Midlines of 
boxes indicate median values, upper and lower edges indicate the 0.25 and 0.75 quantiles, and whiskers represent 99% of the values.
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Table 2. Estimates of genetic parameters for all the breeds

Breed
Direct h2 

(SE) Calves (n)
Maternal h2 

(SE) Dams (n)

Permanent 
maternal 

environment
Direct-maternal 

correlation

Holstein 0.40 (0.01) 393,565 0.05 (0.003) 207,345 0.027 0.05
Jersey 0.47 (0.03) 55,052 0.04 (0.008) 26,007 0.024 −0.07
Aubrac 0.52 (0.04) 58,118 0.06 (0.01) 35,358 0.044 −0.29*
Normande 0.46 (0.01) 350,556 0.05 (0.004) 177,282 0.022 −0.05
Salers 0.49 (0.04) 41,774 0.06 (0.01) 25,353 0.062 −0.34*
Montbéliarde 0.58 (0.02) 370,124 0.09 (0.005) 187,238 0.027 −0.37*
Tarentaise 0.56 (0.04) 48,229 0.07 (0.01) 23,883 0.025 −0.19
Charolaise 0.53 (0.02) 350,699 0.06 (0.005) 182,944 0.037 −0.24*
Parthenaise 0.47 (0.04) 85,447 0.05 (0.01) 45,656 0.035 −0.13
Rouge des Prés 0.41 (0.04) 44,943 0.07 (0.01) 26,351 0.023 −0.06
Abondance 0.54 (0.03) 136,864 0.07 (0.008) 68,729 0.039 −0.29*
Simmental 0.56 (0.02) 119,502 0.07 (0.007) 57,030 0.038 −0.27*
Vosgienne 0.67 (0.07) 11,063 0.10 (0.02) 4,872 0.027 −0.28
Brown Swiss 0.49 (0.02) 103,993 0.05 (0.007) 53,516 0.030 −0.15
Limousin 0.49 (0.02) 329,935 0.07 (0.006) 187,760 0.043 −0.16*
Blonde d’Aquitaine 0.48 (0.02) 338,918 0.07 (0.007) 180,627 0.040 −0.14*

*Genetic direct maternal correlations significantly different from 0 (P < 0.05).

Figure 3. Genetic changes in gestation length (GL) over time. Estimated breeding values for direct effect on GL in dairy (A) and beef (B) breeds. 
Estimated breeding values for maternal GL in dairy (C) and beef (D) breeds (year of birth on x-axis). The number of observations considered in these 
graphs ranged between 100 and 1,337,572.
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that long gestations require human assistance more often 
than short gestations.

The analysis of the mortality rates for periods later 
than the first 2 d of life (i.e., postnatal, preweaning, and 
postweaning periods) showed no association with the GL 
GEBV categories considered.

To conclude on this section, a selection to reduce or in-
crease gestation length is not recommended because the 
association between extreme GL and perinatal mortality 
with its economic and social consequences outweighs 
the small potential gain in preterm birth. Still, mating 
animals for producing calves that are genetically inter-
mediate for GL could contribute to reducing mortality 
during the first 2 d of life.

Using age at first insemination as a proxy, we then 
focused on the growth of females as a function of their 
own GL GEBV. A significant positive association was 
observed for the 3 main dairy breeds (Holstein, Mont-
béliarde, and Normande), whereas it was negative 
for 2 of the major beef breeds (Charolaise and Blonde 
d’Aquitaine) reared in France. However, these correla-
tions are very low, e.g., 0.037 and −0.029 for Holstein 
and Blonde d’Aquitaine heifers, respectively (Figure 5 
and Supplemental Figures S1H to S16H). On average, 
Holstein females in the lowest GL GEBV decile are in-
seminated 25 d earlier than those in the highest decile. 
For Blonde d’Aquitaine heifers, the highest percentile 
has an advantage of 12 d. Taken together, these results 
indicate that the impact of GL on the age at first insemi-
nation in the population scale is moderate. In a previous 
study, Bourdon and Brinks (1982) also found a nega-
tive correlation between GL and growth traits in 2 beef 
breeds, namely Angus and Hereford.

Finally, we studied the influence of the calf’s GL on its 
dam’s milk production during the lactation following this 
birth. For the first lactation, we found significant cor-
relations close to zero for most breeds, with the highest 
correlation being −0.053 for the Simmental breed, which 
means that the shortest gestations lead to an increased 
yield. For the Holstein calves and their dams, the correla-
tion was also negligible (0.025). The results are similar 
for the second lactation, with correlations close to zero 
for most breeds (from −0.042 for Holstein to 0.040 for 
Jersey; Figure 6). Among the dairy breeds, we found a 
clear trend toward a low but positive correlation between 
calf GL GEBV and dam milk production (Supplemental 
Figures S1I to S14I). The possible small positive effect 
in some breeds may not be sufficient to offset the nega-
tive aspects of the mortality.

As a conclusion to the correlations with other traits, 
we would like to highlight the potentially detrimental 
consequences of a genetic decrease in GL. Indeed, there 
is a major risk of increasing the mortality rate of young 
calves. In dairy breeds, the effects of short GL on age 
at first insemination of the heifer progeny (a proxy for 
their growth) or on dam milk production are generally 
unfavorable, but the link is negligible. In short, selection 
to reduce GL should not be undertaken until the biologi-
cal processes are fully understood.

GWAS Results

To gain insight into the genetic background of GL, we 
performed a GWAS using 50K SNP array genotypes for 
direct effects on GL in each of the 16 breeds indepen-
dently. Of these, 12 showed significant associations (P 
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Figure 4. Perinatal mortality (0–2 d) rates as a function of gestation length genomic direct estimated breeding values for 9 breeds with >100,000 
births since 2010: (A) for 6 dairy breeds; (B) for beef breeds. Blonde d’Aq. = Blonde d’Aquitaine.
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< 10−5; except those performed in Aubrac, Salers, Rouge 
des Prés, and Parthenaise, where the number of genotypes 
was too small to provide sufficient power). The GWAS 
performed in Jersey and Tarentaise had no peak reaching 
the corrected minimum P-value. Inflation estimates for 
the breeds that had at least 1 significant SNP were all 
below 1.10 (ranging from 1.015 for the Limousin breed 
to 1.099 for Montbéliarde). Thus, no inflation factor was 
applied to adjust P-values.

Considering the reduction potential in each breed, some 
breeds could potentially reduce their GL by 1 wk by fix-

ing short GL segregating alleles (Table 3). Regarding the 
3 main dairy breeds in France (Holstein, Montbéliarde, 
and Normande), the GL reduction potential would be 
higher in Montbéliarde, which currently has the longest 
GL of the 3 breeds. Only 2 peaks were found in Blonde 
d’Aquitaine, which has a particularly long GL, and its 
reduction potential would be only 3.2 d. This breed, as 
a specialized beef breed, has a low number of avail-
able genotypes, which reduces the power of a GWAS 
approach. In this approach, we considered each peak 
separately from the others. In the facts, we assume some 
possible epistatic interactions, and therefore the real re-
duction that would be achieved by a selection would be 
lower than suggested in Table 3.

We found 39 peaks reaching the Bonferroni corrected 
P-value, 24 of which were located on only 4 chromo-
somes (Figure 7; Supplemental Table S2 and Supplemen-
tal Figures S1J to 16J, see Notes). We found that 8 breeds 
showed a QTL at the beginning of BTA21, which, to our 
knowledge, had not been reported in any of the previous 
studies. The 95% CI of this peak encompassed 4 genes, 
including MKRN3, which is known to be highly expressed 
at birth and paternally imprinted in mice (Abreu et al., 
2013). In addition, some variants in this gene were found 
to be involved in body mass and advanced puberty in 
humans (Perry et al., 2014), which may also indicate an 
accelerated in utero development. For the Holstein breed, 
which has been the subject of most previous studies, we 
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Figure 5. Distribution of age at first insemination according to gesta-
tion length direct genomic estimated breeding values. (A) Holstein. (B) 
Blonde d’Aquitaine. Classes are defined by 0.5 genetic SD intervals; 
significance expressed from controls (intermediate gestation length): 
***P < 0.001, **P < 0.01, *P < 0.05; number of animals in each class 
are represented below bars. Midlines of boxes indicate median values, 
upper and lower edges indicate the 0.25 and 0.75 quantiles, and whiskers 
represent 99% of the values.

Figure 6. Relationship between calf’s genomic estimated breeding 
values and dam’s milk production in Holstein second-lactation cows. 
Number of births indicated below boxes; significance level indicated 
compared with controls (i.e., intermediate animals): ***P < 0.001. 
Midlines of boxes indicate median values, upper and lower edges in-
dicate the 0.25 and 0.75 quantiles, and whiskers represent 99% of the 
values.
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found very similar peaks to Fang et al. (2019), Purfield 
et al. (2019), and Maltecca et al. (2011). In particular, 
we confirmed the QTL on BTA18 around position 57.7 
Mb, for which they proposed ZNF613 as a functional 
candidate because this gene is involved in the regulation 
of cell fate commitment in mice (Oliver et al., 2012). 
However, with a frequency in Holstein of 0.98 of the 
SNP favoring short gestations, the variant involved is 
probably major in the breed. If the mutant allele is the 
one favoring short gestation, it is unlikely to be deleteri-
ous for other phenotypes.

The frequencies of the alleles under the peaks we 
found are difficult to discuss because they are certainly 
in linkage disequilibrium with the variant involved in the 
biological process of the variability, which has a differ-
ent frequency. Nevertheless, 23 of the peaks had an MAF 
higher than 0.25, which could be a sign of a necessary 
balance between the variants due to the correlated conse-
quences of short or long gestation.

In a second step, to focus on the most important QTL 
across breeds, we performed a meta-analysis by combin-
ing the GWAS results of the 16 breeds (Figure 7A). The 
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Table 3. Effects of significant SNP for each breed; most significant peak and peaks with −log10(P-value) > 101,2

Breed
Peak considered 

(chr: position) −log(P)
Effect 

(β value)
Frequency of  

short GL allele

Potential phenotypic  
effect of selecting for  

the strongest peak

Abondance 21:2,109,801 18.1 −0.90 0.44 −1.7
Brown Swiss 7:51,106,002 9.1 0.69 0.37 −0.4
Limousin 21:2,702,004 7.4 −0.62 0.28 −1.1
Simmental 21:2,049,253 13.9 −0.99 0.45 −1.6
Charolaise 21:489,512 17.4 0.52 0.65 −0.5
Montbéliarde 9:101,768,658 21.1 −1.02 0.14 −1.9

21:2,416,354 35.9 1.26 0.58 −1.4
Normande 13:77,131,352 25.7 0.32 0.09 −1.5

21:489,512 21.6 0.72 0.69 −0.6
Vosgienne 3:104,094,726 8.9 1.11 0.71 −0.6
Holstein 19:28,726,588 10.0 0.46 0.59 −0.3
Blonde d’Aquitaine 2:94,432,972 12.0 −1.32 0.06 −2.1
1Other peaks are presented in Supplemental Table S2.
2chr = chromosome.

Figure 7. Results of GWAS meta-analysis. (A) Meta-analysis of the 16 GWAS. The blue and red lines correspond to −log10(P) =10−5 and 10−6, 
respectively. (B, C) Focus on regions on chromosome 7 and 21, respectively. Dashed lines correspond to −log10(P) = 10−5.
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results highlighted the 2 main regions that segregate in 
several breeds. The most significant peak was located in 
a large interval between 478,537 bp and 6,330,388 bp 
on BTA21 (Figure 7C). Within this region, SNORD116 
and UBE3A are very good candidate genes. For the first 
of these, a publication on mice explains that an induced 
heterozygous knockout leads to a decreased development 
with no implication in behavior, aging, and reproductive 
system (Ding et al., 2008). Note that this induced muta-
tion in mice was under maternal imprinting. These phe-
notypes would be consistent with an effect of a mutant 
allele in cattle that would affect the fetal development 
and induce variability in the maturity of the calf and the 
parturition. UBE3A polymorphisms have also been ex-
tensively studied in mice, but knockouts regarding this 
gene seem to result in abnormal phenotypes (Dindot et 
al., 2008; Meng et al., 2013), and homozygous carriers 
die at the juvenile stage in large proportions (Jiang et al., 
1998). We did not search for an association with morpho-
logically deviant phenotypes in our study, but the risk of 
mortality in case of homozygosity could be a genomic 
evidence for the high neonatal mortality rates observed 
in all the breeds. The second most significant peak was 
found to have a significant effect in 8 breeds and was 
found in BTA7 (50,974,963–51,785,251 bp; Figure 7B). 
In this region are located 3 genes (NRG2, CYSTM1, IK). 
Variants in each of these have been described in mice, 
and some consequences of these mutations may be in-
teresting in our case. A homozygous targeted knockout 
in NRG2 led to decreased body and litter size and post-
natal lethality (Britto et al., 2004). In IK, embryonic and 
preweaning mortality rates were increased in a homozy-
gous mutant (IMPC, 2014). Also, from Mouse Genome 
Informatics (https: / / informatics .jax .org/ ), CYSTM1 was 
described as causing problems in body mass and fat, 
as well as respiratory quotient. Another peak in BTA7 
(90,855,265 bp) was close to ARRDC3, which is involved 
in decreased body mass and increased basal metabolism 
in heterozygotes, complemented by perinatal lethality in 
homozygous animals (Patwari et al., 2011). These dif-
ferent annotations are not clearly related to parturition 
and the potential implication of these genes remains to 
be demonstrated. Only CYSTM1 has been highlighted by 
Purfield et al. (2019). A last significant peak in BTA9 
(24,163,108 bp) held our attention, as it is located in 
RSP3, which has mutations involved in embryo growth, 
vascular development, and lethality in mice (Kazanskaya 
et al., 2008; Neufeld et al., 2012; Cambier et al., 2014).

Using 50K genotypes, we cannot postulate on causal 
variants. Deepening the GWAS results at the imputed 
whole-genome sequence level with a larger number of 
individuals would allow us to identify candidate variants 
in these regions and could also highlight peaks that are 
missed with the medium density of the current study.

CONCLUSIONS

We report one of the most comprehensive genetic stud-
ies of GL in cattle. By analyzing 20 million births and 1.3 
million 50K genotypes from 16 breeds, we highlighted 
the high variability of this trait between breeds, with 2 
wk separating the longest average from the shortest. Cal-
culation of genetic parameters showed high direct and 
moderate maternal heritability, suggesting the possibility 
of selection for GL, although the potential for reduction 
is limited. In addition, quantitative selection for the trait 
would result in increased juvenile mortality. If selection 
for GL is to be planned, the first step should be to exam-
ine the effect of each QTL individually and retain only 
those that do not negatively affect calf fitness.
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