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Abstract: Accurate surface soil moisture (SM) data are crucial for agricultural management in Jiangsu
Province, one of the major agricultural regions in China. However, the seasonal performance of
different SM products in Jiangsu is still unknown. To address this, this study aims to evaluate the
applicability of four L-band microwave remotely sensed SM products, namely, the Soil Moisture
Active Passive Single-Channel Algorithm at Vertical Polarization Level 3 (SMAP SCA-V L3, hereafter
SMAP-L3), SMOS-SMAP-INRAE-BORDEAUX (SMOSMAP-IB), Soil Moisture and Ocean Salinity in
version IC (SMOS-IC), and SMAP-INRAE-BORDEAUX (SMAP-IB) in Jiangsu at the seasonal scale.
In addition, the effects of dynamic environmental variables such as the leaf vegetation index (LAI),
mean surface soil temperature (MSST), and mean surface soil wetness (MSSM) on the performance of
the above products are investigated. The results indicate that all four SM products exhibit significant
seasonal differences when evaluated against in situ observations between 2016 and 2022, with most
products achieving their highest correlation (R) and unbiased root-mean-square difference (ubRMSD)
scores during the autumn. Conversely, their performance significantly deteriorates in the summer,
with ubRMSD values exceeding 0.06 m3/m3. SMOS-IC generally achieves better R values across all
seasons but has limited temporal availability, while SMAP-IB typically has the lowest ubRMSD values,
even reaching 0.03 m3/m3 during morning observation in the winter. Additionally, the sensitivity
of different products’ skill metrics to environmental factors varies across seasons. For ubRMSD,
SMAP-L3 shows a general increase with LAI across all four seasons, while SMAP-IB exhibits a
notable increase as the soil becomes wetter in the summer. Conversely, wet conditions notably reduce
the R values during autumn for most products. These findings are expected to offer valuable insights
for the appropriate selection of products and the enhancement of SM retrieval algorithms.

Keywords: soil moisture; seasonal assessment; SMOS; SMAP; L-band

1. Introduction

Surface soil moisture (SM) determines the photosynthesis and transpiration of vegeta-
tion and is a key variable affecting crop growth, land–atmosphere water and heat exchange,
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as well as the water cycle process [1,2]. Accurate, long-term monitoring and rapid repetitive
recording of SM dynamics over large regions are essential for effective agricultural drought
surveillance [3]. Furthermore, such monitoring helps in understanding the relationship
between water and carbon cycles [4–6].

Ground stations provide precise SM measurements but suffer from limited spatial
coverage, which restricts their capacity to capture the large spatio-temporal variations of
SM, particularly across expansive agricultural landscapes [7]. In contrast, optical remote
sensing offers extensive coverage but is susceptible to being affected by cloud cover and
nighttime conditions, limiting its continuity and reliability for SM monitoring. In com-
parison, microwave remote sensing can penetrate through clouds, rain, and snow, as well
as the atmosphere, and is not affected by weather conditions such as lighting. Moreover,
microwave remote sensing at L-band (1.4 GHz), sensitive to the soil dielectric constant, with
high revisit frequencies and immunity to adverse weather conditions, has emerged as a
promising tool for monitoring SM [8,9]. This technology, with its all-weather high-coverage
capabilities and enhanced penetration capability through vegetation, is increasingly being
applied in current SM estimation and application studies [8,10–12].

Over the past few decades, numerous satellite platforms equipped with passive/active
microwave sensors operating at different frequencies have been successfully launched. The
Soil Moisture Active Passive (SMAP) [13] and Soil Moisture and Ocean Salinity (SMOS) [14]
missions are in-orbit L-band initiatives dedicated to SM estimation. Both space missions are
regarded as highly effective for SM monitoring, owing to their stronger ability to penetrate
vegetation in the L-band compared to the X- or C-band [15,16]. SM products from these
missions are offered both as standalone datasets and as integrated series, including the
long-term series developed by ESA’s Climate Change Initiative (CCI) SM project [15,17],
as well as the SMOS-SMAP-INRAE-BORDEAUX (SMOSMAP-IB) product, which fused
brightness temperature observations from SMOS and SMAP [18]. Performance assessment
of satellite-derived SM retrievals is critical for enhancing the algorithms of these products
and exploring their applications in climate, hydrology, and disaster management, including
flood and drought responses [2,10,19–24]. Assessment studies on SM have so far been
carried out extensively across China or in specific subregions such as watersheds like the
Heihe River [25] and the Luanhe River [19]. Moreover, such assessment is particularly vital
for cropland areas, as accurate SM data directly influence agricultural water management
practices, including the development and implementation of irrigation strategies [26].
However, due to the limited availability of ground observations, few investigations have
been conducted on cropland in Jiangsu Province, a key agricultural province in China.

Jiangsu Province, covering an area of 107,200 km2, has approximately 40% of its
land dedicated to agriculture and follows a seasonal cropping cycle. Specifically, rice is
sown in the spring and harvested in the autumn, while wheat is planted in the autumn
and harvested in the summer. These crops, with their distinct growth stages, require
varied SM levels throughout the seasons. Therefore, evaluating the performance of satellite
SM retrievals at the seasonal scale is crucial for optimizing agricultural practices in the
region [21]. Although the recent assessment by Fan et al. [27] provides valuable insights
into the performance of various satellite products in Jiangsu, it does not address the
seasonal variation in the performance of different satellite SM products. Furthermore, SM
retrieval algorithms are rapidly evolving, with continuous improvements and revisions
being made [28,29]. Innovations and recalibrations are regularly integrated, leading to
enhanced and optimized algorithm parameters [8,30]. Consequently, newly released SM
products and updated versions have not yet undergone comprehensive evaluation and
intercomparison. One of these new products is the SMOSMAP-IB SM product, which
has so far been assessed primarily using in situ observations from the International Soil
Moisture Networks (ISMN) located mainly in the United States and Europe [18] and has
not been systematically validated in China.

In this context, and to fill the aforementioned gaps, this study aims to assess the
performance of multi-source microwave remotely sensed SM products at the seasonal scale,
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utilizing the most recent long-term in situ observation data from 2016 to 2022. Addition-
ally, the retrieval capabilities of these SM inversion algorithms are investigated under a
variety of environmental conditions characterized by distinct seasonal variations. Three
environmental dynamics (leaf area index (LAI), mean surface soil temperature (MSST),
and mean surface soil wetness (MSSM)) are considered in the analyses to identify factors
contributing to discrepancies relative to in situ measurements [10]. It should be noted that
our ground observations cover multiple land cover types, not just cropland, enabling a
more comprehensive analysis of the effects of different external factors, especially varying
LAI levels. By examining how these variables affect microwave satellite SM products,
we can gain a deeper understanding of their accuracy and provide a research basis for
developers to refine and enhance SM retrieval algorithms [31].

The structure of this paper is organized as follows: Section 2 provides a brief introduction
to the datasets, while Section 3 details the methodology. Results are presented in Section 4,
followed by discussions in Section 5. Lastly, Section 6 summarizes the conclusions.

2. Datasets
2.1. Study Area and In Situ Measurements

Jiangsu Province, located in the eastern coastal region of China, is a significant part
of the Yangtze River Delta urban agglomeration. Jiangsu Province is predominantly char-
acterized by plains, with the highest proportion of plain area among all provinces. It
boasts a multitude of rivers and is dominated by agricultural land, with the southern part
of Jiangsu having a larger urban area than the northern part (Figure 1a). The climate in
Jiangsu transitions from temperate to subtropical, with rainfall primarily concentrated in
the summer. Due to the interplay of land and sea distribution, atmospheric circulation, and
seasonal precipitation patterns, Jiangsu is prone to both droughts and floods.
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Figure 1. Overview of the study area: (a) Land cover type (International Geosphere–Biosphere
Programme (IGBP) land cover classification scheme). (b) Distribution of ground measurement
stations (purple triangles).

In situ observations are collected from automated monitoring instruments deployed by
the Jiangsu Provincial Meteorological Bureau, based on the Frequency Domain Reflection
principle to measure soil volumetric water content. Sensor calibration, essential for data
accuracy, included both laboratory and field calibration. Observations are conducted at
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depths ranging from 0 cm to 100 cm, including specific intervals of every 10 cm in the first
60 cm, then at 70–80 cm and 90–100 cm, with a temporal resolution of 1 h. Here, only in
situ SM data observed in the 0–10 cm layer from 62 stations (Figure 1b) after quality control
covering a long period of 2016–2022 are used for evaluation purposes.

2.2. Satellite SM Products Datasets

Four L-band passive microwave satellite SM datasets spanning from 1 January 2016
to 31 December 2022 are employed in this study. The reason for choosing only L-band
products is that this band has a stronger penetration capability compared to X- and C-band,
and its SM products have been found to be more promising than the other two bands [8,19].
These datasets include SMAP-L3, SMAP-IB, SMOS-IC, and SMOSMAP-IB, as outlined in
Table 1.

(1) SMOS-IC version 2: The European Space Agency (ESA) launched SMOS in 2009 as
the first polar-orbiting L-Band radiometer, offering a spatial resolution of around 43 km
and a revisit time of three days. Since its launch, several datasets have been generated
based on SMOS multi-angle observations, including SMOS Level 2, SMOS Level 3, and
SMOS-IC, all of which utilize the L-band Microwave Emission of the Biosphere (L-MEB)
model in their inversion process. In this study, the SMOS-IC version 2 product developed
by INRAE BORDEAUX is applied [30,32]. This product fully exploits the multi-angle
information provided by SMOS and assumes that the pixels are homogeneous to reduce the
potential uncertainty introduced by the auxiliary data used to determine pixel heterogeneity
in the SMOS-L2 and SMOS-L3 algorithms [33]. Additionally, it operates independently
of additional hydrologic and optical vegetation information [33–35]. SMOS-IC provides
SM products for ascending and descending at overpass times of 06:00 and 18:00 local
time, respectively.

(2) SMAP-L3: The SMAP satellite, launched on 31 January 2015, carries an L-band
(1.4 GHz) radiometer designed to acquire high-quality brightness temperature (TB) data.
The SMAP Science team has introduced several advanced global surface (~5 cm) SM
datasets retrieved from different state-of-the-art algorithms [28,36]. Since the release of
SMAP product version 8 in 2021, the single-channel algorithm–vertical polarization (SCA-V)
has been replaced by the dual-channel algorithm (DCA) (hereafter SMAP-L3) as the baseline
algorithm, as detailed by O’Neill et al. [37]. DCA requires both vertically and horizontally
polarized TBs as input and enables a more robust concurrent retrieval of SM and VOD
based on a nonlinear least-squares iteration [10]. The SMAP-L3 product used in this study
is available for both ascending (at 06:00 p.m. local time) and descending (at 06:00 a.m. local
time) orbits, which can be freely downloaded from the NASA National Snow and Ice Data
Center Distributed Active Archive Center (https://nsidc.org/data/spl3smp/versions/8,
accessed on 1 March 2024) [38].

(3) SMAP-IB: The SMAP-IB SM retrieval algorithm, developed by INRAE BORDEAUX,
is a successful application of the L-MEB model to the SMAP dual-polarized TB observa-
tions [30]. The SMAP-IB algorithm incorporates the key features of SMOS-IC, particularly
its independence from auxiliary data, and is designed to deliver high-performance re-
trievals of both SM and VOD. To resolve the underdetermined problem posed by the use
of strongly correlated bipolarized SMAP TB observations in the concurrent retrieval of
SM and VOD, SMAP-IB employed an advanced multi-temporal constraint approach, as
detailed by Li et al. [18]. Similar to SMAP-L3, SMAP-IB is also available in ascending and
descending products.

(4) SMOSMAP-IB: SMOSMAP-IB is the first global dataset that fuses SMOS and SMAP
to obtain continuous SM and VOD retrievals [39]. This product is generated by initially
merging the TB observations from SMOS and SMAP sensors at an incidence angle of
40◦, followed by the application of the SMAP-IB retrieval algorithm to the combined TB
data [18]. The fusion of SMOS and SMAP observations enhances the number of daily
overpasses, expands spatial coverage, and ensures the continuity of L-band SM data
in case one of the sensors ceases operation [40,41]. Similar to SMOS-IC and SMAP-IB,
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SMOSMAP-IB can also be freely accessed from the INRAE BORDEAUX website (https:
//ib.remote-sensing.inrae.fr, accessed on 1 March 2024). Currently, SMOSMAP-IB version
1 has only morning (a.m.) observations featuring a grid sampling of 25 km.

To ensure validation reliability, only retrievals labeled as “good” from these four
products are utilized [42], along with observations where the SM data ranged between 0
and 0.6 m3/m3 [43]. For additional details regarding the quality flags associated with the
products, we refer the readers to Fan et al. [27]. To maintain the consistency of the spatial
resolution of these SM datasets, we resampled them to a 0.25◦ grid resolution, projected in
WGS 84 longitude/latitude [44,45].

Table 1. Overview of the information on the four satellite SM retrievals assessed in this study.

Product Grid
Resolution

Represent
Depth Observation Time Reference(s)

a.m. p.m.

SMAP-L3 36 km 0–5 cm 06:00 18:00 O’Neill et al. [38]
SMAP-IB 36 km 0–5 cm 06:00 18:00 Li et al. [30]

SMOS-IC 25 km 0–5 cm 06:00 18:00 Li et al. [33];
Wigneron et al. [32]

SMOSMAP-IB 25 km 0–5 cm 06:00 / Li et al. [18]

2.3. Additional Datasets

To further investigate the influence of dynamic factors on the various SM products,
several additional datasets are applied to aid in analyzing the results. The basic information
about these datasets, including their spatial and temporal resolutions, is summarized
in Table 2. The MODIS LAI product is employed to evaluate the impact of vegetation
conditions on SM products, as previous studies have shown that vegetation plays a crucial
role in the performance of remotely sensed SM data [22,26]. The surface soil temperature
provided by ERA5-land is utilized to examine the influence of MSST on the performance
of the four SM retrievals [46]. Additionally, daily precipitation data from the Jiangsu
Provincial Meteorological Bureau and land cover data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) product (MCD12C1) using the IGBP schema were
collected [47]. Finally, both LAI and surface soil temperature datasets are aggregated to
0.25◦ to ensure consistency with the spatial resolution of the satellite SM retrievals [20].

Table 2. Summary of the additional datasets used in this study.

Factors Databases Spatial
Resolution

Temporal
Resolution

Time
Series

LAI MCD15A3H 500 m 4 days 2016–2022

MSST ERA5-Land soil
temperature at level 1 0.1◦ Monthly 2016–2022

Land cover IGBP MCD12C1 0.05◦ Yearly 2022
Precipitation Daily precipitation data Station Daily 2016–2022

3. Methodology

The performance of four SM products was assessed using four commonly used sta-
tistical metrics [27,48,49]. These include the Pearson correlation coefficient (R; (1)), which
assesses the capability of remotely sensed SM data to capture temporal variations in in
situ measurements, and bias (2), which measures the wetness and dryness of satellite SM
retrievals compared to in situ observations [50]. Moreover, the root-mean-square differ-
ence (RMSD; (3)) is utilized to quantify the disparity between estimated and observed SM
values [51], and unbiased RMSD (ubRMSD; (4)), which mitigates biases to afford a better
understanding of errors [52]. Since there is a spatial mismatch between in situ SM data
and satellite products, as well as inconsistencies in observation depths, the referenced SM
data may not be regarded as the ‘true’ satellite-scale SM. Therefore, R and ubRMSD are

https://ib.remote-sensing.inrae.fr
https://ib.remote-sensing.inrae.fr
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regarded as the first-order evaluation criteria here since they exhibited less pronounced
representativeness errors compared to RMSD and bias [53].

R =

√
1 −

(θest − θre f )2

(θest − E[θre f ])2 (1)

Bias = E[θest]− E[θre f ] (2)

RMSD =
√

E[(θest − θre f )
2] (3)

ubRMSD =

√
RMSD2 − Bias2 (4)

where in situ SM data are denoted as θref and satellite SM data are denoted as θest. E[. . .]
represents the arithmetic mean. It should be noted that the in situ data are obtained at
the point scale, which is different from the gridded satellite SM products. Therefore, these
four metrics may be subject to the representativeness errors [42]. Considering this error
might influence the absolute value of the metric, we place more emphasis on the first-order
metrics. Additionally, the analysis in the present study is fundamentally comparative,
aiming to highlight the relative strengths and weaknesses of each algorithm [10].

To obtain robust statistical results, several main rules are adopted: (i) in addition
to the SM data filtering mentioned in Section 2.2, only in situ data with at least 31 valid
observations for each season are retained [54,55]; (ii) ensuring that the time difference
between the ground SM observations and satellite instantaneous overpasses remains
within a time window of 1 h [32]; (iii) to minimize discrepancies between the satellite SM
products and the in situ measured data, considering the relatively shallow sampling depth
of microwave SM products, this study used surface in situ with observation depths of
0–10 cm [43,56]. The above rules are applied consistently across different products and
seasons to ensure the fairness of the comparison. We use the median to report the overall
accuracy of the metrics and also consider the spatial patterns (See Section 4.1). It should be
noted that only SM retrievals with significant correlations (i.e., p-values < 0.05) with field
measurements are considered in this analysis.

4. Results

In the following parts, we first examine the seasonal spatial characteristics of the
four satellite SM products (Section 4.1). Next, in Section 4.2, we assess the skills of four
satellite SM products across four seasons, including spring (March to May), summer (June
to August), autumn (September to November), and winter (December to February of the
following year). This assessment encompasses both a.m. and p.m. observations of each
product. In Section 4.3, we analyze their temporal variability in comparison with the in situ
observations. Section 4.4 investigates the impact of three external dynamic factors (i.e., LAI,
MSST, and MSSM) on these SM retrieval algorithms.

4.1. Comparison of Four L-Band SM Product Values Across Different Seasons

In this section, we investigate the multi-year averages and data availability of the four
L-band satellite SM products for different seasons over the period of 2016–2022. It should be
noted that, since SMOSMAP-IB only provides a.m. data, we present the SM retrievals for the
morning observations across all products in this analysis for consistency. The corresponding
p.m. results are provided in the Supplementary Materials (Figures S1 and S2), as they yield
conclusions that are nearly identical to those from the a.m. observations.

4.1.1. Spatial Patterns

The spatial patterns of SM retrievals from SMAP-L3, SMAP-IB, SMOS-IC, and SMO
SMAP-IB exhibit generally consistency across most regions of Jiangsu Province (Figure 2).
Specifically, irrespective of the season, nearly all the satellite products demonstrate a drier
spatial distribution of SM in the northern regions compared to the central and southern
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regions. Differently, however, SMOS-IC and SMOSMAP-IB SM products have spatial
gradient differences, with SM values ranging from less than 0.1 m3/m3 to greater than
0.5 m3/m3, which are more pronounced than the other three products (Figure 2i–p).
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4.1.2. SM Absolute Values

In terms of absolute values of SM estimates, SMAP-L3 and SMAP-IB generally ex-
hibit higher moisture levels than SMOS-IC and SMOSMAP-IB. Considering that both
SMOSMAP-IB and SMAP-IB use the same inversion algorithm and soil temperature inputs,
the bias between them is mainly due to the warmer fused SMOS-SMAP TB, as SMOS is
used as a reference during fusion [18]. This is consistent with the negative correlation
between TB and SM [8]; thus, a large TB corresponds to a dry SM. Regarding the different
seasons, all four L-band SM products tend to exhibit increased wetness in the northern
region of Jiangsu during the summer (Figure 2b,f,j,n).

4.1.3. Spatial Coverage and Temporal Availability

The spatial coverage of individual SM products across Jiangsu Province is slightly
different (Figure 2). Specifically, SMOS-IC and SMOSMAP-IB have narrower coverage,
mainly due to their stricter criteria for excluding pixels affected by urban areas and water
bodies. Moreover, owing to the extensive network of water systems, including both rivers
and static water bodies in Jiangsu (Figure 1b), it is observed that all four satellite products
cannot fully cover the entire region, particularly in the southern part of Jiangsu.

Regarding the availability of temporal observations, there are notable discrepancies in
the data provided by the four L-band SM products (Figure 3). Specifically, the temporal
availability of SMOS-IC SM retrievals is the lowest among the four products across the
four seasons. This feature can be attributed to the fact that SMAP observations are less
affected by temporally and spatially varying RFI than SMOS, which is widely reported to



Remote Sens. 2024, 16, 4235 8 of 23

suffer from high interference in China [27,32]. It is evident that SMOSMAP-IB, which fuses
SMOS and SMAP, offers more observations than any SM product based solely on one of
these two sensors (Figure 3m–p). In addition, the percentage of valid observations for the
four SM products is highest in the spring and decreases in the winter. This may be due
to the presence of ice, snow, and frozen soil during winter, making it difficult to simulate
surface dielectric properties [57]. Consequently, none of the current SM products account
for retrievals during this period [58].
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4.2. The Overall and Seasonal Performance of the Four SM Products

To understand the overall performance of the four L-band SM products and their
differences across the four seasons, this section utilizes Taylor diagrams and violin plots,
which are evaluated against the in situ SM measurements from 2016 to 2022.

4.2.1. Overall Performance

Figure 4 shows the overall performance of the four SM algorithms in Jiangsu for both
morning and afternoon observations, evaluated based on in situ SM measurements from
2016 to 2022. When comparing SM retrievals between a.m. and p.m., both SMAP-IB and
SMOS-IC perform better during p.m. observations in terms of R values. This differs from
the results of some earlier studies [59,60]. A plausible explanation for this counterintuitive
observation is that sustained daytime water stress results in decreased vegetation water
content by evening, making the vegetation more transparent [61]. This results in a reduced
impact of vegetation on the attenuation of soil emissions, a phenomenon that has been
revealed by Zeng et al. [62] and Yi et al. [10]. While SMAP-L3 similarly reflects this
pattern, the R values for p.m. observations are only marginally higher than those for a.m.
(Figure 4a,b). Among the different products, SMOS-IC and SMAP-IB generally outperform
others in capturing the temporal variability of ground observations, particularly during
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p.m. observations. However, when examining the standard deviation, it is evident that
products derived from SMAP satellite observations tend to have lower values compared to
those derived solely from SMOS observations (i.e., SMOS-IC).
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4.2.2. Seasonal Assessment

Figure 5 summarizes the statistical results of the evaluation metrics for the four satellite
SM products during daytime (06:00 a.m.) and nighttime (06:00 p.m.) across the four seasons.
While different products exhibit varied performance across individual sites, we represent
their overall performance by calculating the median of each metric across all sites, as carried
out in studies by [19–21]. In terms of the R metrics for the four SM products, SMOS-IC
consistently yields better R values (0.405 to 0.564) than the other products during the a.m.
observations in all seasons, and from p.m. observations during the summer and autumn.
In particular, SMOS-IC exhibits a clear advantage during daytime in the spring, with an
R value of 0.524, which far exceeds the second-ranked SMAP-IB (R = 0.424). In contrast,
SMAP-L3 shows relatively low R values, especially in the a.m. and p.m. of all seasons
except autumn, with median R values below 0.4. SMAP-IB is found to be visibly ahead of
SMAP-L3 in the spring and winter, while the difference between them is not significant
in the other seasons. Although SMOSMAP-IB enhances spatial and temporal coverage
with respect to other L-band SM products, its R value experiences some degradation,
particularly in winter, compared to SMAP-IB, which is based solely on SMAP observations.
Interestingly, most L-band products achieve improved R values in the autumn compared
to other seasons (Figure 5a–d).

Correspondingly, all four L-band SM products also performed respectably in terms of
ubRMSD during the autumn. In contrast, all products have degraded ubRMSD performance
in the summer, with values greater than 0.060 m3/m3. Among the different products, the
lowest ubRMSD value is generally achieved by SMAP-IB, followed by SMOSMAP-IB. In
particular, SMAP-IB exhibits potential in winter, with ubRMSD values of 0.038 m3/m3

during the daytime and 0.030 m3/m3 during the nighttime, respectively, satisfying the
SMAP mission’s ubRMSD requirement of 0.040 m3/m3 [60]. In addition, both SMAP-IB
and SMOSMAP-IB achieved better ubRMSD in the spring compared to the other products
(Figure 5e–h). More generally, the latter product, SMOSMAP-IB, remains stable with
respect to in situ observations throughout the four seasons. Its ubRMSD is consistently
at a low level among the four products, suggesting the great potential for fusing SMOS
and SMAP [41]. Consistently, SMOSMAP-IB maintains small RMSD values in all seasons.
Apart from this exception, it seems that all products exhibit little variation in RMSD across
the seasons, with SMOSMAP-IB generally having larger RMSD with median values of
~0.1 m3/m3. Regarding bias, it is generally observed that both SMOS-IC and SMOSMAP-IB
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are drier than in situ observations in all seasons except spring (Figure 5m–p), a pattern
also noted in the study by Li et al. [18]. Of the four products, both SMAP-IB and SMAP-L3
maintain values close to the in situ observations across all seasons.
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4.3. Time Series Comparison of the Four SM Products

Figure 6 presents the time series of SMAP-L3, SMOS-IC, SMAP-IB, and SMOSMAP-IB
SM products from both a.m. and p.m. observations, along with in situ measurements and
precipitations bars, at a representative site in FuNing.

Overall, in situ measurements tend to be flatter than the four passive-based SM
products both in the morning (top two panels) and afternoon (bottom two panels). It
is observed that the SM retrievals from SMAP-L3 and SMAP-IB remain relatively stable
between morning and afternoon observations, whereas SMOS-IC shows significant dif-
ferences. Specifically, SMOS-IC has fewer available observations in the morning, and the
afternoon retrievals exhibit a more scattered pattern, likely due to differing sensitivities
to RFI between the morning and afternoon observations [63]. Consistent with Section 4.1,
SMOSMAP-IB presents more valid data compared to other products. It also shows a
similar temporal variation pattern to other SMAP-based SM products, with all aligning
well with precipitation, exhibiting increases in SM during rainfall events followed by a
subsequent decline.
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Seasonally, all four L-band SM values fluctuate significantly in the summer, peaking
in July due to higher temperatures and concentrated precipitation. In contrast, the SM
values remain relatively stable during autumn and winter, attributed to lower evaporation
rates. When compared with in situ measurements, all four SM products are drier than site
observations in spring, autumn, and winter, with both SMAP-IB and SMAP-L3 being closest
to site observations during most of these periods (Figure 6a,c). In comparison, the absolute
SM estimates from both SMOS-IC and SMOSMAP-IB are lower, with values significantly
below those of in situ measurements in all seasons except summer. Nevertheless, due to a
highly similar retrieval scheme that utilizes the L-MEB model and employs the same soil
and vegetation model parameters [8,30], SMOSMAP-IB, like SMAP-IB, provides more con-
sistent information on SM dynamics with a higher number of valid sequences (Figure 6b).
Although SMOS-IC displays the least amount of data due to RFI, it still provides a rough
indication of the seasonal variability of in situ SM observations, consistent with the results
obtained by Fan et al. [27].

4.4. Impact of Dynamic Factors on the Performance of the Four L-Band SM Retrievals

The above assessment indicates that the performance of the four SM products in
Jiangsu Province varies noticeably across different seasons. In this section, we attempt
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to elucidate the impact of the three pivotal dynamic attributes on these SM products
throughout the four seasons, which are LAI, MSST, and MSSM. Note that in this analysis,
we consider only the first-order evaluation criteria (R and ubRMSD) for a.m. observation of
each product, as the differences between the a.m. and p.m. versions of each product are not
sufficient to affect the ranking among products. Additionally, the findings based on p.m.
observations (Figures S3–S8) for these three external influencing factors are nearly identical
to those from a.m. observations. Therefore, we present only the a.m. results in this section
to highlight the key findings.

4.4.1. LAI

To analyze the impact of vegetation on the performance of SM products in more detail,
we calculate the distribution of statistical metrics (i.e., R and ubRMSD) as a function of LAI
(Figures 7 and 8). Specifically, we create boxplots for these two metrics at the corresponding
sites under different LAI categories as carried out by Ma et al. [21]. It is important to
note that, since environmental factors also exhibit seasonal dynamics, we define three LAI
categories for each season separately to ensure an even distribution of sites. The median
LAI values for each category are shown in parentheses. Significant seasonal differences in
the effect of LAI on the retrieval performance of different SM products are clearly observed.
For instance, a noticeable decrease in the R value is observed as LAI increases in the spring
for SMAP-L3 compared to other products. However, in the summer, when LAI reaches its
maximum category with a median value of 1.21, SMAP-L3 exhibits the highest R value
among the four products (Figure 7b). In the autumn, the R values for all products increase
with rising LAI, except for SMOS-IC. While the ranking of products by LAI class varies
across seasons, SMOS-IC and SMAP-IB generally perform better in capturing temporal
variations in ground SM observations. In particular, SMAP-IB shows leading or comparable
R values to the other products during winter (Figure 7d). Additionally, SMOSMAP-IB
appears relatively less sensitive to vegetation impacts across seasons, as indicated by
minimal fluctuations in its median R values across different LAI levels.
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Regarding ubRMSD, contrary to previous studies where an increase in vegetation
density typically results in significant degradation of ubRMSD [30,64,65], our findings
indicate that this trend is not consistently observed across different products and seasons
(Figure 8). For instance, in spring, only SMAP-L3 shows an increase in ubRMSD with rising
LAI, while the other products exhibit minimal changes or even a reduction, as observed
with SMOS-IC. Moreover, for nearly all products, ubRMSD displays a pattern of initially
increasing and then decreasing with LAI variations during summer and autumn. We
attribute this partly to the fact that the in situ sites used in this study are predominantly
located in agricultural areas of Jiangsu Province (Figure 1), where vegetation density is
generally lower. This differs from the more comprehensive validation typically conducted
using ISMN, which covers a wider range of vegetation densities.

4.4.2. Surface Soil Temperature

With respect to mean surface soil temperature (MSST), the R scores for the four SM
retrievals exhibit distinct seasonal variations due to temperature fluctuations characteristic
of each season (Figure 9). Specifically, the R values for SMAP-L3 follow a pattern of initially
decreasing and then increasing with rising temperatures across all seasons. However, this
is not the case for other products. For instance, SMOS-IC shows minimal fluctuations in
R values with temperature variations during summer, whereas, in autumn, it demonstrates
a marked increase in R values as temperatures rise (Figure 9b,c). Despite both products
employing the same L-MEB model retrieval scheme, SMAP-IB consistently shows higher
R values than SMOSMAP-IB across most MSST categories during spring, autumn, and
winter. Interestingly, this pattern is reversed in summer, when SMOSMAP-IB performs
better than SMAP-IB in all MSST categories. It can also be observed that, during winter,
when MSST falls into the lowest category, only SMOS-IC and SMAP-IB maintain relatively
high R values with a median R value > 0.6, while the other products show a clear degra-
dation in R skill. This disparity may be due to the accuracy of the model temperature
inputs used by the different SM inversion algorithms [10,34]. Both SMOSMAP-IB and
SMOS-IC rely on the temperature output from the Interim version of the European Centre
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for Medium-Range Weather Forecasts (ECMWF), whereas SMAP-IB and SMAP-L3 use data
from ECMWF’s fifth-generation reanalysis (ERA5) and the Goddard Earth Observing Sys-
tem Model version 5 (GEOS-5). Additionally, an evaluation showed that the temperature
output of ERA-Interim could achieve comparable performance within this soil temperature
range compared to ERA5 and GEOS-5 [66].
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In terms of ubRMSD, a common feature of the four L-band retrievals is that, during
summer, all products show a significant improvement in ubRMSD as MSST increases.
Moreover, during this season, SMOSMAP-IB has the lowest ubRMSD at all MSST levels.
Interestingly, despite ubRMSD remaining at a relatively low level overall, it increases
with rising temperatures in autumn for all products except SMAP-L3 (Figure 10). During
this season, SMAP-L3 exhibits a noticeably better ubRMSD performance, while SMAP-IB
consistently delivers the best performance across most MSST levels in the other seasons,
particularly in autumn and winter (Figure 10a,d). It is also evident that different products
respond differently to temperature changes across various metrics. For instance, while
SMOS-IC shows comparable performance in terms of R values, its ubRMSD remains
consistently higher across MSST changes relative to the other products (Figures 9 and 10).
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4.4.3. Soil Wetness

Regarding different ground moisture conditions, R values increase with higher mois-
ture levels in spring for all products. However, in other seasons, all four products generally
show a decrease in R values as MSSM increases (Figure 11). Among different products, it
can be observed that SMOS-IC does not always outperform the others. For example, in
winter, when MSSM is at lower levels, SMAP-IB achieves a higher R value, with a median
of ~ 0.6, surpassing that of SMOS-IC. Moreover, SMOSMAP-IB generally outperforms
SMAP-IB at higher MSSM levels (e.g., at MSSM-III) across different seasons. At these levels,
SMAP-L3 demonstrates performance comparable to SMAP-IB, particularly in autumn and
winter, despite having lower R values in other seasons. For nearly all products, the R values
during summer exhibit minimal fluctuations with changes in MSSM compared to other
seasons, with median values not exceeding 0.4.
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Interestingly, consistent with the pattern observed for R, as MSSM increases, the
ubRMSD values for all products also show improved performance during the spring. For
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most products during this season, the ubRMSD in the wettest MSSM category falls below
0.05 m3/m3, with SMOSMAP-IB exhibiting the lowest values. Notably, this product also
maintains the lowest ubRMSD in the wettest categories during both summer and autumn
(Figure 12b,c). However, across most MSSM levels in various seasons, SMAP-IB consistently
demonstrates comparable ubRMSD performance. SMAP-L3 is found to exhibit a decrease
in ubRMSD as SM increases during spring, autumn, and winter. In contrast, for SMOS-IC,
it is difficult to identify a consistent pattern across seasons. This product generally has the
highest ubRMSD values under varying SM conditions across different seasons, which is in
line with the evaluation study of Ma et al. [64].
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5. Discussion

The results above demonstrate the interest in analyzing the accuracy of microwave
SM products by season, and all four algorithms have room for improvement. Remarkably,
the coverage and the amount of data available for the four SM products are significantly
limited after pre-processing. This limitation is primarily due to factors such as the pro-
portion of water bodies, frozen soil conditions, RFI, and errors from algorithmic spurious
inversions [8,26,67], which are generally identifiable through the quality markers of each
product. In particular, coarse-resolution SM products in Jiangsu Province are especially
affected by the extensive water system distribution, highlighting the need for the develop-
ment of SM products that incorporate water body corrections in the inversion algorithms, or
the creation of higher-resolution products to meet the application requirements of various
disciplines [4,6,68]. Nonetheless, fusing SMOS and SMAP data can significantly improve
the temporal tracking of surface SM changes [18].

Based on the evaluations and comparative results presented in Section 4.2, it is evident
that different SM products exhibit significant seasonal performance variations. On one
hand, most SM products demonstrate optimal performance in autumn, achieving the
highest R values and the lowest ubRMSD values, while both metrics are the poorest in
summer. This may be partially attributed to the lower vegetation cover in autumn due
to plant senescence. Another possible reason is that the modeled temperatures on which
these products are based are more accurate in this season [66,69], as we find that the
accuracy of most products responds uniquely to autumn soil temperatures compared
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to other seasons, with the R metric generally increasing as temperatures rise (Figure 9).
However, caution should be taken when interpreting Figures 7–12, as they result from
numerous interdependent factors affecting SM retrieval accuracy [8,10], many of which
are not analyzed in this study (e.g., soil texture, water bodies, etc.). Additionally, this
also suggests the potential need to reconsider the evaluation and calibration of certain key
radiative transfer variables, such as surface roughness (Hr) and effective scattering albedo
(ω), by taking into account their temporal dynamics to develop improved products [40].
Conversely, in the summer, the most likely reason for the poorest performance of all
products is the impact of rainfall. Due to the East Asian monsoon, the Jiangsu region
typically experiences heavy rainfall during this season (Figure 6). The underlying reason is
that rainfall affects the vertical distribution of SM, leading to greater depth discrepancies
between satellite measurements (typically within 0–5 cm) and in situ observations (10 cm
used here). This is supported by Figure 13, which shows that excluding rainfall periods
can significantly improve SM validation accuracy for all four SM products, particularly for
the ubRMSD metric, in line with the findings of Colliander et al. [70]. Additionally, water
interception by vegetation canopy is another potential influencing factor, particularly for
cropland [8].
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Figure 13. Density plots of four SM products compared with in situ data at Hai’an station. The
background color represents rainfall, with darker shades indicating higher rainfall amounts. The blue
and red numbers in each plot indicate the first-order validation metrics before and after excluding
observations on rainy days. (a) SMAP-L3; (b) SMAP-IB; (c) SMOS-IC; (d) SMOSMAP-IB.

On the other hand, among the different products, we find that no single SM algorithm
consistently holds an absolute advantage under any environmental factors, regardless
of the evaluation metric considered (Figures 6–8). This is consistent with previous SM
evaluation studies [10,30,62,64]. Nevertheless, it can be observed that SMOS-IC has the
highest overall R values in most seasons, while SMAP-IB exhibits the lowest ubRMSD
values, with SMOSMAP-IB following closely. Although the RFI contamination of SMOS
satellite observations in China has been widely reported, SMOS-IC has demonstrated good
performance in the Jiangsu region due to algorithm improvements and the application of
RFI filtering strategies [27,32,34]. Additionally, we find that the sensitivity of skill metrics
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for different products to the three analyzed dynamic environmental factors varies across
seasons. For instance, the ubRMSD of SMAP-L3 shows a noticeable increase, with rising LAI
during the spring, unlike its response to the other two environmental factors. A possible
reason for this is that, unlike the other three products, which are entirely independent
of optical information, SMAP-L3 incorporates optical data in its VOD retrieval process,
potentially integrating information from the latter. As a crucial component of the τ-ω
model, errors in VOD retrievals can propagate and accumulate in the SM retrieval results,
as evidenced by Gao et al. [28]. Interestingly, compared to other products, SMOS-IC and
SMOSMAP-IB are less influenced by external factors in terms of ubRMSD.

There are some limitations in this study. First, due to the limited coverage of in situ data
and its mismatch with the spatial resolution of grid-based satellites, traditional point-scale
validation methods inevitably introduce representativeness errors [32,34]. Although this
study has taken necessary measures, such as using R and ubRMSD as primary evaluation
metrics given their lower susceptibility to bias, potential errors may still exist in the absolute
values of these metrics. Nevertheless, we also applied the Triple Collocation Analysis (TCA)
method, which is based on mathematical statistics, does not require ground truth data, and
is unaffected by spatial representativeness errors. By constructing traditional (modeled,
active, and passive) triple collocations [26,71], we found that the ranking of R values
obtained from TCA is nearly consistent with the site-based validation results presented
in this study (Figure S9), demonstrating the robustness of our findings. Furthermore, not
only dynamic environmental factors such as vegetation density, soil temperature, and
surface soil wetness but also static conditions such as soil properties, land cover, and
climatic zones affect the SM inversion, which need to be analyzed comprehensively in
combination [59]. While field stations in Jiangsu Province are distributed across various
locations (Figure 1), they are still insufficient to cover the full range of environmental
conditions, particularly in areas with unique hydrological or vegetation characteristics,
which may lead to biased conclusions. However, it is not possible to address all these
issues in a single study. Future work will focus on a wider geographical area, aiming to
collect more ground-based in situ measurements specifically for agricultural fields through
a dense network to improve the generalizability of the validation results of this study. In
addition, this needs to be complemented by more detailed studies using the TCA method
to reduce the representativeness errors between site-based and satellite observations [21,42].
Another approach is to introduce reliable high-resolution SM products as an intermediary
to mitigate the scale effect issue [4,6,68].

6. Conclusions

In this study, based on in situ SM data in Jiangsu province from 2016 to 2022, the
performance of four SM products (i.e., SMAP-L3, SMOS-IC, SMAP-IB, and SMOSMAP-IB)
under different seasons is evaluated using indicators including R, ubRMSD, RMSD, and
bias. Additionally, this study discussed the differences between satellite SM retrievals
and in situ observations on external dynamic factors such as LAI, MSST, and MSSM. We
find that:

(1) Current products are unable to fully cover the entire Jiangsu province spatially
due to their coarse resolution and disturbances such as the influence of static water bodies.
Nonetheless, the fusion of SMOS and SMAP can significantly increase the temporal revisit
frequency for capturing SM variations compared to products based on a single sensor.

(2) Seasonally, the four products exhibit significant performance differences, with most
products showing improved performance in the autumn and the poorest performance in
the summer, particularly with respect to the metric ubRMSD. This discrepancy is most
likely due to the disturbances caused by summer rainfall, which not only leads to water
interception but also affects the vertical distribution of SM and thus increases the differences
between in situ measurements and satellite observations.

(3) Among the different products, SMOS-IC generally achieves better R values but
has less temporal availability, while SMAP-IB shows the lowest ubRMSD values, followed
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by SMOSMAP-IB. The sensitivity of different products’ skill metrics to the three dynamic
environmental factors varies across seasons. For ubRMSD, SMAP-L3 generally shows an
increase with LAI in all four seasons, while SMAP-IB exhibits a notable increase as the soil
becomes wetter in the summer. Conversely, wet conditions clearly reduce the R metric
values during the autumn for most products.

In summary, our findings indicate that there is room for enhancement in all four
SM products, as their overall performance in Jiangsu is not very high compared to the
in situ measurements. For instance, few products have a median R value greater than
0.6. Additionally, significant performance differences across different seasons suggest that
the use of static model parameters, such as the assumption of time-invariant Hr and ω in
current algorithms, needs to be reconsidered. Evaluating the applicability of microwave
satellite SM products in Jiangsu not only provides a reference for selecting suitable SM
datasets in different periods but also is crucial for improving SM retrieval algorithms. It is
expected that our findings will enhance satellite SM algorithms and promote the application
of these valuable SM products in terrestrial water, hydrology, energy, and carbon cycles.
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https://www.mdpi.com/article/10.3390/rs16224235/s1, Figure S1: Averaged nighttime SM (m3/m3)
values from 2016 to 2022 for the three L-band SM products. Grey values indicate “Masked or no
valid data pixels”; Figure S2: Percentage of data availability for three SM products from nighttime
observations between 2016 and 2022. Grey values indicate “Masked or no valid data pixels”; Figure
S3: Boxplot of R metric statistical comparisons between the three L-band SM products and in situ
measurements by different LAI levels during nighttime across the four seasons. The values in paren-
theses are the medians of LAI; Figure S4: Boxplot of ubRMSD metric statistical comparisons between
the three L-band SM products and in situ measurements by different LAI levels during nighttime
across the four seasons. The values in parentheses are the medians of LAI; Figure S5: Boxplot of R
metric statistical comparisons between the three L-band SM products and in situ measurements by
different MSST levels during nighttime across the four seasons. The values in parentheses are the
medians of MSST; Figure S6: Boxplot of ubRMSD metric statistical comparisons between the three
L-band SM products and in situ measurements by different MSST levels during nighttime across the
four seasons. The values in parentheses are the medians of MSST; Figure S7: Boxplot of R metric
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