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rainforests after drought
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YujieDou 1,2, FengTian 1,3,4 , Jean-PierreWigneron5, Xiaojun Li5,WenminZhang 6, YaoliangChen7,
Luwei Feng1, Qi Xie1 & Rasmus Fensholt 6

The 2015–2016 El Niño-induced drought caused biomass loss in global tropical forests, yet the recovery
duration of different vegetation components (woody components, upper canopies, and leaves) remains
unknown. Here, we use satellite remote sensing data of vegetation optical depth and leaf area index, with
varying sensitivity to different vegetation components, to examine vegetation recovery during the drought
event. We find that the woody component had the slowest recovery compared to the upper canopy and
leaves, and displayed greater spatial variability between continents. Key factors influencing woody
recovery include drought severity, moisture-related climatic conditions (i.e., vapor pressure deficit,
precipitation, and soil moisture), and seasonal variations in temperature and precipitation. Our study
highlights the importance of different vegetation components for maintaining ecosystem balance under
drought disturbances and indicates the need for further research to explore recoverymechanismsand the
long-term impacts of drought on forest dynamics.

Tropical ecosystems represent 34% of the global gross primary terrestrial
productivity1 and play a major role in carbon cycles at the global scale2.
However, the effectiveness of capturing and storing carbon to mitigate
future global warming partly depends on the impact of severe drought
episodesaswater is theprimarydeterminantof the amountandallocationof
forest biomass production, and thereby the interannual variability of the
tropical carbon cycle3. Droughts in tropical regions are predominantly
associated with the El Niño-Southern Oscillation (El Niño), and many
extreme drought events in tropical regions coincide with El Niño events4.
Notably the 2015–2016 El Niño led to historically high temperatures and
low precipitation across the tropics, and the growth rate of atmospheric
carbon dioxide was the largest on record5. An earlier study found that the
carbon stocks in African and American humid forests had not recovered to
pre- El Niño levels by 20176, and the duration of the vegetation recovery
period has yet to be determined.

Different vegetation components are characterized by differences in
response time during drought conditions. Several experiments have
demonstrated that the sensitivity ofwoody growth rate to drought surpasses
that of vegetation canopy greenness7 because vegetation growth reduction is
moremediated by the functional processes related to building a carbon sink
than by the quantity of biomass synthesized through photosynthesis8,9.
However, these experiments were conducted at the species level, and the
spatial variability in the sensitivity of different parts ofwoodyplants remains
unexplored.

Moreover, the response of forests to drought does not only depend on
forest resistance and adaptation strategies, but is also highly dependent on
the severity of drought events10, the time scale atwhichdroughtoccurs11, and
the duration of the drought. For example, larger resistance to drought has
been observed in spring when vegetation is in its reproductive stage, and
productivity is at its peak11. Tropical tall forests are found to be more
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sensitive and vulnerable to drought than short forests12, and a higher species
diversity could enhance drought resistance13. Therefore, to better under-
stand drought impacts on tropical forest ecosystems, it is necessary to
consider and incorporate information on forest traits, drought severity, and
climate to investigate the potential drivers of forest recovery from drought.

Remote Sensing technology provides a powerful tool to investigate the
vegetation dynamics from local to global scales. Optical-based multi-spec-
tral remote sensing images have been used to derive a wide number of
spectral vegetation indices based on reflectance ratios, which provide
valuable insights into the photosynthetic vegetation component (e.g., her-
baceous cover and leaves of woody plants). For example, the optical-based
Leaf Area Index (LAI) quantifies the amount of leaf area within an eco-
system, serving as a critical variable in processes such as photosynthesis and
respiration14. The Normalized DifferenceWater Index (NDWI) utilizes the
Near-Infrared (NIR) and Short Wave Infrared (SWIR) channels to reflect
changes in both water content (via SWIR radiation absorption) and the
spongy mesophyll in vegetation canopies15. However, optical-based vege-
tation indices primarily identify changes in the leaves at the canopy, pro-
viding limited information about alterations in branches and the woody
components of vegetation.

Microwave observations are less sensitive to atmospheric effects and
are more sensitive to the water present in vegetation16, and the lower fre-
quencies (i.e., longer wavelength) have improved capabilities of penetrating
deeper into the vegetation layer. The vegetation optical depth (VOD) data
was derived from multi-frequency passive microwave spaceborne obser-
vations,which is a parameter used for quantifyingmicrowave transmissivity
of the vegetation layer and ismainly determinedby vegetationwater content
from both foliar and woody components17–19. The L-band VOD (L-VOD,
1.4 GHz) has a lower frequency, allowing for deeper penetration into the
vegetation layer20 with minimal influence from green non-woody plant
components19,21. In contrast, the X-band VOD (X-VOD, 10.7 GHz) is
sensitive to changes in the vegetation canopy, and it can serve as an inde-
pendent bioclimatic growing season index compared to MODIS optical-
based vegetation indices22. However, X-VOD cannot fully penetrate the
entire canopy in forests with high tree height, such as in tropical evergreen
broadleaf forests (EBF)23. Therefore, it is considered as an indication of
smaller branches and foliar of the upper canopy layer of EBF forest23,24.

Here, we used satellite remote sensing data of L-VOD, X-VOD, and
LAI as proxies for the woody component, particularly the branches, the
upper canopies including canopy foliage and the branches at the top of the
canopy, and the leaf component of tropical forest trees, respectively
(Methods). To understand their respective sensitivity to drought, we aimed
to investigate the recovery time of the different components of tropical EBF
across the pan-tropics following theElNiño-induced drought of 2015-2016,
by analyzing time series of satellite data from 2010-2022.We also employed
the random forest method to ancillary data of climatic conditions, drought-

related information, and ecosystem-related factors to investigate the pri-
mary drivers of spatial variability in the recovery time of the vegetation
component in tropical EBF.

Results
Severity of the 2015–2016 drought
The severity of drought was identified by standardized precipitation eva-
potranspiration index (SPEI) data. Most EBF in South America (56%) and
Africa (90%) regions have experienced severe drought (i.e., SPEI <−1.5)
(Fig. 1a) caused by the 2015–2016 El Niño, and there were obvious differ-
ences in the drought duration across the pantropical area (Fig. 1b). The EBF
in Africa showed themost widespread exposure to long-duration droughts,
with drought periods lasting up to 6 months covering 93% of the region,
whereas 58% of South America forests and 40% of Asian forests have been
exposed to such long-duration droughts, respectively.

Recovery time of different vegetation components
The reliability of using satellite remote sensing data to represent different
vegetation components was validated through field experiments and
empirical regression between canopy height and vegetation indices (VIs,
including L-VOD, X-VOD, and LAI) (Methods and Supplementary
Fig. S1). Specifically, L-VODwas shown to capture the woody components,
particularly branches, while X-VOD reflected the upper canopy, including
both foliage and branches at the top of the canopy. LAI, on the other hand,
corresponded to the leaf component. Then, we calculated the recovery time
of these three vegetation components by analyzing the time-series data of
SPEI and VIs (Fig. 2 and Methods).

Noticeable spatial differences in the recovery time of the woody
component, the upper canopy layer, and the leaves were observed following
the 2015-2016 drought (Fig. 3). The recovery of the upper canopy layer and
leaves was faster than the woody component. Nearly 73% of the upper
canopy layer area and 92% of the leaf area recovered to the pre- El Niño
conditions within two months, while only 52% of the drought-affected
woody component area showed a similar recovery time (Table 1, Supple-
mentary Fig. S2a). Moreover, there were 29% of the area for the woody
component did not recover within one year (Supplementary Fig. S2a),
whereas only 1% of the upper canopies were affected, with all the leaves
being fully recoveredwithin the sameperiod.Notably, regardless ofwhether
the calculations were performed on the resampled coarse spatial resolution
or the original 500-meter spatial resolution, the LAI recovery time following
drought events was consistently short, typically occurring within two
months. Supplementary Fig S3 illustrates the recovery comparison of LAI in
Africa, where greater temporal differences are observed compared to Asia
and South America.

The recovery time of the upper canopy layer and the leaf component
exhibited less spatial variation, but there were notable variations in the

Fig. 1 | Spatial distribution of drought intensity and drought duration identified by SPEI. aDrought intensity and b drought duration.Mild drought (�1<SPEI≤ � 0:5),
moderate drought (�1:5<SPEI≤ � 1), severe drought (�2<SPEI ≤ � 1:5), and extreme drought (SPEI ≤ � 2).
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recovery time of the woody components in the forest regions of South
America, Africa, and Asia. The woody components of EBF in South
America show the fastest recovery (Fig. 3a), with 57% of the region reco-
vering within 2 months. The recovery time for EBF in Africa is the longest,
with 42% of the region requiring more than 12 months to fully recover.

As for the recovery time for different vegetation components, the pixel
scale leaf component recovers first, followed by the upper canopy layer and
the woody components (Fig. 3, Supplementary Fig. S2, S4). In 93.8% of
forested areas, the leaf component showed simultaneous recovery timewith
either the upper canopy layer, the woody component, or both (in 12.6% of

the study area, the leaf component recovered first preceding the recovery of
the upper canopy layer and the woody component) (Fig. 3b). This phe-
nomenonwas common in SouthAmerica,Africa, andAsia (Supplementary
Fig. S4). The regions where the upper canopy layer showed simultaneous
recovery time with either the leaf component, the woody component, or
both account for 72.7% (in 2.3% of forested areas, the upper canopy layer
recovered first preceding the recovery of the other two components). Nearly
37.8% of forested areas showed simultaneous recovery time of the woody
component with either the leaf component, the upper canopy layer, or both
(the areas where the woody component recovered first account for 2%). It is

Fig. 2 | The identification of drought event and calculation of vegetation recovery
for different conponents. Here is an example of the drought duration (yellow
shaded) and recovery time (greening shaded) definition over an EBF pixel in South

America (0.5° S, 57°W). Leaves were quantified by (a) LAI, the upper canopies were
quantified by (b) X-VOD, and the woody component was quantified by (c) L-VOD.
The maps on the right column are from Google Earth.

Fig. 3 | Spatial distribution of the recovery time for different vegetation components after drought. a The woody component, b the upper canopy layer, and c leaves.
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important to note that we do not assume that these components recover
independently of each other. After a drought event, different vegetation
components such as leaves, the upper canopies, and the woody component
recover simultaneously, but the recovery time for each is distinct.

Main drivers of woody component recovery across global
tropical rainforests
The random forest regression model was used to investigate the drivers of
woody component recovery across tropical rainforests (Methods). The
input factors (including drought severity, moisture-related climatic condi-
tions, and seasonal variations) incorporated in the random forest model
collectively explained 70% of the variability in the woody component
recovery across the tropical region of EBF forests. The severity of the
drought impact on the woody component (i.e. L-VOD anomaly) emerged
as the primary determinant of the recovery time (%IncMSE = 102%)
(Fig. 4a). Moreover, there was a significant negative correlation between
L-VOD anomalies and the recovery time of the woody component
(R =−0.58, p < 0.01), indicating thatmore severe impacts of drought on the
woodycomponent result in longer recovery time (Fig. 4b). Subsequently, the
climatic conditions related to moisture levels during the recovery period,
including mean monthly vapor pressure deficit (VPD) (%IncMSE = 32%,
R =−0.13, p < 0.01) and mean monthly precipitation (%IncMSE = 29%,
R = 0.03, p < 0.05), were found to be important explanatory variables of the
recovery time. Biomass (i.e. annual L-VOD) is also closely related to the
recovery of vegetation woody components (%IncMSE = 26%, R = 0.27,

p < 0.01). The higher the vegetation biomass, the longer the corresponding
recovery time.

The seasonal variation (i.e., the standard deviation of monthly air
temperature and precipitation) also played an important role in influencing
the recovery of the vegetation woody component. When the seasonal
showed minor variations (e.g., smaller standard deviations in monthly
temperature (%IncMSE = 32%, R =−0.24, p < 0.01) and monthly pre-
cipitation (%IncMSE = 32%, R =−0.29, p < 0.01)), the recovery time of the
woody layer tended to be prolonged. Finally, soil moisture (SM) of layer 2
during the recovery period (%IncMSE = 20%, R = 0.02, p > 0.05), soil
moisture of layer 3 during the recovery period (%IncMSE=19%,R =−0.03,
p > 0.05), and the long-termmeanmonthly precipitation (%IncMSE=19%,
R =−0.12, p < 0.01) also positively contributed to the recovery of thewoody
component, with more water availability corresponded to shorter recov-
ery time.

We also analyzed the primary influencing factors on the woody
component recovery time of EBF in South America (56% explanation),
Africa (73% explanation), and Asia (54% explanation) separately (Supple-
mentary Fig. S5–S7). We found that the severity of the drought impact on
the woody component (i.e. L-VOD anomaly) consistently remained the
most significant factor affecting the recovery time of the woody component
over all three continents. This was followed by the climatic conditions
during the recovery period in South America and Africa, as well as the
drought-related factors (e.g. air temperature anomaly, VPD anomaly)
in Asia.

Table. 1 | Area percentage of the recovery time for different vegetation components across tropical EBF regions

Components <= 2 3 − 4 5 − 6 7 − 8 9 − 10 11 – 12 >12 months

Leaves 92% 6.5% 1.1% 0.3% 0.1% 0 0

Upper Canopy 72.9% 17% 5.6% 2.3% 0.8% 0.4% 1%

Woody Component 51.9% 7.2% 5.2% 3.2% 2.3% 1.5% 28.6%

Fig. 4 | Attributions of the normal climatic conditions, climatic conditions
during the woody recovery period, drought-related, and ecosystem-related fac-
tors to the recovery time of the woody component across tropical evergreen
broadleaf forests. aThe relative importance of the predictor variables in the random
forest model is shown by the percentage increase of mean squared error (%IncMSE).
The scatterplots illustrate the relationships between the woody recovery time and
various factors, b L-VOD anomaly during the drought period, c, d mean monthly

VPD and precipitation during the recovery period, e annual L-VOD pre-El Niño
period, f, gmonthly temperature and precipitation variation, h, imeanmonthly soil
moisture layer 2 and layer 3 during the recovery period, and j the long-term mean
monthly precipitation. R indicates the correlation coefficient between the recovery
period and the influencing factors. Asterisks denote significant linear correlations at
0.01 “**” and 0.05 “*” levels, respectively.
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We also analyzed the primary factors influencing the recovery time
of the upper canopy and leaves in tropical EBF forests. Our findings
showed that the input factors incorporated in the random forest model
explained only 9% and 7% of the variability in the recovery time of the
upper canopy and leaves, respectively, across the tropical EBF forests
(Supplementary Fig. S8–S9). This limited explanatory power may be
due to the non-continuous variables of recovery time, as well as the
relatively low range of recovery time values observed for the upper
canopy and the leaves. Therefore, we did not provide a detailed analysis
of the primary factors influencing the upper canopy and leaves in
this study.

Explanations for the faster recovery of the woody component in
South America compared to Africa
The primary drivers of the woody components recovery in rainforests
worldwide could well explain why these components recovered more
quickly in South America than in Africa. Firstly, the severity of the drought
impact on the woody component (i.e. L-VOD anomaly) was more pro-
nounced in Africa than in South America (mean L-VOD anomaly =−3.0
SD in Africa vs. −2.3 SD in South America) (Fig. 5a). In Africa, the most
negative impact of drought on the woody component was concentrated in

the Congo Rainforest region, where the L-VOD anomaly was lower than in
other regions (Supplementary Fig. S10).

Secondly, the climatic conditions related to moisture levels during the
recovery period in South American EBF regions were more favorable than
in Africa with lower VPD (mean VPD= 5.9 in South America vs. 6.3 in
Africa), more precipitation (mean precipitation = 182mm in South
America vs. 136mm inAfrica), andmore soil moisture (mean soilmoisture
of layer 2 = 0.39 m3 m−3 in South America vs. 0.37 m3 m−3 in Africa, mean
soil moisture of layer 3 = 0.39 m3 m−3 in South America vs. 0.35 m3 m−3 in
Africa) (Fig. 5b–e). The pre-El Niño annual VOD in EBF of South America
was slightly higher than in Africa (mean pre-El Niño annual VOD= 0.91 in
South America vs. 0.87 in Africa) (Fig. 5f), but the impact of drought on the
woody component and the influence of climate on the recovery period is
greater than that of biomass alone (Fig. 4a). Therefore, solely comparing
biomass values cannot adequately explain why the recovery time of the
woody vegetation layer in South America is faster than that in Africa.

Finally, the EBF inAfrica showed amore stable seasonal variationwith
lowermonthly temperature variation (mean temperature variation=0.9 SD
in SouthAmerica vs. 0.88 SD inAfrica) andmonthly precipitation variation
(mean precipitation variation = 106 SD in South America vs. 71 SD in
Africa). Additionly, the EBF has lower precipitation availability in Africa

Fig. 5 | Statistical distribution of the main influencing factors on the recovery of
thewoody component in SouthAmerica andAfrica. a L-VOD anomaly during the
drought period, b–emean monthly VPD, precipitation, soil moisture of layer 2 and
layer 3 during the recovery period, f annual L-VOD before El Niño, g, h seasonal

variation in monthly temperature and precipitation variation, and i the long-term
monthly mean precipitation. The horizontal lines at the top and bottom of the box
plot represent the 25th and 75th percentiles, respectively, while the red line indicates
the median.
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than South America (mean precipitation = 207mm in South America vs.
137mm in Africa). Therefore, the severity of drought impact on the woody
component, the less favorable moisture-related climatic conditions during
recovery, and the smaller seasonal variation in Africa compared to South
America’s EBF contribute to a slower recovery of the woody component in
Africa compared to South America.

It should be noted that due to the relatively smaller area of EBF in Asia
compared to South America andAfrica, we chose only to focus our analysis
onunderstanding thedifferences in the recovery timeofwoody components
in vegetation between South America and Africa.

Discussion
We used L-VOD, X-VOD, and LAI data separately as proxies of the woody
component (i.e. branches), the upper canopy layer (including canopy foliage
and branches at the top of the canopy), and the leaf component to inves-
tigate the recovery of these components in tropical EBF regions during the
extremedrought period inducedby the 2015–2016ElNiño event.We found
that the recovery time of the leaf component is the fastest, followed by the
upper canopy layer and the woody component (Fig. 3, Supplementary
Fig. S2, S4).

During a drought period, the leaf component initially responds by
closing stomata. This is followed by a response in the woody component25,
such as reduced xylem water transport efficiency, possible embolism for-
mation, and altered turgor pressure. These effects can decrease hydraulic
conductivity, impair water transport from roots to leaves, and stress the
plant’s structural integrity, potentially damaging woody tissues. Although
the longstanding theory holds that stomata optimize fitness bymaintaining
constant marginal water use efficiency over a specified time frame, a recent
evolutionary theory suggests an alternative perspective that stomata aim to
maximize the carbon gain while minimizing carbon costs and the risk of
hydraulic damage13. Additionally, vegetation typically adjusts biomass
allocation by directing more resources to the underground parts to capture
additional water in deep soil layers during drought periods, thereby redu-
cingwater stress, with thewoody component receiving aminimumbiomass
allocation26. Moreover, non-photosynthetic (woody) and photosynthetic
(foliar) canopy biomass exhibit slower recovery rates27. The leaves of
vegetation, which represent the primary source of photosynthesis in plants,
are highly responsive to changes in the photosynthetic process. Given the
current atmospheric CO2 levels, drought primarily limits tree growth by
affecting radial growth and structural development, rather than by limiting
biomass production through photosynthesis8. Furthermore, the woody
component has been revealed to be the most sensitive component to
drought compared to litterfall and below-ground parts28. This high sensi-
tivity of the woody component leads to a greater reduction in overall
vegetation growth during drought, compared to the impact on leaves7.
Therefore, the recovery of thewoody component is slower compared to that
of the leaf component (Fig. 3).

The moisture-related climatic conditions during the recovery period
have a substantial impact on the recovery of the vegetation woody com-
ponent. The mean monthly VPD, precipitation, and the soil moisture of
layer 2 and layer 3 were identified as the most influencing climatic factors
affecting the recovery of the vegetation woody component (Fig. 4). The
strong impact of moisture-related climatic conditions during the recovery
period on the recovery of woody component partly depends on the sensi-
tivity of vegetation to specific climatic factors. For example, VPDmodulates
hydraulic function and structure in tropical rainforests during the recovery
period with sufficient soil water supply29, making tall Amazon forests more
sensitive to VPD than precipitation30. Soil moisture supplies the water
resource to tropical forests and thus is a key controller of tropical forest local
hydrology31.

The adaptability of vegetation to normal climate conditions also
influences the recovery of vegetation woody components. Vegetation tends
to becomemore adaptive to climate change in regions with higher seasonal
variations32. Thus, the EBF of South America experiences greater seasonal
variations with higher monthly precipitation and temperature variation

(Fig. 5g, h), allowing vegetation to adapt well to climate changes and cor-
respondingly resulting in shorter recovery times (Figs. 3, 4). Moreover, the
EBF in Africa is more accustomed to drought and therefore exhibits greater
resilience to droughts33, which also implies that when Africa experiences
severe drought events, it will require more time for recovery (Fig. 3).

There is a significant positive correlation between biomass and the
recovery of the woody component in tropical EBF (Fig. 4a). As biomass
increases, the duration required for recovery also increases. This tendency
may be attributed to higher biomass levels in the study area aligning with
enhanced ecosystem diversity, facilitated by the diversity of plant hydraulic
strategies and traits that can buffer a forest ecosystem against drought.
Therefore, heightened biodiversity correlates with increased resilience to
drought13, resulting in prolonged recovery periods. However, in this study,
since biomass is not the most important influencing factor on the recovery
of the woody component, it is therefore not appropriate to solely compare
the recovery times of the woody vegetation component in different regions
based on biomass alone.

VODdata fromdifferent frequencies enablesmonitoring of vegetation
recovery in tropical forests, but some limitations still exist.AlthoughL-VOD
can penetrate the whole vegetation layer, it may not fully represent changes
in vegetation biomass in tropical regions with dense forests34. Although
phenological information extracted from X-VOD shows good consistency
with that obtained from optical methods in tropical rainforest regions with
dense biomass35, X-VODstill exhibits saturationproblems in these areas36,37.

Furthermore, since this study focuses on recovery time calculations at a
monthly scale, we cannot well compare the recovery time of the upper
canopy and leaves in nearly half of the EBF regions as they were fully
recovered within one month. Additionally, it is important to note that our
study focuses on EBF regions, but even though EBF is the dominant land
cover within the VOD pixels, it might not be the only type. The land cover
within each VOD pixel (0.25°) is not entirely homogeneous, and different
plant types may exhibit varying recovery mechanisms. For example, after
drought, anisohydric species may maintain positive carbon gains for a
longer period as rainfall returns, allowing them to survive longer until they
reach the threshold of carbon starvation38. Therefore, the coarse spatial
resolution of VOD introduces uncertainties in calculating recovery dura-
tion.Moreover, the accuracy errors inVODdata for tropical rainforests can
also introduce uncertainty in the calculation results of recovery time. For
example, the smaller scattering effect during a drought period or dry season
compared to normal conditions may result in elevated L-VOD
estimations39, thereby delaying the immediate observation of the
drought’s impact on vegetation. Therefore, we acknowledge that there may
be some uncertainty in the calculations of the recovery time for the three
vegetation components after drought, as we performed these calculations at
a monthly time scale and with a spatial resolution of 0.25°. Given that long-
term and high spatial-resolution VOD data products are currently una-
vailable, wewelcome futurehigher spatial-resolutionVODdatasets to refine
the study of vegetation recovery from drought.

Despite these challenges, VOD data from different frequencies possess
unique advantages in observing vegetation structures, and further
improving the accuracy of VOD estimations and the spatial resolution is
expected to bring additional benefits in research focusing on tropical rain-
forest areas, including but not limited to vegetation biomass carbon esti-
mation and vegetation water content variation monitoring.

Conclusion
In this study, we employed L-VOD, X-VOD, and LAI as proxies for the
woody component, the upper canopy layer, and the leaf component of
vegetation, respectively, to examine the recovery time of these vegetation
elements in tropical forest regions following the 2015-2016ElNiño-induced
drought. We found that the leaf component demonstrated a quicker
recovery from drought, followed by the upper canopy layer and the woody
component.Notably, the recovery time of the vegetationwoody component
exhibited greater spatial heterogeneity than the other two vegetation com-
ponents. The recovery time of the woody component was primarily
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influenced by the impact of drought on the woody component, followed by
the moisture-related climatic conditions during the recovery period (i.e.,
VPD, precipitation, and soil moisture) and the magnitude of the seasonal
variation (i.e. the magnitude of the standard deviations in monthly tem-
perature and precipitation). The more severe the damage to the woody
component of vegetation during a drought, the less favorable the climate
conditions during the recovery period (i.e., less precipitation, lower soil
moisture, andhigherVPD), and thehigher the seasonal variations (i.e. larger
standard deviations in monthly temperature and precipitation), the longer
the corresponding recovery time for the woody component of vegetation.
Therefore, due to the more extensive impact on the woody component
during drought in Africa compared to South America, coupled with less
favorable moisture-related climatic conditions during the post-El Niño
recovery period and lower seasonal variation (i.e. larger standard deviations
inmonthly temperature andprecipitation) inAfrica than in SouthAmerica,
the recovery time of the woody component in Africa exceeded that in South
America.

Methods
Tropical evergreen broadleaf forest region
The study region is situated within the tropical evergreen broadleaf forest
(EBF) zone, encompassing tropical EBF areas in SouthAmerica, Africa, and
Asia (Supplementary Fig. S11). To identify the tropical EBF region, the
MODIS International Geosphere-Biosphere Program (IGBP) classification
schemeVersion 6.1 data were used to delineate the tropical EBF region.We
excluded the VOD pixels dominated by non-EBF using the aggregated
25 km MODIS land cover map from 2010 to 2022. Areas within VOD
footprints where urban and cropland cover exceeds 5% were masked.
Furthermore, considering the potential impact of urban and cropland
expansion on vegetation monitoring, we also excluded pixels with pro-
portions of urban and cropland expansion exceeding 5% from 2010 to 2022
usingMODIS land cover data, as well as pixels with forest loss exceeding 5%
from 2015 to 2022 based onHansen’s global forest change data40 to exclude
large deforestation event. Considering that the occurrence offires in tropical
rainforests is relatively low, this study did not take fire variability into
account when defining the study area.

Vegetation indices data
The SMOS-SMAP-INRAE-BORDEAUX (SMOSMAP-IB) L-VOD pro-
duct was retrieved from temperature brightness observed from ESA’s Soil
Moisture Ocean Salinity (SMOS) and NASA’s Soil Moisture Active Passive
(SMAP). It offers L-VOD at a semi-daily temporal resolution and a grid
resolution of 25 km41. The semi-daily global LPDR X-VOD dataset at 0.25°
spatial resolution, derived from AMSR-E (Advanced Microwave Scanning
Radiometer – Earth Observing System) and AMSR-2 (Advanced Micro-
wave Scanning Radiometer− 2) sensors36 was also employed. Both night-
time L-VOD (ascending orbit, 6:00 AM) and X-VOD (descending orbit,
1:30 AM) were aggregated to monthly data by averaging, covering the
period from 2010 to 2022. The MODIS LAI data Version 6.1 with 500m
spatial resolution from 2010 to 2022 was used, with monthly LAI data
aggregated by taking the maximum values. All the vegetation index data
have been converted to a geographic coordinate system format (i.e.,
WGS1984) with a spatial resolution of 0.25°. L-VOD andMODIS LAI data
were resampled to 0.25° by averaging.Details regarding the validation of the
vegetation indices data are provided in Supplementary Note S1.

Drought data
Weused the StandardizedPrecipitationEvapotranspiration Index (SPEI) as
a drought indicator to assess the emergence, length, and intensity of drought
events. As the humid forest has been shown to respond to drought within
three months42, the SPEI03 data with 0.05° spatial resolution43 was selected,
which was calculated fromMulti-SourceWeighted-Ensemble Precipitation
(MSWEP) and potential evapotranspiration (PET) from the Global Land
Evaporation Amsterdam Model (GLEAM). The SPEI03 is calculated by
factoring in the past 3-month aggregated precipitation and potential

evapotranspiration, thus reflecting relatively short-term moisture
conditions44. The SPEIdatawere resampled to the spatial resolutionofVOD
data at 0.25° by averaging.

Ancillary data
Monthly air temperature, dewpoint temperature, and soilmoisturedata at 0.1°
resolution from 2010 to 2022 were taken from the ERA5 monthly average
reanalysis dataset. The soil moisture data covers three layers, including layer 1
(0–7 cm), layer2 (7–28 cm), and layer3 (28–100 cm).Theair temperatureand
dewpoint temperaturewere used to calculate the vapor pressure deficit (VPD)
using themethodprovidedbyYuan et al.45. Theprecipitationdatawasderived
from the MSWEP product with a 3 h temporal resolution and 0.1° spatial
resolution from 1979 to the present46. All the climate data mentioned above
were resampled to the spatial resolution of VOD data by averaging.

We included the “elasticity of substitution” data, which reflects the
degree towhichvarious species can substitute eachother in enhancing forest
productivity47, the magnitude of the intrinsic variability of vegetation water
content data to represent vegetation water buffering34, and a proxy for
vegetation biomass data (i.e. the mean annual L-VOD pre- El Niño year).
Note that the mean annual VOD before El Niño was computed as the 95th
percentile of nighttime VOD from 2010 to 2014 as recommended34.

A high-resolution canopy height data at 10m spatial resolution48 was
used to verify the representation of different vegetation indices for different
vegetation components.

Representative of vegetation indices for different vegetation
components
A field experiment performed in a deciduous forest showed minimal var-
iation in L-band transmissivity between foliated and defoliated states, with
the canopy being semi-transparent at these frequencies, making branches
the dominant emitters at L-band frequency49,50. In contrast, at X-band fre-
quency, the canopywas opaquewhen foliated andbecame semi-transparent
during defoliation, so they concluded that leaves are the main source of
radiation at this wavelength49.While X-band penetration changes appear to
be driven by leaf cover, they could also result fromphenological shifts as the
water content in branches fluctuates with phenology39, particularly in
branches at the topof the canopy. Thus, X-band variationsmaynot be solely
attributable to leaf cover changes.

The relationships between canopy height and L-VOD, X-VOD, and
LAI were built to verify further the sources that affected the X-band
transmissivity (Supplementary Fig. S1). We found that whether using
Locally Weighted Polynomial (LOESS)51 or Generalized Additive Model
(GAM)52 nonlinear fitting, when the slope of the function approaches zero
(i.e., at the saturation point), meaning that as VODs or LAI continues to
increase, the change in canopy height becomes negligible. At this point, the
canopy height corresponding to LAI is the lowest (27.8 m for LOESS fitting,
and 26.6m for GAM fitting), while the canopy height corresponding to
L-VOD is the highest (35.3m for LOESS fitting, and 34.2m for GAM
fitting). This suggests that X-VOD (30.7 m for LOESSfitting, and 28.5 m for
GAM fitting) also contains signals related to major vegetation branches,
especially at the top of the canopy.

Therefore, satellite remote sensing data for L-VOD, X-VOD, and LAI
were utilized as proxies for different components of tropical forest trees:
L-VOD represented the woody components, particularly the branches;
X-VOD reflected the upper canopy, including both foliage and branches at
the top of the canopy; and LAI corresponded to the leaf component.

Calculation of the recovery time
Monthly SPEI and vegetation indices (VIs, i.e. L-VOD, X-VOD, and LAI)
were used together to identify drought events and the calculationof recovery
time for different vegetation components at pixel-scale53,54. ThemonthlyVIs
time-series data were deseasonalized by subtracting the monthly average
values (calculated from the full period excluding the drought years from
2015 to 2016) from the VIs time series to remove the effects of the seasonal
cycle and then detrended to eliminate the long-term trend.When a drought
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event happens and the standardizeddeviation (SD) of the detrendedVI data
falls below −0.5 SD, the vegetation is considered to have been negatively
affected by the drought event54.

The drought event was considered to begin when the SPEI was lower
than−1 and the detrended VI data at the same time were below −0.5 SD,
and it ended when the SPEIwas higher than−1 and the detrendedVIs data
remained below−0.5 SD, or SPEI stayed lower than−1 but the detrended
VIs data increased above −0.5 SD. Additionally, we only focused on
drought events lasting for at least 2 months (Fig. 2a–c).

The calculation of the drought recovery time for different vegetation
components is based on the following criteria54: (1) If the detrendedVI data
reached a local minimum during the drought period (see above), the
recovery time was defined as the period from the time when the detrended
VI data reached theminimumvalue to the timewhen the detrendedVI data
were higher than−0.5 SD (Fig. 2c). (2) If the condition above was not met,
the recovery time was defined as the period from the end of the drought
event (see above) to the time when the detrended VI data were larger than
−0.5 SD (Fig. 2a, b).

Drivers of the recovery of vegetation woody component
Wecollected 44 response variables in the random forest regressionmodel to
investigate the relative significance of these variables to the recovery time of
the three vegetation components. The 44 response variables were reclassi-
fied into four classes, including the normal climatic conditions, the climatic
conditions during the recovery period, drought-related factors, and
ecosystem-related factors.

Specifically, the variables covering the normal climatic conditions
comprise annual mean, 25th percentile minimum, 75th percentile max-
imum, and standard deviation of air temperatures (T_mean, T_min25,
T_max75, T_std), precipitation (P_mean, P_min25, P_max75, P_std), soil
moisture from layers 1 to 3 (SM1_mean, SM1_min25, SM1_max75,
SM1_std, SM2_mean, SM2_min25, SM2_max75, SM2_std, SM3_mean,
SM3_min25,SM3_max75, SM3_std), andVPD(VPD_mean,VPD_min25,
VPD_max75, VPD_std), covering the period from 2010 to 2022, excluding
2015 to 2016. The standard deviation of air temperatures, precipitation, soil
moisture, andVPDwere defined as the seasonal variation of normal climate
conditions in this study.

The variables denoting the climatic conditions during the recovery
period include monthly mean air temperature (Recovery_T_mean), pre-
cipitation (Recovery_P_mean), VPD (Recovery_VPD_mean), and soil
moisture from layers 1 to 3 (Recovery_SM1_mean, Recovery_SM2_mean,
Recovery_SM3_mean).

Drought-related factors encompass drought duration, drought
severity (i.e. mean SPEI), the number of dry months (monthly pre-
cipitation less than 100 mm), anomalies of the climatic conditions
relative to the pre-El Niño period, including temperature (T_anomaly),
precipitation (P_anomaly), VPD (VPD_anomaly), and soil moisture
from layer1 to layer3 (SM1_anomaly, SM2_anomaly, SM3_anomaly),
and the severity of the drought impact on the woody component (i.e. the
L-VOD anomaly during the drought period relative to the pre-drought
condition, L-VOD_anomaly).

Ecosystem-related variables include the magnitude of the intrinsic
variability of vegetation water content data representing vegetation water
buffering (Mean_delta_VOD_day), biomass (i.e. pre-El Niño annual VOD
values, annual L-VOD), and the elasticity of substitution.

The random forest regression model can explain interactions and
nonlinear relationships between predictors55. The importance of each
response variable was assessed through the percentage increase in the
mean square error (%IncMSE) between target and response values56.
The values of the %IncMSE were generated from a random forest model
consisting of 500 decision trees in this study, and higher values of %
IncMSE suggest higher importance of the response variables. It should
be noted that random forest is a tree-based ensemble model that is
sensitive to the nonlinear relationships and interactions among features.
Therefore, even if a feature shows high importance in terms of

“%IncMSE”, its coefficient of determination between recovery time and
the response variables may not necessarily be high57. Additionally, we
conducted a principal component analysis (PCA) on the input data to
transform highly correlated input factors (e.g., precipitation and VPD)
into a set of uncorrelated principal components tomitigate the impact of
collinearity. These principal components were used as the new input
features for training the random forest model.

Data availability
The SMOSMAP-IB L-VOD data is available on the SMOS website https://
ib.remote-sensing.inrae.fr/. LPDR X-VOD data can be freely accessed from
the website http://files.ntsg.umt.edu/data/. MODIS data for LAI and land
cover, aswell asHansen forest change data and canopyheight, are accessible
via the Google Earth Engine platform. The MSWEP precipitation product
can be obtained from http://www.gloh2o.org. The SPEI data is available at
https://doi.org/10.5285/ac43da11867243a1bb414e1637802dec. The ERA5
datasets for air temperature, dewpoint temperature, and soilmoisture canbe
downloaded from https://cds.climate.copernicus.eu/datasets. The elasticity
of substitution data is accessible at https://www.gfbinitiative.org/data.

Code availability
All codes utilized in this study are accessible upon request.
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