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Abstract

Aging represents a natural and unavoidable phenomenon in organisms. With the accelera-

tion of population aging, investigations into aging have garnered widespread global interest.

One of the most striking aspects of human aging is the decline in brain function, a phenome-

non intricately tied to the onset of neurodegenerative conditions. This study aimed to assess

the impact of a fish hydrolysate, rich in low-molecular-weight peptides and n-3 LC-PUFAs,

on cognitive function, inflammatory response, and oxidative stress via the AGE-RAGE axis

in a mouse model of accelerated aging. This model induces cognitive decline and biochemi-

cal alterations akin to those observed during natural aging. The findings revealed that fish

hydrolysate exhibited a protective effect against cognitive impairment induced by D-galac-

tose. This effect was associated with increased protein expression of SOD1 and decreased

genetic expression of IL-6 and advanced glycation end products (AGE). Consequently,

within the realm of preventive and personalized nutrition, fish hydrolysate emerges as a

promising avenue for mitigating age-related declines in memory function.

Introduction

Over the past decades, the rapid aging of the population in developed countries has drawn

considerable attention, leading to notable adjustments in public health policies [1]. This aging

process is often accompanied by cognitive decline, characterized by significant yet non-patho-

logical alterations in memory, learning, and spatial recognition [2, 3]. These age-related cogni-

tive changes can lead to degenerative brain disorders such as Alzheimer’s disease and other

forms of dementia, which can hasten the loss of independence in older adults [4, 5].

Aging is a complex process influenced by multiple factors, leading to a gradual deteriora-

tion in physiological function. Age-related cognitive alterations have been linked to chronic

low-grade inflammation [6, 7]. Microglia, the brain’s immune cells, become more sensitive to
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inflammation as individuals age, leading to heightened reactivity and prolonged production of

pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor

necrosis factor-alpha (TNF-α) [8, 9]. Increased levels of these cytokines can initiate a series of

neuroinflammatory processes, including neuronal loss [10]. Additionally, there is extensive

documented evidence indicating that oxidative stress and reactive oxygen species (ROS) are

widely implicated in aging and associated neurodegenerative disorders [11–13]. Excessive

ROS production or reduced antioxidant levels can lead to lipid peroxidation, DNA damage in

the nucleus and mitochondria, and protein oxidation, resulting in significant cognitive

impairment [14–17]. Finally, Monnier and Cerami introduced a Maillard theory of aging, sug-

gesting that the gradual accumulation of advanced glycation end products (AGEs), could be a

driving force behind aging [18–22]. They also proposed that this prolonged accumulation of

AGEs might lead to alterations in protein structure and function, influencing various aging

hallmarks [23, 24]. AGEs have also been known to interact with receptors for AGEs (RAGEs)

resulting in the dysregulation of cell signaling, inflammatory response and oxidative response

associated with neurodegenerative diseases of aging [25]. Considering these potential mecha-

nistic understandings, substances with antioxidant and/or anti-inflammatory properties may

offer promising avenues for preventing cognitive decline during aging.

Nutrition holds potential in addressing age-related cognitive decline. Nutrients such as n-3

long-chain polyunsaturated fatty acids (LC-PUFAs), specifically eicosapentaenoic acid (EPA)

and docosahexaenoic acid (DHA), have been associated with enhanced cognitive function in

older adults [26, 27]. Pre-clinical studies reinforce these findings, demonstrating that n-3

LC-PUFAs improve spatial learning and memory in aged mice [28–30]. The immunomodula-

tory properties of n-3 LC-PUFAs may underlie this benefit, as evidenced by reduced cytokine

production in older individuals with higher blood pressure levels [28, 31]. Additionally, EPA

functions as a peroxisome proliferator-activated receptor alpha (PPARa) agonist, enabling the

modulation of several signaling pathways. This modulation includes the reduction of neuroin-

flammation and oxidative stress, both directly contributing to neuroprotection [32]. Moreover,

low molecular weight peptides (< 1000 Da) derived from protein hydrolysates offer potential

anti-inflammatory properties. Orally administered milk peptides suppress inflammatory fac-

tors in the hippocampus of mice with Alzheimer’s disease [33]. Peptides sourced from soy,

milk, salmon, and lupine have similarly demonstrated anti-inflammatory effects in mouse

intestines and the abdominal aorta [34, 35]. Combining such peptides with n-3 LC-PUFAs

from fish hydrolysate potentially alleviates age-related impairments. Indeed, our previous

study has shown that supplementation with a fish hydrolysate rich in low-molecular-weight

peptides and n-3 LC-PUFAs improved memory and social behavior affected by aging, likely

through modulation of gut microbiota and corticosterone levels [36–38]. However, the mecha-

nisms of action remain unclear.

In this context, our study aims to pursue the evaluation of the neuroprotective effects of fish

hydrolysate supplementation, containing mainly low-molecular-weight peptides and n-3

LC-PUFAs, on cognitive function, inflammatory and oxidative response through the AGE-R-

AGE axis in a mouse model of accelerated aging that induces cognitive decline and biochemi-

cal modifications similar to those altered during aging [39, 40].

Materials and methods

Animals

The study was performed on 11-week-old male C57Bl/6J mice obtained from Janvier Labs (Le

Genest-Saint-Isle, France). The animals were reared in a standard 12-hour light/12-hour dark

cycle, housed on cellulose litter in a controlled environment (21–23˚C, 40% humidity). They
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had unrestricted access to food and water. All animal care and experimental protocols adhered

to the EU Directive 2010/63/EU for animal experiments and received approval from the

national ethical committee for animal care and use (approval ID A27756).

Treatments and diets

Mice were randomly divided into three groups: saline with control diet (n = 16), D-gal-treated

with control diet (n = 8), and D-gal-treated with diet enriched with fish hydrolysate, compris-

ing 0.21% of the hydrolysate (n = 16) (Table 1). Diets were provided by INRAE (Jouy en Josas,

France). The diets were initiated when the mice were 11-week-old and were maintained

throughout the entire 8-week experiment. D-galactose (165 mg/kg, dissolved in sterile 0.9%

saline) was injected subcutaneously (s.c.) daily into mice for 8 weeks. All controls were given

vehicle (0.9% saline). Consequently, by the end of the experiment, the mice were 19-week-old.

The fish hydrolysate, obtained from Abyss Ingredients (Caudan, France) originated from

marine by-products and predominantly comprised low-molecular-weight peptides (<1000

Da) in addition to n-3 LC-PUFAs, such as DHA and EPA. The specific composition of the fish

hydrolysate is detailed in patent number FR3099339(B1). The dosage of low-molecular-weight

peptides (2.9 mg/mouse/day) was calculated based on the quantity of peptides (<1000 Da) typ-

ically provided by 1 g of hydrolysate in humans, as determined by our previous findings [38].

Behavioral test

Spatial recognition short-term memory in the Y-Maze. Six weeks following the initia-

tion of supplementation, spatial recognition memory was assessed using the Y-maze test, as

outlined by Dellu et al. [41]. The apparatus comprised a Y-shaped maze with three arms (35

cm long and 10 cm deep), illuminated at 15 lx. External visual cues were positioned on the

maze walls to enable mice to orient themselves in space. In the initial trial, one arm of the Y-

maze was closed, allowing mice to explore the remaining two arms for 5 minutes. Following a

1-hour inter-trial interval (ITI), mice were reintroduced to the start arm for the second trial,

during which they could explore all three arms for another 5 minutes. Starting arms and closed

arms were randomly assigned for each mouse. Video tracking (SMART system; Bioseb,

Vitrolles, France) was employed to analyze the time spent in different arms. Additionally, a

recognition index was calculated to assess the animals’ performance relative to chance (33%).

Spatial learning and reference memory in the Morris water maze. Spatial learning and

memory were evaluated through the Morris water maze (MWM), following the procedures

Table 1. Composition of the control and hydrolysate-enriched diets.

Components Percent (%)

Control Diet Hydrolysate-enriched diet

Hydrochloric casein 18 18

Corn starch 45.9 45.69

Sucrose 24 24

Cellulose 2 2

Peanut Oil 5 5

Mineral Mix 4 4

Vitamin Mix 1 1

+ DL methionine 0.1 0.1

+ Vitamin A 5 UI/g 5 UI/g 5 UI/g

Hydrolysate 0 0.21

https://doi.org/10.1371/journal.pone.0309542.t001
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outlined in Bensalem et al. [42] and Morris [43]. Initially, two familiarization days were con-

ducted. Mice were required to locate a visible platform in a small pool (60 cm diameter) sur-

rounded by white curtains, facilitating acclimatization to water and swimming (3 consecutive

trials per day; 60 s cut-off). Subsequently, visuomotor deficits were assessed during a day of

cued learning in the Morris water maze, where mice had to find a visible platform indicated by

a cue (6 trials per day; 90 s cut-off). During spatial learning, mice underwent training over four

consecutive days to learn the location of a submerged platform using distal extramaze cues (6

trials per day; 90 s cut-off). Imetronic videotracking system (Pessac, France) recorded the

latency, distance traveled to reach the platform, and the swim path for each trial. Spatial mem-

ory was then evaluated 24 hours after the last training session through a 60-second probe test

in the maze without the platform.

The SMART system (Bioseb, Vitrolles, France) was employed to quantify the distance tra-

versed in each of the four quadrants, with the quadrant containing the originally positioned

platform during spatial learning identified as the target quadrant. Furthermore, a recognition

index was calculated to assess the animals’ performance relative to the anticipated chance level

(25%).

Analysis of navigation strategies in the Morris water maze

For each trial in the spatial learning test, we categorized the navigation path following the sys-

tem detailed by Bensalem et al. Strategies were divided into two main types: nonspatial

(encompassing "global search" methods like "peripheral looping" and "random", "circling," as

well as "local search" approaches such as "scanning", "chaining", "repeated incorrect" and "focal

incorrect") and spatial (including "repeated correct", "focal correct", "spatial indirect" and "spa-

tial direct").

Tissue processing

The mice received an analgesic (buprenorphine, 300 mg/kg) and were euthanized by an injec-

tion of pentobarbital (exagon, 300 mg/kg). After a transcardiac perfusion with phosphate-buff-

ered saline (PBS), hippocampus was collected and frozen at −80˚C until further analysis.

Biochemical measurements

Quantitative real-time PCR. The expression level of various target genes was assessed on

hippocampus using real-time quantitative PCR, following the protocol outlined by Rey et al.

[44]. These analyses were conducted on the hippocampus. In brief, total RNAs were extracted

from the hippocampus using TRIzol (Invitrogen, Life Technologies, Saint Aubin, France), and

the purity and quantity of RNA were measured for each sample using spectrophotometry

(Nanodrop, Life Technologies, Saint Aubin, France). One or two micrograms of RNA were

reverse transcribed into complementary DNA (cDNA) using Superscript IV (Invitrogen,

Life Technologies, Saint Aubin, France). Specific TaqMan1 primers were employed to

amplify the genes of interest, focusing on IL-6 (Mm00446190_m1), IL-1β (Mm00434228_m1),

TNF-α (Mm00443258_m1), CD11b (Mm00434455_m1), p53 (Mm01731290_g1),

p21 (Mm00432448_m1), p16 (Mm00494449_m1), p19 (Mm00486943_m1), RAGE

(Mm00545815_m1) and Gpx (Mm00656767_g1) for the hippocampus, with β-Actin

(Mm02619580_g1) as the housekeeping gene. Fluorescence readings were recorded on an ABI

PRISM 7500-sequence detection system (Applied Biosystems, Villebon sur Yvette, France).

Data were analyzed using the comparative threshold cycle (Ct) method, and the results were

expressed as relative fold change to control target mRNA expression, following the approach

outlined by Madore et al. [45].
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Western blot. Hippocampal protein expression was assessed using the extraction protocol

outlined by Simões et al. [46]. Protein concentration was determined through the bicinchoni-

nic acid protein assay (Interchim, Montlucon, France) following the provided protocol. For

analysis, proteins were separated on a 12% sodium dodecyl sulfate-polyacrylamide gel and

subsequently transferred to nitrocellulose membranes. These membranes were then subjected

to incubation with various primary antibodies: anti-AGE (ab23722, rabbit, Abcam, Cam-

bridge, UK), anti-SOD1 (37385, rabbit, Cell Signaling, Leiden, The Netherlands), and anti-β-

Actin as the housekeeping protein (4970, rabbit, Cell Signaling, Leiden, The Netherlands). The

primary antibodies were detected using appropriate donkey horseradish peroxidase-conju-

gated secondary antibodies (711-035-152, Jackson Immunoresearch, Westgrove, PA, USA).

The membranes were further incubated with a peroxidase revealing solution (SuperSignal

West Dura, ThermoFisher, Waltham, MA, USA) and visualized using ChemiDoc MP (Biorad,

Hercules, CA, USA). The protein levels of interest were normalized to β-Actin, and the results

are expressed as relative expression.

Statistical analysis

Statistical analyses were conducted with GraphPad Prism 7 (GraphPadSotfware, San Diego,

CA, USA). Heatmap was performed using the web interface of MetaboAnalyst (MetaboAnalyst

5.0, https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml (accessed on 6 February

2024), Canada).

A one-sample t-test was used to compare the three experimental groups against the

expected chance level of 33% in the Y-maze and against the chance level of 25% in Probe test

of MWM.

A 1-way ANOVA with diet as the factor was assessed to analyze the cued learning in the

MWM and the gene expression. Fisher’s LSD post hoc test was applied when appropriate. A

2-way ANOVA with repeated measures was used to analyze the swim speed and spatial learn-

ing across training days in the MWM (factors: diet and days of learning). Subsequently, Fish-

er’s LSD post hoc test was conducted.

All data were presented as means ± standard error of mean (SEM). Differences were con-

sidered significant when the p-value was� 0.05. Data are available on the following link

https://doi.org/10.57745/WRKTLL.

Results

Fish hydrolysate supplementation prevents short-term and long-term

spatial memory deficits and facilitates the adoption of spatial strategies in

the process of spatial learning in D-gal mice

The impact of the supplement on short-term spatial memory was evaluated through a Y-maze

test with a 1-hour ITI. The recognition index of the saline group exceeded the chance level

(33%), indicating an absence of spatial memory alterations (p = 0.05) (Fig 1A). In contrast, the

recognition index of the D-gal group was not different from the chance level, suggesting cogni-

tive alteration. Interestingly, the FH group had a recognition index significantly higher than

chance level (33%)(p = 0.04). Consequently, FH supplementation prevented the cognitive defi-

cit induced by D-gal injection.

Subsequently, we examined the influence of the supplementation on spatial learning and

long-term memory using the MWM. Given a higher swimming speed in the FH group com-

pared to the adult control group (diet effect, p = 0.03), we chose to measure the distance trav-

eled to reach the platform as a more suitable indicator of spatial learning acquisition. All
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groups covered similar distances to reach the platform, indicating comparable visual abilities.

Moreover, there was a significant reduction in the distance covered by all groups over the four

days of training (day effect, p< 0.01), indicating a successful learning of the platform location

(Fig 1B). Spatial memory was evaluated 24 hours after the final day of spatial learning. Related

to the chance level of 25%, the saline group covered more distance in the target quadrant than

in the others (p< 0.001), while the D-gal group did not show a significant difference

(p> 0.05) (Fig 1C). These findings suggested a memory impairment in the D-gal group, as the

mice failed to recognize the target quadrant. Notably, FH supplementation effectively pre-

vented this issue since the supplemented mice covered more distance in the target quadrant

compared to the chance level of 25% (p< 0.001).

Analysis of the navigation patterns revealed a shift in strategies from non-spatial to spatial

over the learning days for all mice in the four groups. The area under the curve (AUC) of spa-

tial strategies was significantly decreased by D-gal treatment (p = 0.03), and this was rescued

by FH supplementation (p = 0.04) (Fig 1D).

Fig 1. Fish hydrolysate supplementation prevents short-term and long-term spatial memory deficits and promotes the use of spatial strategies during

spatial learning in D-gal mice. (a) Recognition index of the new arm after a 1h ITI in saline group, D-gal group and FH group. The dotted line corresponds to

chance level (33%) (* p� 0.05 vs. chance level by one sample t-test). (b) Distance covered to reach the platform over the 4 consecutive days of spatial learning

(day effect $ $ p< 0.01 by 2-way ANOVA with repeated measures). (c) Percentage of distance travelled in quadrants during the probe test. The dotted line

represents chance level (25%) *** p< 0.001 vs. chance level by one sample t-test). (d) Area under the curve of spatial strategies. n = 8–16 per group.

https://doi.org/10.1371/journal.pone.0309542.g001
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Fish hydrolysate supplementation modulates gene expression in D-gal mice

To understand the mechanisms underlying the prevention of memory deficits observed in the sup-

plemented group, we analyzed the expressions of 12 genes in the hippocampus. These genes play

roles in various pathways, including inflammation, senescence, AGEs, and antioxidant defenses.

The expression of IL-6, IL-1β, TNF-α and CD11b genes involved in the inflammatory

response was analyzed. IL-6 expression was upregulated by D-gal treatment (p = 0.05) (Fig

2A). Interestingly, the expression of this gene was significantly down-regulated in the FH

group compared to the D-gal group (p = 0.01) and restored to a similar expression level as in

the saline group. The expression of IL-1β, TNF-α and CD11b was not changed by D-gal treat-

ment and FH supplementation.

The senescent gene expression p16, p21, p19 and p53 was not modified by D-gal treatment

and FH supplementation (Fig 2B).

The expression of AGE implicated in glycation was upregulated by D-gal treatment com-

pared to the saline group (p = 0.004) and restored by FH supplementation (p = 0.03) while the

expression of their receptors RAGE was not changed by D-gal treatment or FH supplementa-

tion (Fig 2C).

Although D-gal treatment did not affect the expression of Gpx and SOD1 related to antioxi-

dant defenses, FH supplementation increased SOD1 protein expression compared to the D-gal

group (p = 0.03) (Fig 2D).

To better understand the link between those pathways, a multivariate analysis was con-

ducted. The outcome, represented as a heatmap, illustrated the result of hierarchical clustering

(Fig 3A). Row dendrograms depicted the distance or similarity among gene expression and

behavioral results. Column dendrograms illustrated the distance or similarity between groups

and their respective clustering calculation nodes. Row dendrograms distinguished two clusters

of parameters. The first cluster comprised downregulated variables (highlighted in yellow) in

the D-gal group compared to the saline group. This cluster included protein related to antioxi-

dant defenses (SOD1), as well as behavioral variables that were altered in D-gal mice (MWM,

Y-maze, and AUC of spatial strategies). The second cluster comprised upregulated parameters

(highlighted in purple) in the D-gal group compared to the saline group, notably including IL-

6 and AGE. Subsequently, column dendrograms delineated distinct clusters for the saline

group and the D-gal group; and affirmed the similarity between the saline group and FH

group. Notably, FH supplementation reinstated performance levels in MWM, Y-maze, and the

AUC of spatial strategy parameters to those observed in the saline group. Furthermore, it

restored parameters associated with the inflammatory response (IL-6), antioxidant defenses

(SOD1), and advanced glycation end-products. Based on these findings, the FH group and the

saline group were clustered together. Further classification revealed that the D-gal group did

not align with any other group, indicating a greater disparity from the other two groups.

Principal component analysis (PCA) confirmed the heatmap results (Fig 3B). Component 2

was negatively correlated with behavioral tests (Y-Maze, r = -0.21 and MWM, r = -0.18) and

SOD1 (r = -0.24) (Fig 3C). This component was also positively correlated with AGE and their

receptor (AGE, r = 0.49 and RAGE, r = 0.36). Additionally, on component 2, the saline group

and the FH group had identical profiles. Both groups were positioned on the side of good

behavioral results, high protein expression of SOD1 and low gene expression of AGE and

RAGE. The D-gal group was positioned in the opposite way. Component 1 was negatively cor-

related with inflammation parameters (IL-6, r = -0.41; IL-1β, r = -0.39; TNF-α, r = -0.42 and

CD11b, r = -0.38). On this component 1, the saline group and the FH group showed different

profiles. The FH group was positioned on the side of a stronger inflammatory response unlike

the saline and D-gal groups.
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Discussion

Aging is a critical biological phenomenon with substantial medical and societal implications.

It represents a significant challenge to develop innovative strategies for healthy aging. These

strategies aim to reverse age-related changes once they occur or to mitigate and prevent aging-

related alterations [47]. Recently, AGEs have been implicated in neurodegeneration and

Fig 2. Fish hydrolysate supplementation modulates gene and protein expression in D-gal mice. (a) Inflammatory pathway. (b) Senescence pathway. (c)

Advanced glycation end-product pathway. (d) Antioxidant defense pathway. * p� 0.05, ** p< 0.01 vs. D-gal. n = 8–16 per group.

https://doi.org/10.1371/journal.pone.0309542.g002
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Fig 3. Multivariate analysis. (a) Heatmap analysis combined with hierarchical clustering analysis. Gene expression was

determined by RT-qPCR. Each row represents one gene and each column represents one group. Purple indicates higher

expression and yellow indicates lower expression. The global gene expression profile was compared after the end of 8-week

supplementation, while D-gal group was used for the baseline gene expression. (b) Principal Component Analysis (PCA). (c)

Variables factor map.

https://doi.org/10.1371/journal.pone.0309542.g003
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associated with neurodegenerative diseases. AGEs have also been known to interact with their

specific receptor (RAGE) resulting in the dysregulation of cell signaling, inflammatory

response and oxidative response [48]. Nutrients with antioxidant and/or anti-inflammatory

properties emerge as a promising approach to combat cognitive decline in aging [49, 50]. In

this study, our aim was to investigate the effect of a fish hydrolysate containing low-molecular-

weight peptides and n-3 LC-PUFAs using a D-gal mice model to assess its impact on cogni-

tion, inflammatory and oxidative response through the AGE-RAGE axis. We demonstrated

that supplementation with FH effectively prevented cognitive impairments caused by chronic

D-gal injection (Fig 4). FH supplementation restored the markers evaluated to levels similar to

those of control animals. Additionally, biochemical analyses revealed that FH supplementation

induced reductions in D-gal induced AGE and IL-6 genetic expression, along with an increase

in SOD1 protein expression in the brain. These results highlighted the beneficial effects of FH

supplementation on cognitive functions by regulating oxidative stress and inflammation path-

ways through the AGE-RAGE axis.

The D-gal–induced aging mouse model has been a commonly used model of accelerated

aging for studying the mechanisms of brain aging and anti-aging therapeutics in animal stud-

ies [39, 40]. Consistent with the literature, D-gal treatment induced short-term and long-term

memory deficits. Indeed, the chronic injection of D-gal for 6–10 weeks in rodents induces a

progressive decline in learning and memory abilities [51–55]. It also induces a significant

increase in latency to reach the platform and a decrease in swim speed in mice models during

the MWM test and a reduction of the percentage of novel arm entries during the Y-Maze [55,

56]. This model of accelerated aging induces memory alterations comparable to those recorded

in an aged mouse model [38]. In our study, PCA showed that recognition indices of behavioral

tests were negatively correlated with D-gal profile and positively correlated with saline and FH

profiles. Indeed, FH supplementation prevented these deficits by increasing recognition indi-

ces in the MWM and Y-Maze. Our results can be compared with other interventional studies

questioning cognitive decline. In human, a meta-analysis demonstrates that physical exercise

(aerobic and resistance exercise of at least moderate intensity), improves cognitive function in

the over 50s, regardless of the cognitive status of participants [57]. Moreover, several publica-

tions from our lab demonstrate the impact of dietary supplements on cognitive decline in

mice and human [28, 36, 58, 59].

Furthermore, understanding the molecular mechanisms involved in memory deficits is

important to define the efficacy of FH supplementation to prevent age-related diseases. When

D-gal accumulates in the body, it undergoes oxidation by galactose oxidase, forming aldehydes

and hydrogen peroxide (H2O2). However, an excessive supply of D-gal disrupts this metabo-

lism [53, 60]. Indeed, D-gal, as a reducing sugar, readily reacts with the free amines of amino

acids in proteins and peptides, forming AGEs through non-enzymatic glycation both in vivo
and in vitro [61]. In our study, we showed that FH supplementation reduced the expression of

AGEs induced by D-gal administration. Evidence has demonstrated that AGEs increase with

age and have been implicated in the neuropathological lesions observed in some age-related

conditions such as Alzheimer’s disease [60]. Furthermore, histochemical analysis of Parkin-

son’s patients indicates elevated levels of AGEs and RAGE in the frontal cortex compared to

controls [62]. Moreover, PCA showed that AGEs level was negatively correlated with cognitive

performance. Research has indicated a direct link between peripheral AGE levels and cognitive

decline in older individuals [63]. Thus, by negatively regulating AGEs, FH supplementation

specifically contributed to the prevention of cognitive disorders.

As hippocampus is one of the main structures involved in cognition (consolidation of epi-

sodic memory and context-dependent spatial learning) and as it is strongly impaired during

aging (impairment including inflammation and oxidation) [28, 64–66], we measured the
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Fig 4. Neuroprotective effects of fish hydrolysate supplementation on cognitive function, inflammatory and oxidative

response through the AGE-RAGE axis.

https://doi.org/10.1371/journal.pone.0309542.g004
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expression of genes involved in inflammatory and oxidative pathways. FH supplementation

regulated the genetic expression of IL-6 induced by D-gal administration in mice. The AGE-R-

AGE binding is a potential mechanism underlying the AGE-induced inflammatory response.

Similar to toll-like receptors (TLRs), RAGEs are also considered to be pattern recognition

receptors predominantly believed to be involved in the recognition of endogenous molecules

released during physiological stress or chronic inflammation. RAGE is expressed in a myriad

of immune cell types [67, 68]. With age, microglial cells the resident innate immune cells of

the central nervous system—become chronically active, leading to sustained release of pro-

inflammatory cytokines such as IL-6 and TNF-a, known as contributors to cognitive decline

[50]. The elevation of these cytokines, regulated by the activation of the redox-sensitive tran-

scription factor NF-κB release to the nucleus by AGE-RAGE interaction, can initiate a cascade

of neuroinflammatory processes, including neuronal death, reduced brain volume and cortical

thinning [10]. Moreover, we demonstrated that IL-6 genic expression was negatively corre-

lated with saline and FH profiles. Therefore, one of the pathways of FH supplementation to

prevent cognitive impairment was the reduction of IL-6 gene expression.

In addition to the improvements in cognitive function parameters, our study demonstrated

that the FH supplementation enhanced catalase genic expression, SOD1 protein expression,

following D-gal administration in mice. As in our previous study conducted in a model of

aged mice, we demonstrated that FH supplementation significantly improved SOD1 expres-

sion [38]. A crucial aspect of neurodegeneration involves the declining efficiency of the antiox-

idant system, resulting in decreased capacity to reduce ROS. Studies have indicated that

increased accumulation of AGEs leads to reduced expression of various antioxidant enzyme

systems. Indeed, SOD1 and glutathione peroxidase (GPx) are diminished in the plasma of

both familial and sporadic amyotrophic lateral sclerosis patients [69]. Also, SOD1 protein

expression was positively correlated with recognition indices of behavioral tests and saline and

FH profiles. Peripheral artery diseases have unveiled a correlation between AGEs and the total

antioxidant system [70]. Thus, the increase of SOD1 protein expression observed with the FH

supplementation may explain the benefits highlighted in cognitive function tests.

Finally, although this study successfully showed the beneficial effects of FH supplementa-

tion on cognitive functions through the regulation of oxidative stress and inflammation path-

ways via the AGE-RAGE axis, it presented some limitations. AGE-RAGE axis is not limited to

these two pathways. Indeed, increased oxidative stress is a major hallmark of aging. Firstly,

AGE-RAGE interaction triggers inflammation, leading to Rac1 upregulation, which activates

NOX, consequently increasing ROS production. Additionally, RAGE engagement by AGEs

induces a hyper-responsive state in macrophages and monocytes, enhancing the secretion of

pro-inflammatory cytokines like IL-12, insulin-like growth factor, and TNF-α [71, 72], further

exacerbating ROS and reactive nitrogen intermediates. It would have been intriguing to mea-

sure these parameters alongside microglial reactivity. Secondly, a potential mechanism under-

lying AGE-induced harm involves programmed cell death [73]. AGEs have been documented

to trigger apoptosis in diverse cultured cells, such as microvascular cells, neuronal cells, fibro-

blasts, and renal mesangial cells [74]. It would have been interesting to assess the activity of the

pro-apoptotic protein Bax, the expression of the anti-apoptotic protein Bcl-2, and the integrity

of mitochondrial genes. Thirdly, mitochondrial damage induced by D-gal could contribute to

neuronal decline by increasing oxidative stress. Indeed, the administration of D-gal to animals

can induce aspects of brain aging similar in many ways to human brain aging, including

increased mitochondrial DNA mutation and impaired mitochondrial structure [75–79]. Mito-

chondrial damage accumulates over time and progressively contributes to neuronal decline as

one ages, much as in neurodegenerative conditions [80]. Interestingly, it has been previously

demonstrated that n-3 LC-PUFAs in the inner mitochondrial membrane affect oxidative
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stress, suppressing production of and scavenging ROS, with neuroprotective benefits. Conse-

quently, our FH supplementation could also act by improving mitochondrial function that will

contribute to prevent oxidative stress and to limit cognitive alteration. This point has to be fur-

ther assessed by measuring mitochondrial function markers. Finally, the study was carried out

on male mice. Notably, the effects of RAGE on glucose homeostasis varied based on sex.

Female RAGE−/− mice fed a high-fat diet exhibited markedly enhanced glucose and insulin

tolerance compared to their male counterparts [81]. To confirm the effect of FH supplementa-

tion, a new study should be conducted on female mice.

As outlined in this study, FH supplementation represented a promising approach to posi-

tively modulate inflammatory and antioxidant responses through the AGE-RAGE axis,

thereby contributing to neuroprotective properties and thus prevent cognitive impairment

during the aging process.

Conclusion

The results indicated that FH had protective effect against cognitive deficits induced by D-

galactose through raising the protein expression of SOD1 and decreased genetic expression of

IL-6 and AGE. Furthermore, in the context of preventive and personalized nutrition, FH

emerged as a promising option for preventing age-related decline in memory performance.
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