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Abstract

Large-scale heterogeneous data integration for network inference is a key
methodological challenge, especially in the context of multi-omics data
analysis. We propose here a novel procedure based on Gaussian copula
methods which allows the joint analysis of data of various types (continu-
ous and discrete). The proposed estimation procedure is semi-parametric,
and does not require any explicit assumption concerning the distribution
of the marginals. This offers great flexibility for the analysis of biological
data that may not follow perfectly any pre-specified parametric distribu-
tion. We present a detailed proof of the pairwise likelihood calculation
in the context of mixed type data. We show the equivalence between
the presence of a block-wise diagonal structure in the copula correlation
matrix and block-wise mutual independence in the observed data. We
characterize the lower and upper extreme values of the copula parameter
in terms of the observed data when a Bernoulli distribution is involved.
In an extensive simulation study, we showed that the proposed estimation
procedure, based on a pairwise-likelihood approach, was able to accurately
estimate the copula correlation matrix, even for a large number of vari-
ables (several hundreds) and a small number of replicates (several dozens).
The proposed method was also applied to a real ICGC dataset on breast
cancer, and is implemented in a freely available R package heterocop.

1 Introduction

The recent development of high-throughput technologies provides access to
a large amount of omics data of various types (transcriptomics, proteomics,
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metabolomics, metagenomics, epigenetics). Despite the access to this rich and
varied data, our knowledge on the functioning of the genome and its link with
phenotypic characteristics is still incomplete. One tool to better understand
biological regulatory mechanisms is network inference. A challenge of systems
biology is to have a comprehensive view of regulatory phenomena. Genes en-
coded by DNA (genotype) are transcribed into mRNAs (transcriptome) which
are translated into proteins (proteome). It is known that methylation (methy-
lome) and metabolites (metabolome) also play an important role in these regu-
latory processes. One would therefore expect to find strong links between these
different biological entities. In order to have a better understanding of the bi-
ological system it is therefore necessary to infer multi-omics networks. We will
focus in this work on correlation network inference.

A major statistical challenge underlying correlation network inference is the
heterogeneous nature of the data. Indeed, RNA-seq data for instance are count
data, whereas protein abundances are continuous and mutation encoding is
often binary. Existing methods such as WGCNA (Langfelder and Horvath,
2008) rely on Pearson’s correlation coefficient, and are therefore limited to linear
relationships between variables. Another possibility would be to base correlation
network inference on Spearman’s rho. However, this coefficient is not well-
adapted when at least one variable is discrete (Nešlehová, 2007; Mesfioui et al.,
2022). Moreover, the lack of an underlying model may be an impediment to
further statistical investigation, for instance the simulation of new data or the
inclusion of covariables in the experimental design. The goal of this paper is
therefore to propose a model for heterogeneous correlation networks, based on
the copula theory.

The Gaussian copula model relies on the assumption that the observed vari-
ables are transformations of a hidden Gaussian vector, and enables to link their
joint cumulative distribution function (CDF) to a Gaussian CDF while preserv-
ing their marginal distributions. The Gaussian copula model corresponds to the
Nonparanormal distribution in the continuous case (Liu et al., 2009), but can
be extended to discrete and mixed variables. With this approach, for instance,
it is possible to build a joint CDF for a Poisson, a Negative Binomial and a
Gamma random variable, which enables to deal with biological data of various
nature.

As biological data do not perfectly follow a pre-defined distribution, a semi-
parametric approach has been proposed in (Fan et al., 2017; Dey and Zipun-
nikov, 2022). Indeed, Spearman’s rho and Kendall’s tau are estimated first on
the observed data, and bridge functions that link these correlation coefficients
to the copula correlation coefficients are presented.

We introduce a more direct, likelihood-based approach. We provide an ex-
plicit expression of the pseudo-likelihood in the mixed case of continuous and
discrete variables, and give a detailed theoretical proof of its calculation. As
multi-omics data are often high-dimensional, a pairwise likelihood estimator is
built. In order to avoid assumptions on the distribution of the marginals, we
estimate the CDFs empirically. We show the equivalence between the presence
of a block-wise diagonal structure in the copula correlation matrix and block-
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wise mutual independence in the observed data. We characterize the lower and
upper extreme values of the copula parameter in terms of the observed data
when a Bernoulli distribution is involved. This provides an interpretation of
the copula correlation coefficients in terms of association relationships between
the observed variables. The performance of the proposed method is illustrated
in an extensive simulation study. An application to a real ICGC (Zhang et al.,
2019) dataset containing tumoral samples of women affected by breast cancer
is carried out.

The rest of the paper is as follows. Section 2 presents the model and its
dependence properties. The estimation method is given in Section 3. Section 4
presents the simulation studies and Section 5 the real data analysis. A discussion
section closes the paper.

2 The model

Let (X1, . . . , Xd) be a random vector with cumulative distribution function
(CDF) given by

F (x1, ..., xd) = CΣ(F1(x1), . . . , Fd(xd))

≡ ΦΣ(Φ
−1(F1(x1)), ...,Φ

−1(Fd(xd)))
(1)

where F1, . . . , Fd denote the marginal CDFs of the variables X1, . . . , Xd, CΣ

denotes the Gaussian copula parameterized by the correlation matrix Σ, ΦΣ

the centered Gaussian multivariate CDF of correlation matrix Σ, and Φ−1 the
inverse of the standard Normal CDF Φ. It can be checked that the right-hand
side of (1) indeed is a well-defined CDF with marginals F1, . . . , Fd (Sklar, 1973;
Nelsen, 2007). One can note that model (1) corresponds to a latent Gaussian
variable structure where, if (Z1, ...., Zd) ∼ N (0,Σ) is a centered Gaussian vector
with correlation matrix Σ, then each Xj can be expressed as Xj = F←j (Φ(Zj)).
Note that F←j denotes the generalized inverse function of Fj , that is, F

←
j (u) =

inf{x : Fj(x) ≥ u}. With model (1) we do not assume that the observed
variables X1, . . . , Xd are Gaussian. Only the latent variables Z1, . . . , Zd are.
In model (1) the marginal distributions F1, . . . , Fd of the observed variables
X1, . . . , Xd are arbitrary. In particular, there can be a mix of continuous and
discrete variables. Model (1) also provides us with an explicit expression of the
joint CDF of the variables as a function of their marginal CDFs and thus enables
us to see how the distribution of each variable impacts the joint distribution.
Note that when all the variables are continuous, model (1) corresponds to the
Nonparanormal distribution defined in Liu et al. (2009).

2.1 Joint density

An expression of the multivariate density can be derived from model (1). Below,
we say that a random variable is continuous if its CDF is increasing, and discrete
if its CDF has a countable support.
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Proposition 1 Without loss of generality, suppose that the first p variables are
continuous and that the remaining d − p are discrete. Then the multivariate
density of (1) can be written as

f(x1, . . . , xd) = p∏
j=1

fj(xj)

×
 1∑

jp+1=0

· · ·
1∑

jd=0

(−1)jp+1+···+jd × Cp
Σ(F1(x1), . . . , Fp(xp), up+1,jp+1 , . . . , ud,jd)

 ,

(2)

where fj denotes the density of Xj, uj,0 = Fj(xj) and uj,1 = Fj(xj−), xj−
denotes the previous point from xj in the ordered support of Fj, and Cp

Σ denotes
the derivative of the copula with respect to the p continuous marginal CDFs,
that is Cp

Σ(u1, . . . , ud) = ∂pCΣ(u1, . . . , ud)/∂u1 · · · ∂up. If xj is the least point
(if there is one), we set by convention that Fj(xj−) = 0. Also by conven-
tion we set that if p = d then the second factor in the right-hand side of (2)
is replaced by cΣ(F1(x1), . . . , Fp(xp)), where cΣ(u1, . . . , up) = Cp

Σ(u1, . . . , up)
is the density of CΣ. If p = 0, the first factor in (2) is replaced by 1 and
Cp

Σ(u1, . . . , ud) = CΣ(u1, . . . , ud).

The formula (2) appears in Song (2007) without proof. A proof of Proposi-
tion 1 is given in Section C.1 of the Supplementary material.

2.2 Dependence properties

Having an expression of the multivariate density in equation (2) enables us to
study the (in)dependence relationships between X1, . . . , Xd.

2.2.1 Multivariate dependence properties

Proposition 2 Let G1, . . . , Gk be a partition of D = {1, . . . d}, and denote
XG = (Xj : j ∈ G) for G ⊂ D. Then, XG1

, . . . , XGk
are mutually independent

if and only if Σ is a block matrix of the form

Σ =


Σ1 0 ... 0
0 Σ2 ... 0
0 0 ... 0
0 0 0 Σk


where each Σi is a block of size |Gi| × |Gi|.

A proof of Proposition 2 can be found in Section C.2 of the Supplementary
material. We see that the correlation matrix of the copula encodes mutual
independencies between groups of variables. Note that the standard Pearson’s
correlation matrix of the observed variables does not satisfy this property.
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2.2.2 Bivariate dependence properties

Let X1 and X2 be a pair of variables distributed according to the Gaussian
copula model (1) with

Σ =

(
1 ρ
ρ 1

)
.

In this case the copula is simply denoted by Cρ. Using (1), it is easy to see that
the density cρ of Cρ, that is, cρ(u, v) = ∂2Cρ(u, v)/∂u∂v, 0 < u, v < 1, is given
by

cρ(u, v) =
1√

1− ρ2
exp

(
2ρΦ−1(u)Φ−1(v)− ρ2(Φ−1(u)2 +Φ−1(v)2)

2(1− ρ2)

)
.

By definition, the parameter ρ measures the correlation between the latent
Gaussian variables, but how can it be interpreted for the observed variables?
By taking d = 2 in Proposition 2 we see that ρ = 0 if and only if X1 and X2

are independent. We shall see that the lower and upper extreme values of ρ
can also be characterized in terms of the observed variables when the discrete
variables follow a Bernoulli distribution. Remember that X1 and X2 are said
to be comonotonic if one of them is almost surely an increasing function of the
other, and countermonotonic if they are almost surely a decreasing function of
each other (Nelsen, 2007).

Proposition 3 Suppose that one of the three cases below holds:

(i) X1 and X2 are continuous;

(ii) X1 ∼ B(p1), 0 < p1 < 1, and X2 continuous;

(iii) X1 ∼ B(p1), X2 ∼ B(p2), 0 < p1 ≤ p2 < 1 and p1 + p2 ≥ 1.

Then

ρ = 1 iff


(X1, X2) is comonotonic case (i);

(X1,1{X2>F−1
2 (1−p1)}) is comonotonic case (ii) ;

X1 ≤ X2 case (iii).

and

ρ = −1 iff


(X1, X2) is countermonotonic case (i);

(X1,1{X2>F−1
2 (p1)}) is countermonotonic case (ii) ;

X1 +X2 > 0 case (iii).

A proof of Proposition 3 is given in Section C.3 of the Supplementary ma-
terial. In case (ii) for ρ = 1, the variable X2 exceeds a certain threshold only
if X1 = 1. A similar pattern holds for ρ = −1. In case (iii), ρ = 1 indicates
that X1 is dominated by X2, and ρ = −1 indicates that at least one of the
variables has to be non-null. For example, if X1 and X2 encode the presence of
two mutations, then ρ = 1 indicates that presence of the first mutation implies
presence of the second. A visual representation of Proposition 3 is depicted in
Figures S1 (ρ = 1) and S2 (ρ = −1) of the Supplementary material.
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3 Inference of Σ

Let Xi = (Xi
1, . . . , X

i
d), i = 1, . . . , n, be n i.i.d. observations in Rd drawn from

the distribution defined in model (1). As it is often the case, we suppose that for
all j in {1, . . . , d}, we have no information regarding the marginal distributions
Fj which are replaced by the empirical distributions

F̂j(x) =
1

n

n∑
i=1

1(Xi
j ≤ x)

where 1 denotes the indicator function. Hence, our inference is performed in a
semi-parametric framework. In a high dimensional setting, computing the full
multivariate density has a high computational cost. We therefore propose to
estimate the copula correlation matrix Σ by extending the pairwise maximum
likelihood estimator (Mazo et al., 2024) to mixed and non-parametric marginals.
In other words, we compute

Σ̂ = argmax
Σ

1

n

n∑
i=1

∑
j<j′

log f̂jj′(X
i
j , X

i
j′ , ρjj′). (3)

In the expression above, ρjj′ denotes the element of Σ at the jth row and j′th

column and f̂jj′ denotes an estimate of the density of the bivariate marginal
CDF corresponding to (Xj , Xj′) with respect to λ ⊗ λ if both variables are
continuous, µ ⊗ µ if both variables are discrete, and λ ⊗ µ measure if Xj is
continuous and Xj′ is discrete, with λ the Lebesgue measure and µ the counting

measure. Above we said that f̂jj′ is an estimate of fjj′ , the density of (Xj , Xj′).
Indeed, as we shall see below, the density fjj′ depends on the marginal CDFs

Fj and Fj′ . But since we substitute the empirical CDFs F̂j and F̂j′ for Fj and

Fj′ , the resulting function f̂jj′(·, ·; ρjj′) is only an estimate of the true density
fjj′(·, ·; ρjj′).

The formulas of the densities fjj′ in the three cases (Xj and Xj′ continuous,
Xj continuous and Xj′ discrete, Xj and Xj′ discrete) are given next. Rewrite

Cρjj′ (u, v) = CΣ(1, . . . , 1, u, 1, . . . , 1, v, 1, . . . , 1)

(u and v at the jth and j′th positions, respectively) so that the bivariate CDF of
(Xj , Xj′) is given by Cρjj′ (Fj(xj), Fj′(xj′)). Let cρjj′ (u, v) denote the density of

Cρjj′ (u, v), that is, cρjj′ (u, v) = ∂2Cρjj′ (u, v)/∂u∂v, 0 < u, v < 1, −1 < ρjj′ <
1. Let fj be the marginal density of variable Xj . If Xj and Xj′ are continuous,
then fjj′ can be expressed as

fjj′(xj , xj′) = fj(xj)fj′(xj′)× cρjj′ (Fj(xj), Fj′(xj′)).
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If both variables are discrete, then the density takes the following form:

fjj′(xj , xj′) = P(Xj = xj , Xj′ = xj′) = Cρjj′ (Fj(xj), Fj′(xj′))

+ Cρjj′ (Fj(xj−), Fj′(xj′−))
− Cρjj′ (Fj(xj−), Fj′(xj′))

− Cρjj′ (Fj(xj), Fj′(xj′−)).

Finally, if Xj is continuous and Xj′ is discrete, then we get the following form:

fjj′(xj , xj′) = fj(xj)

∫ Fj′ (xj′ )

Fj′ (xj′−)
cρjj′ (Fj(xj), v)dv.

The estimated density f̂jj′ is obtained by substituting F̂j and F̂j′ for Fj and
Fj′ , respectively, in the formulas above.

4 Simulations

The goal of this simulation study was to illustrate several properties of the pro-
posed copula model and estimation procedure. We first considered the bivariate
case. Then, we extended our estimation to a high-dimensional setting. The sim-
ulations from this section were run with our heterocop R package available on
CRAN.

4.1 Simulation study in the bivariate case

We simulated four variables with a joint cumulative distribution function cor-
responding to a Gaussian copula as in model (1) and with marginals detailed
below:

• a Poisson distribution P(1) of mean and variance 1

• a Negative Binomial distribution, denoted NB(1, 0.5), where 1 is the num-
ber of successful trials and 0.5 is the probability of success

• a centered normal distribution with variance 1 N (0, 1)

• a Bernoulli distribution B(0.5) of mean 0.5

The four variables make 6 pairs, studied separately. Let ρ denote the copula
parameter of the pair considered and ρ̂ its estimate obtained from (3). The
Mean Squared Error (MSE) of ρ̂ is defined as: MSE(ρ̂) = E[(ρ̂−ρ)2]. The MSE
can be decomposed into the sum of the variance and the squared bias of ρ̂ as
follows:

MSE(ρ̂) = E[(ρ̂− ρ)2] = E[ρ̂2]− E[ρ̂]2︸ ︷︷ ︸
V ar(ρ̂)

+(E[ρ̂− ρ])2︸ ︷︷ ︸
Bias(ρ̂)2
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For each of the 6 pairs, the MSE, variance and squared bias of our estimator
were empirically estimated by running N = 500 simulations for different sample
sizes n = 20, 50, 100, 500, 1000 and copula coefficients ρ = 0.3, 0.6, 0.8. The
results are depicted in Figure 1.
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Figure 1: Averaged MSE with 95% confidence intervals of ρ̂ for the various
values of ρ and sample sizes, and each of the 6 pairs of the 4 distributions.

Figures S3 and S4 of the Supplementary material represent the evolution
of the variance and of the squared bias depending on the sample size. One
can see that the variance of the estimators decreases to zero as the sample
size increases. It is also interesting to note that it is higher for lower values
of the correlation coefficient (ρ = 0.3) than for the higher ones (ρ = 0.8). The
variances do not seem to be impacted by the types of the variables, and a similar
pattern is observed for all the distributions considered here. It can be noticed
that the squared biases are all very close to zero. Although slightly higher in
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the discrete/discrete case for n = 20, they remain extremely low and do not
significantly differ from zero as soon as the sample size exceeds 50.

We compared our semi-parametric approach with a fully parametric one in
which the parametric families of the marginal distributions are known. We
considered the case of the Normal and Negative Binomial distributions, with
parameters specified above. The copula correlation coefficient was now esti-
mated in a fully parametric way, i.e. the parameters of the marginals were
estimated by maximum likelihood in a first step (each marginal separately) and
the copula parameter was estimated in a second step from the likelihood with
the estimated parametric marginals plugged in. Figure S5 in the Supplementary
material presents the variances and squared biases of both the parametric and
semi-parametric estimates, for N = 500 simulations. The variances were found
to be slightly higher for our semi-parametric estimator for low sample sizes of 20
and 50, but quite similar otherwise. Both the parametric and semiparametric
estimators have a negligible bias, compared to the variance.

In real data analyses, the parametric families of the marginal distributions
is rarely known. We therefore assessed the robustness of our semi-parametric
method against miss-specification of the marginal distributions. We simulated
the data as previously but estimated the marginal parameters assuming a Pois-
son distribution instead of a Negative Binomial one, a common situation in ge-
nomics. Figure S6 of the Supplementary material shows that the estimates of ρ
obtained by the fully parametric approach are biased while our semi-parametric
method remains robust. Our proposed approach will therefore be useful for
practical applications when the parametric distribution of the data cannot be
specified.

Finally, we assessed the ability of the copula correlation coefficient to capture
complex dependence relationships. Let X1 ∼ N (0, 3) and X2 = 1{X1≥t}, where
t ∈ R is some fixed threshold. It is shown in Section D of the supplementary
material that the random vector (X1, X2) belongs to model (1) with copula
correlation ρ = 1. By comparison, the numerical values of Pearson’s ρP and
Spearman’s ρS for the threshold values t = 0, 2, 4, 6 are 0.79, 0.62, 0.27, 0.06,
and 0.87, 0.57, 0.18, 0.03, respectively. See Section D of the supplementary
material for the calculations. The higher the threshold, the less the ability of
Pearson and Spearman coefficients to capture the dependence relationship. For
illustration, we generated N = 500 samples of size n = 1000 of the pair (X1, X2)
for t = 0, 2, 4, 6. An histogram of the realizations of X1 is presented in Figure S7
in the Supplementary material. The proportions of ones for the realizations of
X2 averaged over the 500 samples is given in Table S1 of the Supplementary
material. Pearson’s ρP , Spearman’s ρS and the copula correlation coefficient of
model (1) were estimated from each sample. The distribution of the estimates is
depicted in Figure 2, where we see that the numerical calculations are confirmed.
The proposed copula correlation estimation seems therefore more robust when
binary variables have to be analyzed, especially in the case of rare events as
observed in mutation data for example, as presented in the next section.
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Figure 2: Comparison of the estimation of different correlation coefficients
(Pearson, Spearman, Copula) for N=500 replications between X ∼ N (0, 3)
and Y = 1{X≥t} for different thresholds t.

4.2 Simulation study in the high-dimensional case

4.2.1 Simulation protocol

Five different sample sizes were considered n = 20, 50, 100, 500, 1000, for d = 30
and d = 300 variables. In each case, one third of the variables were distributed
according to a N (0, 1), one third were NB(1, 1

2 ) and the last ones were B( 12 ).
Two structures were considered for the copula correlation matrix. The first is
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a block-diagonal structure as specified below:

Σblocks =



0.8
7×7

0 0 0 0

0 0.6
10×10

0 0 0

0 0 0.5
2×2

0 0

0 0 0 0.7
6×6

0

0 0 0 0 0.3
5×5


In this matrix, the order of the variables was randomly defined to have blocks
of correlated variables of different types. For d = 300 variables, the size of
each block was multiplied by 10. The second structure is a sparse structure. A
matrix Σ is generated through a modified Cholesky decomposition as described
in Algorithm 1.

Algorithm 1 Simulation of a positive definite sparse matrix Σ

Require: γ ∈ [0, 1], m > 0
Define a m × m matrix of zeroes Σ
Simulate m(m−1)

2 uniform U(0.3, 1) coefficients
Randomly set a proportion γ of coefficients to 0
Fill the upper triangular part of Σ with the coefficients
Σ ← ΣTΣ

Σij ←
Σij√

Σii

√
Σjj

return Σ

By varying γ in Algorithm 1, we can generate matrices with different pro-
portions of zeroes. We let γF denote the obtained proportion of zeroes of the
final matrix Σ. We call γF the sparsity coefficient. Regarding the sparsity of the
correlation matrix, we have considered a final proportion γF of null coefficients
of around 20%, 50% and 80%, by empirically setting the γ parameter at 0.61,
0.79 and 0.91. The simulated matrices were denoted Σ0.2,Σ0.5, and Σ0.8. For
each correlation matrix, simulations were run N = 500 times.

4.2.2 Numerical results

Results are first presented for d = 30 variables. The estimation accuracy was
evaluated using the normalized Root Mean Squared Error (RMSE) and the
normalized Mean Absolute Error (MAE) calculated as follows for a d×d matrix
Σ:

RMSE(Σ̂) =
1

N

N∑
k=1

√
1

d(d− 1)

∑
1≤i ̸=j≤d

(Σ̂k
ij − Σij)2
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MAE(Σ̂) =
1

N

N∑
k=1

1

d(d− 1)

∑
1≤i ̸=j≤d

|Σ̂k
ij − Σij |

where Σ̂k corresponds to the kth estimation of Σ. Note that the same Σ was kept
for the N = 500 simulations. As shown in Table S2a from the Supplementary
material, the normalized RMSE decreases as the sample size increases. It does
not exceed 20% for samples larger than n = 50 and remains below 5% for sample
sizes greater than n = 500. It seems to be robust to the specification of the
correlation structure and the amount of sparsity in the matrix. Similarly to
the normalized RMSE, the normalized MAE values given in Table S2b from the
Supplementary material decrease when the sample size increases, and remain
below 5% for sample sizes larger than n = 500. The normalized MAE also seems
robust to the structure of the correlation matrix and its sparsity.

The same metrics were also evaluated in a higher-dimensional setting, for
d = 300 variables. In order to reduce computational time, we chose to study
only a matrix of sparsity close to 0.8 and four different sample sizes n =
20, 50, 100, 500. Table S3 from the Supplementary material shows the obtained
normalized RMSE and MAE also averaged over N = 500 repetitions. The pro-
posed estimation procedure was found to be robust to an increase of the number
of variables. Normalized RMSE and MAE values were indeed close to the val-
ues previously obtained with 30 variables, even for a small sample size. This
result is promising for applying the proposed method to the analysis of real-life
examples.

In the perspective of applying the proposed procedure to construct biological
networks, we evaluate its ability to discriminate between small and large values
of the copula correlation coefficient. Given a fixed threshold t ∈ [0, 1], a copula
correlation coefficient estimate ρ̂ is classified as belonging to the first group if
ρ̂ < t, and as belonging to the second otherwise. By an abuse of language, we
call the estimates classified into the first group the predicted zeroes, and those
classified into the second group the predicted non-zeroes. Threshold t was here
arbitrarily set to 0.3.

The sensitivity to the identification of the non-zeroes, also known as true
positive rate, and its specificity in the detection, also known as the true nega-
tive rate, were measured. Let TP and FN denote the detected non-zeroes and
detected zeroes, respectively, among the real non-zeroes. Similarly, let TN and
FP denote the detected zeroes and detected non-zeroes among the real zeroes.
The true positive rate (TPR) is equal to the proportion of detected non-zeroes
among the real non-zeroes, that is, TPR=TP/(TP+FN). The true negative rate
(TNR) is equal to the proportion of detected zeroes among the true zeroes, that
is, TNR=TN/(TN+FP). The false negative rate (FNR) is defined as the propor-
tion of detected non-zeroes among the real zeroes, that is, FNR=1-TNR. The
false positive rate (FPR) is the proportion of detected zeroes among the real
non-zeroes, that is, FPR = 1-TPR. A contingency table is available in Table S4
of the Supplementary material for visual aid.

The Receiver Operating Characteristic (ROC) is a measure of global perfor-
mance of a given classification rule, or classifier. It is a plot of the TPR against
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the FPR for each value of t. For instance, when t = 0, all the estimated coef-
ficients are classified as non-zeroes and hence TPR=1, FNR=1. When t = 1,
all the estimated coefficients are classified as zeroes and TPR=0, FNR=0. The
AUC, Area Under Curve criterion enables us to quantify the performance of the
classifier by evaluating the area under the ROC curve. The closer it is to 1, the
better the performance.

The ROC curves are presented in Figure 3 for the four correlation structures
considered for d = 30 variables and each sample size, after averaging over N =
500 simulations. Figure 3 shows the results for d = 300 variables for a matrix of
0.8 sparsity and Table S5 from the Supplementary material sums up the AUC
values in each case. As expected, the AUC values increase with the sample size.
They are already good for a low sample size of 20, close to 0.8 even for d = 300
variables, and increase to around 0.9 for a sample size of 50, and close to 1 even
for a sample size of 100. It can also be noticed that the accuracy is improved for
a sparser correlation structure, which is often the case of interest in the context
of biological network inference.
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Figure 3: Average ROC curves for N = 500 simulations for the classification
of the estimates of the copula correlation coefficients for different sample sizes.
Four different sparse matrices were considered for d = 30 variables (block-wise
and sparse matrices with sparsity γF = 0.2, 0.5, 0.8). A matrix with sparsity
γF = 0.8 was considered for d = 300 variables.

5 Application on real data

We applied the proposed methodology to a data set from the International
Cancer Genome Consortium (ICGC, see Zhang et al. (2019)) regarding Breast
Cancer in the United States with 990 donors. On each individual, several sam-
ples were collected on both healthy and tumoral tissue. Our variables of interest
here are RNA-seq counts, protein abundance, and mutations. We kept for fur-
ther analysis only the samples collected on tumoral tissue, and averaged the
normalized protein expression and the RNA-seq counts per individual. The bi-
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nary encoding was kept for the presence of the mutations for each individual.
The initially selected variables prior to pre-processing contained:

• RNA-seq counts for 20 501 genes observed on 939 individuals

• normalized protein abundance for 115 genes observed on 260 individuals

• presence of 107 249 mutations observed on 918 individuals

5.1 Data pre-processing

First, the RNA-seq counts were normalized via the DESeq2 R package (Love
et al., 2014), which enables to study gene differential expression, and rounded
to the next integer. The number of donors was reduced to 250 after intersecting
the available data for all types of variables. For network inference, in order to
reduce the dimension while allowing a biological interpretation of the results,
we restricted the analysis to the 108 genes found in common between the RNA-
seq and protein data. Concerning the mutation data, we kept those present
in at least two donors, reducing their number to 62. The genes associated to
each mutation were then identified via the ensembldb R package (Rainer et al.,
2019). As there were only 4 common genes involving the mutations, RNA-seq
and protein data, we decided to keep all 62 mutations for network inference.
Our final dataset therefore contained 250 individuals and 278 variables: 108
discrete RNA-seq counts, 108 continuous protein data and 62 binary mutations.
Note that for the mutations, the proportion of ones has gone from 0.001 to 0.013
after data pre-processing.

Finally, the copula correlation coefficients of model (1) were estimated through (3)
from the final dataset. For comparison, we also estimated the Spearman’s ρS

coefficients.

5.2 Results

5.2.1 Comparison of the copula correlation coefficient with Spear-
man’s ρS

Figure S8 from the Supplementary material shows an histogram of the estimates
of the coefficients of Spearman’s ρS and the proposed copula. We can see that
the copula correlation coefficient seems to span the entire range of possible
values from -1 to 1, while Spearman’s ρS seems to take smaller absolute values.
To understand the difference between Spearman’s ρS and the copula correlation
coefficient, we compare the estimates by type. Remember that there are three
variable types: discrete RNA-seq counts (D), continuous protein abundance (C)
and binary mutations (B), and hence 6 possible combinations of types for each
pair: DD, DC, DB, CC, CB, BB. RNA-seq data, although discrete, have a
large number of distinct values, which makes them nearly continuous. Hence we
grouped the DD, DC and CC coefficient estimates, leaving three combinations
CC (which also contains DD and DC), CB and BB. A scatterplot is displayed
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for each of these combinations in Figure 4. Panel A of Figure 4 confirms that
the differences between Spearman’s ρS and the copula does not come from
the combinations of types DD, DC and CC. We see that the differences are
explained by the combinations involving the binary variables. The narrow range
of Spearman’s ρS is explained by the fact that this coefficient applied to two
Bernoulli variables with parameters p1 and p2 is bounded by 3p1(1 − p2) in
absolute value (Mesfioui et al., 2022).

5.2.2 Dependence relationships between the binary variables

Let Xj denote the presence of the jth mutation in some individual (Xj = 1
when the mutation is present and 0 otherwise) and let pj = P(Xj = 1) denote
the Bernoulli parameter of Xj (j = 1, . . . , 62). In the data all pj are less than
0.15. Thus the conditions of case (iii) of Proposition 3 are satisfied by every pair
of binary variables (1−Xj′ , 1−Xj). Indeed 1−pj +1−pj′ ≥ 2−0.3 = 1.7 > 1.
Thus when the copula correlation coefficient is close to minus one, case (iii) of
Proposition 3 predicts that 1 − Xj + 1 − Xj′ > 0 and hence Xj + Xj′ ≤ 1,
that is, no two mutations can co-occur. Case (iii) of Proposition 3 also predicts
that when the copula correlation coefficient is close to one then 1− pj < 1− pj′

implies 1 − Xj ≤ 1 − Xj′ and hence Xj ≥ Xj′ , that is, the rarest mutation
cannot occur without the more common one. A look at the data confirms these
predictions, see Table S6 in the Supplementary material for an illustration.
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Figure 4: Copula correlation coefficient versus Spearman correlation coeffi-
cient for each combination of variable types: continuous/continuous (A), bi-
nary/continuous (B) and binary/binary (C). The RNA-seq data have been
grouped with the continuous data

5.2.3 Network inference

From a set of estimates of copula correlation coefficients we can build a network
by linking highly dependent variables. More precisely, the network is a graph
in which the nodes represent the variables and the edges the copula correlation
coefficient estimates. One draws an edge between two variables if the absolute
value of their copula parameter is greater than some chosen threshold.

One can do the same with the estimates of the Spearman’s ρS coefficients,
and comparison of the inferred networks by the two methods was investigated.
The number of detected edges as a function of the threshold, separately for each
combination of data types (CC, CD, CB, DD, DB, BB) is depicted in Figure 5.
As illustrated in Figure 5, for CC, CD and DD the proposed copula approach
and Spearman coefficient behave similarly and identify a similar number of links.
When the binary mutation data are involved, however, the copula model detects
more links than the Spearman approach, which agrees with the previous remark
that Spearman’s ρS between two binary variables in general cannot reach the
endpoints of the interval [−1, 1]. When looking at the overlap between the links
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identified by both methods, it can be noticed that all pairs of binary variables
with a non-null Spearman correlation coefficient are included in the subset of
pairs detected by the copula approach, for all threshold values. Hence, the
copula not only detects the interactions already detected by Spearman, but
enables the discovery of new interactions.
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Figure 5: Number of detected links by the copula correlation coefficient versus
the Spearman correlation coefficient for threshold values ranging from 0 to 0.9,
by combination of types where D stands for discrete (RNA-seq count data), C
for continuous (protein data), B for binary (mutation data).

Figure 6 presents the inferred networks obtained from model (1) and the
Spearman method, for different threshold values. Regarding the copula model,
it can be noted that for a high threshold value of 0.8, edges are identified mainly
between mutations. For a lower value of 0.7, edges between pairs of variables
with mixed type are detected. In order to have a similar number of links in
the network inferred by the Spearman method, the chosen threshold values had
to be lower. Indeed, even at the threshold value of 0.6, the Spearman network
was found to be very sparse, with only a few edges between proteins and RNA-
seq data. Considering a threshold value of 0.4 leads to a larger number of
interactions. As expected, very few links were identified with the Spearman
approach for the binary mutation data.
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(a)

(b)

Figure 6: Copula (a) and Spearman (b) correlation networks for different thresh-
old values. The nodes (variables) are colored by biological type (RNA-seq, pro-
tein, mutation). An edge is drawn between two nodes if the absolute value of
the corresponding estimated correlation coefficient is above the threshold.

In order to go one step further in the biological interpretation of the inferred
networks, we considered the nodes with the highest number of links for the
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graph returned by the copula model, for a threshold of 0.7 in Figure 6. Fig-
ure S9 from the Supplementary material shows the distribution of the degrees
of all the nodes in the network. Four of them have a degree (number of as-
sociated edges) greater than 10. These four variables correspond to mutations
MU4777833, MU5153080, MU17289, and MU5551967. The associated genes as
identified by ensembldb are shown in Table S7 in the Supplementary Mate-
rial. We performed a literature search for each of these genes, and they were all
found to be involved in cancer development. Indeed, gene ARHGEF11 has been
identified as playing a key role in the migration and growth of invasive breast
cancer cells (Itoh et al., 2017). Gene SLC7A9 belongs to the SLC7 family which
is known for its role in cancer cell metabolism (Yan et al., 2022). Similarly, gene
CDKN1B affects protein p27 which is linked to the production of breast cancer
cells (Cusan et al., 2018) and finally, PQBP1 is usually overexpressed in breast
cancer patients (Liu et al., 2024). The identified hubs of the copula network
therefore seem to highlight interesting mutations, that were not identified with
the Spearman approach.

6 Discussion

The joint analysis of heterogeneous data is a key methodological topic, espe-
cially in the context of multi-omic analyses. We proposed here an innovative
approach based on copula methods that allows to infer biological networks from
various types of data (continuous and discrete). The idea is to assume an un-
derlying Gaussian latent structure and estimate its corresponding correlation
matrix. The proposed method is semi-parametric, with no explicit assumption
concerning the distribution of the marginals, which makes it very flexible for
biological data analysis. The estimation procedure is based here on a compu-
tationally efficient pairwise likelihood approach, and is implemented in a freely
available R package called heterocop.

We theoretically derived properties of the copula correlation coefficients to
make the link with the dependence relationships in the observed data. In par-
ticular, we showed that a block-wise structure in the copula correlation matrix
is equivalent to block-wise mutual independence in the observed data. We char-
acterized the lower and upper extreme values of the copula parameter in terms
of the observed data when a Bernoulli distribution is involved, thus providing
an interpretation of the copula parameters.

In an extensive simulation study, we showed that under various experimen-
tal designs the Gaussian copula correlation matrix was estimated with a good
accuracy with only dozens of observations even for a large number of variables
(several hundreds). We also showed that it provided more accurate results than
classical correlation coefficients such as Pearson or Spearman, especially for the
analysis of binary data. This result was also observed in the real data analysis
regarding a breast cancer study including binary mutation data.

Regarding the block-wise mutual independence property, it would be inter-
esting in a further work to propose a sound statistical procedure to identify
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independent blocks in the data. Theoretical consistency and asymptotic nor-
mality of the estimator could also be studied in a future work. This would open
the gate to statistical testing and model selection.

Our focus was here on the correlation matrix estimation. In order to obtain
the direct links in the networks, the next step would be to propose an estimation
procedure for the precision matrix, using the computational efficiency of the
pairwise likelihood approach, with a Lasso penalty to obtain a sparse network
inference.
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