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Figure S1: Tllustration of comonotonicity for cases (i), (ii) and (iii) of Proposition
3
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Figure S2: Illustration of countermonotonicity for cases (i), (ii) and (iii) of
Proposition 3
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Figure S3: Averaged variances and 95% confidence intervals (for N=500 repli-
cations) of the Gaussian copula correlation coefficient estimators defined in (3)
for p = 0.3,0.6,0.8 between P(1), NB(1,3), N(0,1) and B(%) depending on
the sample size.
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Figure S4: Averaged squared biases and 95% confidence

intervals (for N=>500

replications) of the Gaussian copula correlation coefficient estimators defined in
(3) for p = 0.3,0.6,0.8 between P(1), NB(1,3), N(0,1) and B(3) depending

on the sample size.
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Figure S5: Averaged variances and squared biases with 95% confidence intervals
of p obtained with the semi-parametric method and the parametric method
when the marginals are correctly specified for different values of p and sample

sizes.
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Figure S6: Averaged variances and squared biases with 95% confidence intervals
of p obtained with the semi-parametric method and parametric method when
the marginals are misspecified for different values of p and sample sizes.
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Figure S7: Distribution of variable X ~ A(0,3) for 500 replications of sample
size n=1000, with threshold lines at ¢ = 0,2,4,6 in order to visualize the asso-
ciated binary variable ¥ = 1;x>;.
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Figure S8: Histograms of the estimated correlation coefficients for Spearman’s
p° (left) and the copula (right)
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Figure S9: Histogram of the degrees of the nodes from the copula correlation
network for a threshold value of 0.7, represented in Figure 6.

B Supplementary Tables

Threshold 0 2 4 6
Bernoulli parameter | 0.5 | 0.25 | 0.09 | 0.02

Table S1: Bernoulli parameter estimated for Y = 1;y>;, for t = 0,2,4,6, av-
eraged over N = 500 simulations. These values correspond to the standardized
areas under the histogram on the right of threshold values ¢ in Figure S7.

sample size 20 50 100 500 1000
Yblocks 0.329 (0.02) | 0.188 (0.02) | 0.127 (0.01) | 0.054 (0.004) | 0.038 (0.003)
0.2 0.315 (0.02) | 0.187 (0.01) | 0.127 (0.01) | 0.054 (0.004) | 0.038 (0.003)
0.5 0.332 (0.01) | 0.195 (0.01) | 0.132 (0.01) | 0.056 (0.004) | 0.039 (0.002)
o8 0.349 (0.02) | 0.2 (0.01) | 0.133 (0.01) | 0.057 (0.006) | 0.04 (0.002)
(a) Root Mean Squared Error (RMSE)
sample size 20 50 100 500 1000
Yblocks 0.265 (0.02) | 0.148 (0.01) | 0.102 (0.01) | 0.043 (0.005) | 0.03 (0.003)
o2 0.262 (0.02) | 0.15 (0.01) | 0.101 (0.01) | 0.043 (0.003) | 0.03 (0.007)
0.5 0.279 (0.02) | 0.155 (0.01) | 0.105 (0.007) | 0.04 (0.003) | 0.031 (0.002)
o8 0.283 (0.01) | 0.16 (0.008) | 0.107 (0.005) | 0.045 (0.002) | 0.032 (0.002)

(b) Mean Average Error (MAE)

Table S2: Average normalized Root Mean Squared Error (a) and normalized
Mean Absolute Error (b) values for N = 500 replications for the copula cor-
relation pairwise estimator for d = 30 variables, for a block-wise matrix and
for three different matrices of respective sparsity v = 0.2,0.5, 0.8, for different
sample sizes. The simulation standard deviations are specified in parentheses.



sample size

20

50

100

500

RMSE

0.354 (0.004)

0.202 (0.002)

0.136 (0.001)

0.058 (0.0005)

MAE

0.294 (0.003)

0.162 (0.001)

0.108 (0.0007)

0.046 (0.0004)

Table S3: Average normalized Root Mean Squared Error and normalized Mean
Absolute Error values for NV = 500 replications for the copula correlation pair-
wise estimator for d = 300 variables, for a matrix of sparsity vy = 0.8, for
different sample sizes. The simulation standard deviations are specified in paren-
theses.

Predicted non-zero
False positives (FP)
True positives (TP)

Predicted zero
True negatives (TN)
False negatives (FN)

Real zero
Real non-zero

Table S4: Contingency matrix

p | sample size 20 50 100 500 1000
30 Yblocks 0.91 (0.04) | 0.97 (0.01) | 0.99 (0.007) | 0.999 (0.0004) | 0.999 (0.0005)
30 0.2 0.72 (0.03) | 0.82 (0.02) | 0.89 (0.02) 0.96 (0.01) 0.98 (0.004)
30 0.5 0.76 (0.04) | 0.88 (0.03) | 0.94 (0.01) 0.99 (0.003) 0.994 (0.002)
30 0.8 0.84 (0.03) | 0.94 (0.02) 0.98(0.01) 0.999 (0.001) | 0.999(0.0004)
300 Yo.8 0.79 (0.01) | 0.90 (0.007) | 0.97 (0.004) | 0.998 (0.0002) NE

Table S5: Average AUC values for N = 500 simulations for the copula pair-
wise correlation coefficients for different sample sizes. Four different sparse
matrices were evaluated for d = 30 variables (block-wise matrix, final sparsity
vr = 0.2,0.5,0.8). A matrix of sparsity vr = 0.8 was considered for d = 300
variables. The standard deviations are specified in parentheses, and the NE
acronym stands for Not Evaluated.

0 1 0 J1 0 [1

0 [ 437156 | 5723 0[2487]0 0[213]0

1] 7621 0 110 |2 1]35 |2
(a) (b) ()

Table S6: Contingency tables for the mutation variables corresponding to the
points for which the copula correlation coefficient was close to -1 (S6a) (1802
points), for which both the copula and Spearman had correlation coefficients of
1 (S6b) (one point), and for which the copula had a correlation coefficient close
to 1 and Spearman close to 0 (S6¢) (one point).
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Variable Gene
MU4777833 | ARHGEF11
MU5153080 SLCTA9

MU17289 CDKNI1B
MU5551967 PQBP1

Table S7: Mutation variables with a degree greater than 10 in the copula cor-
relation network for a threshold value of 0.7, and their corresponding genes.

C Proofs of Propositions

C.1 Proof of Proposition 1

We are going to show that f(z1,...,z4) from equation (2) corresponds to the
density of the joint cumulative distribution F(x1,...,24) from model (1) with
respect to the A®? @ u®(@=P) measure, where A®? = X x --- x X\ with A the
5,—/
p times
Lebesgue measure and p®@=?) = ;% --- x u denotes the counting measure.
—_——
d—p times
For easier notations, we denote S , where a < b and a,b € {1,...,d}, the set
| — 00;x4] X ...x] — 005 ). Let us find f that satisfies:

CE(FI((El)ﬂ'“JFd(xd)) = /;'1.d f(y17“’7yd)d(>\®p®M®(d_p))(y17"'7yd)

/S1 </s de(yl,...,yd)du@(dp)(yp+1,...,yd)> d>\®p(y1,...,yp).

The second equality can be directly obtained by Fubini-Tonelli’s theorem. By
differentiating both sides with respect to the p continuous variables, we get:

P
11 fe@)CE(Fi(@1), ..., Fa(wa)) = /S+ df(a:l,...,xp,yp+1...,yd)du®(d*”)(yp+1,...,yd)
k=1 P

Z Z f(.’l?l,...,mpvprrlv---yd)

Yp+1<Tpt1 Yya<Tq
Yp+1E€Sp+1 Ya€Sa

where f; denotes the density of X;, C% denotes the differential of Cy with
respect to the p continuous variables, and S; denotes the support of £;. The
Mébius inversion formula (Rota, 1964) provides us with the following expression

flxr,za) = > Zkal“k S (F1(@1), oy Fp(zp)s Fpt1 (Yp+1)s -y Fa(ya))

Yp+1<Tp+1 ya<zgq k=1
Yp+1E€ESp41 ydESd

XMp41(Yp+15 Tpt+1) M (Yds Ta)

11



where

1 if Tj=1Yj
m;(y;,x;) = —1 if y; precedes x; in S;
0 otherwise.

In our case, one can notice that y; can only take the values z; and z;—, where
x;— denotes the point that precedes x; in S;. It corresponds to the expression
of the multivariate density below where

. — Fi(zr) ifjr=0
Kok = Fk(xk_) ifjkzl

p 1 1
flzr,.. o ma) = ka(xk) Z Z(_1>jp+1+m+jdXC§<F1(J:1)’"'7F;D(xp)7up+1,jp+17
k=1

Jp+1=0  ja=0
The density is unique up to all sets of measure zero with respect to our measure
AP @ ) @d=p,

C.2 Proof of Proposition 2

Let us show first that if the correlation matrix of the copula is of the form

¥ 0 0
YX=10 .. 0
0 0 X

then the multivariate density can be factorized as

k
f(xla"'axd):Hgi(xG,) (1)

for some functions g;, i = 1,...,k. We know that for all (u1,...,uq) € (0,1)%,
OPCs(uy, ..., uq) Upt1 o 1 7oy
= e by —= =1 d .
T L [ e (5T = Dy ) dag . d)
where v = (vq,...,v4) such that

O 1(w;)ifie{l,...,p}
v =
o (q)itie{p+1,... d

and I denotes the identity matrix. Let us split the vector vas vl = (vI,...,v])

where each vy is of size |G| x 1. Hence, the right-hand side of (2) can be written

as
Upt1 ua [k 1 1 5 1
/0 /0 H|El|*§ exp <2vl (=, IGZ)V1> dgps1 ... dgd3)
1=1

12

...,ud,jd)



where I|g, denotes the identity matrix of size |G;|. By noticing that the Ith
factor only depends on vy, and that each g; can only belong to exactly one v,
Fubini-Tonelli’s theorem enables us to factor (2). Let us denote by D(G)) the
set of indexes corresponding to the discrete variables in Gy, that is D(G;) =
{p+1,...,d} NG;. Denote d; = |D(G;)|. We get that (3) can be written as

k

Ui () Uig, (1) 1 1 _
H/ / t 12|72 exp (—2VIT(El 1—I|Gl)Vl> dqjdl(l)"'dqul(l)v

=170 0

where above ji(),...,jq4, (1) is an enumeration of the elements of D(G;). We
use the convention that an integral over the empty set D(G;) = 0 is replaced by
its integrand. Let us define

Uiy (1) Ujg, (1) it 1 _
Pl(uC(Gl)7 uD(Gl)) = /0 /(; l |72 exp (_ZVIT(EI 't I|Gz))vl) dqjdl - dqjl(l)’

where C(G)) is the set of indexes corresponding to the continuous variables in
group Gy, up(g,) = {u; : j € D(G1)} and ueq,) = {u; : j € C(G1)}. Thus,

remembering the notation C%(u1, ..., uq) = OPC/du - - - u,, we have got
k
Cl(us, ... uq) = [ Piluccy, unay) (4)
1=1
for all (uy,...,uq) € R Choose and fix (z1,...,74) € R?. Remember that we

want to prove (1) for some functions g;. From (2) in the main text, we have
flay,...,zq) =
P 1 1
(H f’@““’”) Do D () OR(C(1,0), G0 0).Cp + L) () |
k=1

ap41=0 ag=0

where each ( is seen as a function on {p+1,...,d} x {0, 1} such that {(i,0) =
F;(x;) and ((i,1) = F;(z;—). By (4), we have

Cg(C(L O)a LR C(p7 0)7 C(p + 1) ap+1)7 e ,C(da Oéd))
k

k
= HB(C(“(Z)) 0)7 s 7<(i01 (l)’ O)?C(jl(l)7aj1(l))’ SEE) C(jdl (l)7 Qjig, (l))) =: HPl(aD(Gz))v

=1 =1

13



where above i1(l),...,4. () is an enumeration of the elements of C(G;) with
¢ = |C(Gy)]. Tt follows

p 1 1 k
flar,..za) = [[filz) D - D (~peent -t T P(ape,)
Ap+1=

=1 0 ag=0 =1

k 1 1 k
= (II TI fi)] D° (o> (= H 1(ap(ay))
I=1ieC(Q) ap1=0 ag=0 =1

=1 ’LGC(GZ) Q=0
meD(Gy)
This proves that the multivariate density f factorizes.
Conversely, this factorization implies a k-block-diagonal structure for 3 by
unicity of the density with respect to the product measure A x -+ X Ax g X -+ X p.

p times d—p times
The proof of Proposition 2 is complete.

C.3 Proof of Proposition 3

Case (i) is well-known and hence not shown here. Let us show cases (ii) and (iii).
Remember that for all 0 < s <1 and ¢ € R, it holds F}(F;~(s)) > s, F;7(s) <t
if and only if s < Fj(t), and Fj(t) < s if and only if t < F~(s); see e.g., Resnick
(1987). Observe also that if X; ~ B(p;) then

1—p;, ifX;=0 0 if0<u<l—p;
Fj(Xj):{ 1 ifX;-:L Fﬂf_(“):{l ifl—pj<u§i,

for all 0 <u < 1. Remember that X; = F;~(®(Z;)), j = 1,2, where Z; and Z>
are standard normal random variables with correlation p. Remember also that
7y = Zy almost surely (that is, with probability one) if and only if p = 1, and
7y = —Z5 almost surely if and only if p = —1. Let X1 ~ B(p1).

Case (ii). For the first claim of the proposition, note that (X7, 1{X2>F271(1_p1)})
is comonotonic if and only if P(X; = 0, X3 > F{l(l —p1))+P(X1 =1,Xe <
Fy'(1—p1)) = 0. This implies

0

Il
B,

(X1=0,X2 > Fy (1 —p1))
(Ff(®(Z1)) = 0,8(Z5) > 1 —py)
(Z1 <@ ' (1—p1),Z2 >0 (1 —p1)),

I
T T

14



which is false unless p = 1. Conversely, if p = 1 then Z; = Z5 almost surely and

P(X1=0,Xo < Fp(1—p1)) +P(X1 =1,X2 > Fy 11— py))

=P(F{ (®(Z1)) =0,9(Z1) <1 —p1) + P(Fy (®(Z1)) = 1,®(Z1) > 1 —p1)
= P((I)(Zl) <1 _pl) + P(‘I)(Zl) >1 _pl)

=1.

For the second claim of the proposition, note that (X7, 1{X2>F;1(p1)}) is coun-
termonotonic if and only if P(X; = 0,Xy < F{l(pl)) +PX; = 1,Xy >
Fy'(p1)) = 0. This implies P(®(Z;) < 1 — p1,®(Z2) < p1) = 0, which is
false unless p = —1. Conversely, if p = —1 then
P(X1=0,X> > Fy ' (p1)) + P(X1 = 1, X5 < Fy ' (p1))
=P(®(Z1) £1—p1,®(=Z1) >p1) +P(®(Z1) > 1 —p1,P(—-Z1) < 1)
=P(®(Z1) <1 —p1) +P(®(Z1) > 1 —p1)
=1.
This proves case (ii).
Case (iii). For the first claim of the proposition, note that X; < X5 almost
surely if and only if P(X; =1, X2 =0) = 0. But
P(X1=1,X5=0)=P(F (®(Z1)) =1,F5 (®(Z)) =0)
=Pl —p1 <®(Z1),2(Z2) <1 —p2),

which is null if and only if p = 1 (because p; < p3). For the second claim of the
proposition, note that X; + X5 > 0 almost surely if and only if

0= P(X1 = O,XQ = O) = P(‘I’(Zl) S 1 —pl,(I)(ZQ) S 1 —pg).
Since ®71(1 — p;) < —®~ (1 — py), the latter probability is null if and only if
p=—1.
D Correlation coefficient computation

Let X ~ N(0,3) and Y = 1;x>4 for a given threshold ¢. Let us show first
that (X,Y") belongs to model (1). Let F' and G denote the CDFs of X and Y,
respectively. We know that F(z) = ®(2/v/3) and

0 ify<oO
Gly) =< @(t/V3) ifo<y<l1
1 otherwise.

It is easy to see that
e v [0 ifo<u<®(t/V3)
G () = { 1 otherwise.

15



for all w € (0,1]. It suffices to exhibit a standard Gaussian random vector
(Z1,Z,) with correlation p such that X = F*(®(Z7)) and Y = G (®(Z2)).
But this is easily checked for p = 1.
It is known that the Pearson correlation coefficient between X and Y is given
by:
E[(X - E(X))(Y —E(Y))]
a(X)a(Y)

where E(X) (resp. E(Y)) denotes the expectation of X (resp. Y) and o(X)
(resp. o(Y)) denotes the standard deviation of X (resp. Y). We know that
E(X) =0 and o(X) = /3. Moreover, we have

pP(va) =

E(Y) =E(l{x>¢)
—P(X > 1)

—1- (k)

and o( \/ (L ts)) because we can recognize that Y ~ B(1 —

<I>(\/§)) Hence we get

E[(X - E(X))(Y —E(Y))]
o(X)o(Y)

E[X(Y —14 @(%))}

V/32(J5) (1 - 2(F)
E(XY) — E(X) + ®(L)E(X)

pP(X’ Y) =

Let us compute E(XY).

E(XY) = E(X1lix>y)

16



So we end up with

pP(X’ Y)=

Similarly, Spearman’s rho is given by

\/27@(%)(1 — (L)

P = (X))o (GY))
We have
EG(Y)) = @(%)P(Y —0)+P(Y =1)
t t
= @(ﬁf +1- (I)(ﬁ)
and by the same reasoning, E(G(Y)?) = @(%)3 +1-— @(%), which leads to
o(G(Y)) = Var(G(Y))
= VE(G(Y)?) —E(G(Y))?
t t t 9 t 9
- \/@<\/§>3+1<b<3> —[@() 41— ()
- \/—«m2>4+3@<j§>3—3¢<g>2+<1><t>
Moreover, we know that F(X) ~ U[0,1] so E(F(X)) = % and o(F (X)) =
So, we get:
s _ E[(FX) —E(FX))(GY) —E(G(Y)))]
o= o(F(X)o(G(Y))
_ E[(F(X)G(Y)] — E(F)E(G)
ViR 3R(5)° - 38( )% + 2( )
_EF)GY)] - HE(5) +1- 8(G)
VECR(G) +38(5) —32(5)7 + 8()

17



Let us compute E(F(X)G(Y)).

1
ex
3 X 21 2x3
t 1 —x2

So we end up with

pS(X,Y) =
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