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Abstract

Hydrological models are subject to natural variability in forcing conditions,

yet traditional global sensitivity analysis (GSA) often overlooks these uncer-

tainties, potentially limiting the validity of results to specific conditions. To

address this, we propose an approach that accounts for the uncontrollable

nature of rain forcing variability. We treat the model parameters’ Sobol’

indices as random variables dependent on forcing variability and use polyno-

mial chaos expansion metamodels to reduce the computational cost of their

estimation. We apply this methodology to study soil moisture sensitivity

in the physically-based distributed hydrological model PESHMELBA. Our

results show that parameter rankings vary with forcing conditions. To con-

solidate these diverging GSA results, we propose a unique ranking based

on aggregated sensitivity indices that accounts for parameter contributions

across the entire domain of forcing conditions. This approach enhances the

robustness of GSA to natural variability in forcings, thereby improving the

reliability of subsequent GSA-based decisions.
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1. Introduction

Global sensitivity analysis (GSA) provides information on the importance

of model parameters for the simulation of model outputs. As GSA identifies

the parameters having a larger effect on model outputs, it is a useful tool in all

stages of model development and validation (Tarantola et al., 2024). GSA

is increasingly used in environmental sciences (Tang et al., 2007; Nossent

et al., 2011; Garcia et al., 2019; Perrin et al., 2021; Heredia et al., 2021;

Alipour et al., 2022; Jamous et al., 2023; Colombi et al., 2024), hydrology

(Song et al., 2015; Nagel et al., 2020) and water quality (Fox et al., 2010;

Lauvernet and Muñoz-Carpena, 2018; Hong and Purucker, 2018; Gatel et al.,

2019; D’Andrea et al., 2020; Faúndez Urbina et al., 2020).

For models with large input sets, as it often is the case in hydrology, GSA

can help in choosing a smaller, and thus more manageable size of parameters

to be considered at different stages of model development (Wagener and

Pianosi, 2019). This can be done by means of screening, that is classifying

the parameters in two groups: influential and non-influential, or by ranking

the parameters in decreasing order of their influence, then choosing to focus

on the parameters appearing at the top of the ranking list. Screening is

often performed with the Morris method (Morris, 1991), or more recently

with the HSIC independence tests (De Lozzo and Marrel, 2016), ranking

is typically performed with variance-based decomposition (Sobol’) methods.

Additionally, a good practice for removing non-identifiable parameters at

2



the calibration stage, is to perform a sensitivity analysis on the model’s

performance metrics (Mai, 2023).

The inputs of most deterministic hydrological models can be separated

in two sets:

1. operational parameters (x): parameters whose values are fitted to ob-

tain model outputs closer to observations, such as hydraulic conductiv-

ity, Manning coefficient, Van Genuchten parameters, etc.

2. external forcings (z): forcing terms such as rainfall, evapotranspiration,

boundary conditions (piezometric levels or upstream/downstream river

stages), or the dates of pesticide usage on the cultivated lands.

The uncertainty of the output of the (deterministic) hydrological model

is thus due to the uncertainties of both types of inputs. However, the uncer-

tainty of x and that of z differ in their nature. Indeed, while the uncertainty

of z represents the natural fluctuations of the different forcings under which

the hydrological model is expected to operate, the uncertainty of x is due to

a misspecification of the parameters.

In a context of model development, the uncertainty of x should be re-

duced, for example, by obtaining more direct measurements when possible,

or, when this is not the case, estimating parameter values through calibra-

tion or data assimilation processes. On the other hand, the uncertainty of z

cannot be reduced, as it represents the uncertainty of the natural conditions

under which the hydrological model operates.

One of the goals of GSA is to help choose the inputs whose uncertainty
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should be reduced with highest priority. This is usually done by performing

a GSA for a fixed set of external forcings z. However, ignoring the stochastic

nature of z amounts to the GSA results of parameters x being valid only

locally in the forcing conditions used. Indeed, due to the interactions of

hydrological model inputs, there is no guarantee that the results of a GSA

obtained under one set of external forcings can be extrapolated to other val-

ues of the external forcings, even if performed on the same catchment and

similar conditions.

To make the stochastic nature of z explicit, it can be represented as

depending on an abstract random event ω ⊂ Ω defined on a probability

space (Ω,F , P ), representing the space of forcings under which the model

is expected to operate, with Ω is the sample space, F the event space and

P the probability measure. The deterministic value of z is thus considered

as a realization of Z(ω), and the (deterministic) hydrological model can be

rewritten as a stochastic model Ms such that:

Ms : D × Ω → Rq,

(x, ω) 7→ Ms(x,Z(ω)),
(1)

where the operational parameters x are represented with a p-dimensional

vector with values in D ⊂ Rp.

While many methods have been successfully developed for the sensitiv-

ity analysis of deterministic models (Da Veiga et al., 2021; Saltelli et al.,

2008), not as much attention has been given to their stochastic counterparts.

One of the most popular approaches in GSA is the variance-based sensitivity

analysis with its Sobol’ indices (Sobol, 2001). Zhu and Sudret (2021) list
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three extensions of Sobol’ indices to stochastic simulators. Firstly, Iooss and

Ribatet (2009) propose a direct extension of the input x with the stochastic

inputs Z, thus treating them as additional input variables, thus not distin-

guishing the different natures of the two sources of uncertainty. A second

choice, is that of studying the sensitivity of a summarizing statistical quan-

tity of interest (QoI) of the model output distribution. Typical QoIs are: the

output’s mean value, its variance, higher moments (Dell’Oca et al., 2017),

a quantile or differential entropy (Azzi, 2020). Hence, this second extension

amounts to the classical definition of Sobol’ index being applied on the QoI.

A third extension of Sobol’ indices to stochastic models comes from con-

sidering the Sobol’ indices as random variables. In this case, the randomness

of the Sobol’ indices comes from seeing them as functions of the stochas-

tic inputs Z. Such approach was considered when studying the moments

of Sobol’ indices (Hart et al., 2017; Jimenez et al., 2017). Recently, random

Sobol’ indices and their robustness was studied in an application to stochastic

agent-based models, (Carmona-Cabrero et al., 2024). This extension embod-

ies the operational approach to GSA, introduced in Dell’Oca (2023), which

argues for a distinction between the operational parameters (considered con-

trollable by the modeler) and the (uncontrollable) stochastic inputs.

In this work, we perform a global sensitivity analysis of a hydrological

model output by distinguishing the uncertainties of an uncontrollable exter-

nal forcing (rain) and the uncertainties of controllable operational parame-

ters (soil hydrodynamic properties). The outputs of interest are soil moisture
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profiles simulated by the PESHMELBA hydrological model (Rouzies et al.,

2019). We obtain the distributions of the Sobol’ indices, which are considered

random variables, and study the robustness of the ranking under different

realizations of the rain in a same event-based context. We then propose a

unique ranking based on the aggregated sensitivity indices ASI, which de-

scribe the part of the total output uncertainty (coming from both controllable

and uncontrollable sources).

Section 2 presents briefly the Sobol’ indices, their efficient calculation with

polynomial chaos expansion, the notion of Sobol’ indices as random variables

(trajectory-based Sobol’ indices) and the aggregated sensitivity indices (ASI).

Section 3 presents the case study: the setup of the PESHMELBA model,

the six operational parameters whose sensitivity indices are of interest and

the rain measurements considered as realizations of the stochastic external

forcing. Section 4 presents the results: the obtained distributions of the

Sobol’ indices for each operational parameter and shows the effect of the

rain on the parameter ranking.

Section 5 discusses the type of model in which one can expect the stochas-

tic input to impact the sensitivity analysis results, the computational cost of

such an approach and other potential sources of stochastic inputs in hydro-

logical models.

2. Methodology

In Section 2.1 the definition of Sobol’ indices are recalled, then in Section

2.2 their estimation with polynomial chaos expansion method is explained.
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Section 2.3 introduces the trajectory-based Sobol’ indices, that is, the notion

of Sobol’ indices being random variables dependent on the realization of the

external forcing. Section 2.4 presents the aggregated sensitivity indices, used

in this work to synthesize the information obtained from Sobol’ indices in

different external forcings.

2.1. Sobol’ indices

We recall in this section the definition and basic notions of classical Sobol’

indices. Let the function of interest fd be a deterministic function with a

scalar output:

fd : D → R,

X 7→ Y = fd(X),
(2)

where X = (X1, X2, ..., Xp) ∈ D ⊂ Rp are p independent scalar inputs.

Sobol’ indices are a variance-based GSA approach, meaning that they con-

sider variance as a metric to quantify the contribution of each uncertain

parameter to the uncertainty of the output. The classical Sobol’ indices

quantify the part of the output variance explained by the variations of each

input parameter, or their interaction. The first and total order Sobol’ indices

of the input Xi, i ∈ {1, ..., p}, are defined respectively as:

Si=
Var [E [Y | X i]]

Var[Y ]
, STi

= 1− Var [E [Y | X∼i]]

Var[Y ]
, (3)

where ∼ i denotes the set of all inputs, but the input Xi, (Saltelli et al.,

2008; Homma and Saltelli, 1996). The Sobol’ indices lie in the interval [0, 1],

and a larger Sobol’ value indicates a greater importance of the input variable

or the group of input variables related to this index. The input variables can
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then be ranked by their order of importance with respect to their first or total

Sobol’ index. The first order index Si gives the information about the impact

that the input Xi has on the output when varied alone, while the total index

STi
gives the importance of Xi and all of its interactions with other variables.

Theoretically, the Sobol’ indices can be obtained for any function fd.

Practically, the estimation of these indices can be obtained by Monte Carlo

simulations, on a large experimental design (minimum M(p+ 1), with M >

1000 and p the number of inputs), that can be very expensive in terms of

evaluations of the function fd, (Da Veiga et al., 2021; Iooss and Lemâıtre,

2015; Saltelli, 2002; Sobol, 1993). The number of necessary evaluations can be

reduced either by sampling more intricate experimental designs, (Tissot and

Prieur, 2015; Saltelli et al., 1999, 2008), or through the use of metamodels,

such as polynomial chaos expansion (PCE), which is the approach used in

this study.

2.2. Polynomial chaos expansion

Let X be a random vector with values in D ⊂ Rp, with finite variance

and joint probability density function gX satisfying certain conditions (Xiu

and Karniadakis, 2002; Ernst et al., 2012). Consider a deterministic function

fd mapping a set of input parameters X ∈ D ⊂ Rp to the output y ∈ R. If

Y = fd(X) has finite variance, the function fd admits a polynomial chaos

expansion (PCE):

Y = fd(X) =
∑
α∈Np

cαψα(X),
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where p is the number of input parameters, {ψα}α∈Np is a basis of multi-

variate orthonormal polynomials (chosen according to the marginal probabil-

ity density functions gXi
of the input parameters), α ∈ Np are multi-indices,

i.e. α = (α1, α2, . . . , αp) where each αi ∈ N corresponds to the partial degree

with which the ith input parameter Xi is represented in the basis component

ψα and cα ∈ RNp
are the PCE coefficients.

Once the function fd is rewritten via its polynomial chaos expansion,

the Sobol’ indices are obtained analytically from the coefficients cα (Sudret,

2008). For example, to obtain the first order Sobol’ index of the input pa-

rameter Xi, we consider only the coefficients cα that correspond to basis

polynomia ψα which only depend on the parameter Xi. In other words, con-

sider only the coefficients cα corresponding to basis polynomia ψα where the

partial degrees of all input parameters other than Xi are equal to zero, i.e.

αj ̸=i = 0. The first order Sobol’ index of parameter Xi is then given by the

sum of squares of the concerned coefficients, normalized by the total variance

of the output:

Si =
∑
α∈Ii

c2α/D, Ii = {α ∈ Np : αi > 0, αj ̸=i = 0} , (4)

D = Var

[∑
α∈Np

cαψα(X)

]
=

∑
α∈Np

α ̸={0}

c2α (5)

The total Sobol’ index of input parameter Xi is obtained similarly. How-

ever, the filtering criteria on cα is changed, since here all interactions with

other parameters are of interest. Thus, all appearances of a non-null partial

degree αi > 0 are of interest:
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STi
=

∑
α∈ITi

c2α/D, ITi
= {α ∈ Np : αi > 0} , (6)

where D is as in Eq. 5

As the expansion cannot use infinite terms, a truncated basis A must be

chosen. This can be done efficiently by taking advantage of the sparsity-of-

effects, a heuristic stating that most models describing physical phenomena

are dominated by main effects and interactions of low order. This translates

to PCE having coefficients cα that decay quickly as the partial degree in-

creases, and most information being contained in cα with low values of αi,

see Lüthen et al. (2021) for an overview. Thus, higher order interactions can

be left out in the PCE. With the basis truncation, the previous equations

become approximations:

Y = fd(X) ≈ fPCE(X) =
∑
α∈A

cαψα(X),

Ŝi =
∑
α∈Ai

c2α/D̂, Ai = {α ∈ A : αi > 0, αj ̸=i = 0} ,

ŜTi
=

∑
α∈ATi

c2α/D̂, ATi
= {α ∈ A : αi > 0} ,

D̂ = Var

[∑
α∈A

cαψα(X)

]
=

∑
α∈A
α ̸={0}

c2α

(7)

The quality of the metamodel fPCE is evaluated by comparing it with a

test set. This is quantified through the coefficient Q2 which measures the

quality of the prediction of a linear regression:

Q2 = 1−
∑Ntest

n=1 (f(xn)− fPCE(xn))
2∑Ntest

n=1 (f(xn)− f)2
, (8)
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where f(xn) and fPCE(xn) are, respectively, the evaluations of the orig-

inal function and of the PCE metamodel in the points {xn}Ntest
n=1 , and f is

the mean of the evaluations of the original function, f =
∑Ntest

n=1 f(xn). The

closer the Q2 is to 1, the better is fPCE in approximating f .

With sparse PCE, the number of model runs for Sobol’ index calculation

can be drastically reduced, to 10p or less model runs, depending on the model

complexity. The precision of the estimated Sobol’ indices can be evaluated

through bootstrap confidence intervals (Dubreuil et al., 2014). They are

obtained by creating multiple resamples with replacement of the original

experimental design and calculating the Sobol’ indices from each resample.

2.3. Trajectory-based Sobol’ indices

Let fs be a stochastic model with a scalar output:

fs : D × Ω → R,

(x, ω) 7→ fs(x,Z(ω)),
(9)

where x is the input vector belonging to the input space D ⊂ Rp and

Ω denotes the probability space representing the intrinsic stochasticity of ω.

Note that, for a fixed value of the parameters x = x0 ∈ Rp, the model re-

duces to fs(x0, ·) : Ω → R. Thus, for a fixed x0, the output is a random

variable, whose randomness stems from that of ω.

On the other hand, by fixing a random realization of the abstract event

ω = ω0, the output is not stochastic anymore, but reduces to a deterministic

function in the input parameters fs(·,Z(ω0)) : D → R. In other terms, fs

can be considered a random field, indexed by the input parameters x ∈ D.
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The random field, for a fixed realization of ω, becomes a deterministic func-

tion of x. These deterministic functions, each corresponding to a realization

of ω, are called trajectories in some stochastic metamodeling literature, (Zhu

and Sudret, 2021; Lüthen et al., 2023) and the same term is used in this paper.

By observing one particular trajectory, the stochasticity of the model is

removed, and classical Sobol’ indices (Eq. 2.1) can be evaluated on the fixed

trajectory. By iterating this approach on multiple trajectories, the classical

Sobol’ indices become a function of ω, and thus random variables. This

extension of Sobol’ indices for stochastic models is called trajectory-based

Sobol’ indices :

Si(ω)=
VarXi

[E [Y | X i, ω]]

Var[Y |ω] , STi
(ω) = 1− VarX∼i

[E [Y | X∼i, ω]]

Var[Y |ω] (10)

The statistical properties of trajectory-based indices can be studied at

the cost of repeating a standard Sobol’ analysis for different realizations of

the stochastic inputs. This assumes that it is possible for the modeler to

perform replications with the same internal randomness, i.e. it is possible to

obtain multiple simulations of the stochastic model with the same realization

of the abstract event ω = ω0 and varying values of x.

However, this also means that the number of model simulation needed

for the estimation of trajectory-based Sobol’ indices is multiplied by the

number of realization of the abstract event. The need for an efficient means

of computing the Sobol’ indices is accentuated. The general framework for

an efficient approximation is presented in Algorithm 1.
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for r = 1 to R do

Take the rth realization of ω, leading to zr = Z(ωr)

Generate an experimental design {X(r)
j }Ntrain

j=1

in the parameter space

Simulate fs

(
X

(r)
j , zr

)
, for each j = 1, . . . , n

Construct metamodel f
(r)
PCE (X) ≈

fs (X, zr) using data set {(X(r)
j , fs

(
X

(r)
j , zr

)
}Ntrain
j=1

Compute Ŝ
(r)
i and Ŝ

(r)
Ti

using the metamodel

f
(r)
PCE (X) for i ∈ {1, 2, . . . , p}

end

Algorithm 1: Estimation of the trajectory-based Sobol’ indices. For

each realization ωr an approximation of the Sobol’ indices is performed

with a PCE metamodel. The possibility of having different experimental

designs for each trajectory r ∈ {1..R} is indicated by the dependence

of the experimental design {X(r)
j }Ntrain

j=1 on r. In this study, the same

experimental design is used for all trajectories, thus the index is dropped

in the following.
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The algorithm returns R realizations of Sobol’ indices of f
(r)
PCE(X), de-

noted with Ŝ
(r)
i and Ŝ

(r)
Ti

for the first order and total order indices, r ∈ {1..R},
where R is the number of samples over Ω. The mth moment of the Sobol’

indices can be estimated with the following estimator:

µ̂
[m]
Si

(ω) =
1

R

R∑
r=1

(
Ŝ
(r)
i

)m

, (11)

The estimator bias and variance are derived by Hart et al. (2017). For

the special case where m = 1, an estimate of the error can be obtained for

the point estimator of the expected value of Si(ω) given by the sample mean:

Eω

{(
µ̂
[1]
i − Eω {Si}

)2
}

≤ Eω

{
Ŝi − Si

}2

+
1

4R
(12)

Thus, the estimator bias comes exclusively from the approximation error

due to the metamodel, while the estimator variance is bounded by 1
4R
.

2.4. Aggregated sensitivity indices

For models with multiple outputs, (for example spatialized or dynamic

outputs in distibuted hydrological models),the information provided by Sobol’

indices on individual outputs can be aggregated into scalar values by weight-

ing the indices with the corresponding estimated variances of each output

(Radǐsić et al., 2024). Such aggregated Sobol indices (ASI) are proposed in

Gamboa et al. (2014) and are defined as:

ASI i =

∑R
r=1 Var(Y

(r))S
(r)
i∑R

r=1Var(Y
(r))

, (13)

where Y (r) is the rth component of the R-dimensional output and S
(r)
i is

the sensitivity index of the set of input parameters i on the rth component
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of the output. Thus, by considering each trajectory f
(r)
d = f

(r)
s (·, ωr) as a

different model output, the ASI indices become:

ASI i =

∑R
r=1 Var(f

(r)
d (X))S

(r)
i∑R

r=1Var(f
(r)
d (X))

, (14)

In the special case where the variances conditioned on these realizations

are equal, Var(f
(r)
d (X)) = const. for each r ∈ {1..R}, the estimator of the

expected value of the trajectory-based Sobol’ indices (Eq. 11) and the ASI

(Eq. 14) coincide. Other ways for considering multivariate outputs are pro-

posed in Li et al. (2016).

3. Case study

In this section, the PESHMELBA model is introduced along with its

representation of the soil moisture profiles, which are the output of interest

in this study. The uncertainty in soil moisture profiles is considered to come

from two sources: the model parameters describing the soil hydrodynamic

properties and the natural variability of the rainfall events under which the

model is expected to operate. Here, the soil hydrodynamic properties are

considered controllable, whereas the natural variability of the rain events is

considered as the uncontrollable source of uncertainty.

3.1. PESHMELBA model setup

PESHMELBA (Rouzies et al., 2019) is a process-oriented, physically-

based model representing the spatial organization of an agricultural land-

scape. It simulates the fate of pesticides in small agricultural catchments,
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Figure 1: The decomposition of the virtual catchment in 14 plots belonging to one of the

three possible soil units, depicted by different fillings, and two vegetation types, (vegetative

filter strips and vineyard plots). The separation of the soil column under each plot into

three soil horizons (surface, intermediary and deep) is illustrated. The fourth parcel is put

into evidence, as its soil moisture profile is observed. Image adapted from Rouzies et al.

(2023).

transferred by water and contaminant surface and subsurface fluxes. PESH-

MELBA has a modular structure, simulating the physical processes of each

soil compartment, then coupling them via the OpenPALM coupler (Buis

et al., 2006). The water transfers occur via three types of pathways: in-

filtration via the Richards’ equation solved by Ross (2003), surface runoff

(kinematic wave equation) and lateral exchanges (Darcy’s law) occurring in

subsurface saturated zones. The model setup in this case study is based on a

virtual version of the Morcille catchment in Beaujoulais, France (Gouy et al.,

2021).

The water and pesticide transfers between the spatial elements are driven

by the changes of capillary pressure is the soil, which is directly tied to the soil
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moisture observed in the columns through Van Genuchten equations. The

moisture profile, i.e. the distribution of the soil volumetric water content

along a vertical soil section, depends (at a given time) on previous weather

conditions (rainfall, evapotranspiration), on the initial state, and on the soil

hydrodynamic properties.

The rain is considered as an inherently stochastic input. This can be

formalized by considering a random event ω (Eq. 1) to represent the state of

nature (humidity, temperature) leading to a specific rain realization Z(ω).

The probability space Ω is unknown, except indirectly, through previous mea-

surements of rain {z1, z2, ...,zR}. Here, we choose to limit the probability

space to a specific type of event, that is six-hour long summer rains measured

locally between 1997 and 2015 (Lagouy et al., 2015) and following Catalogne

et al. (2016). On the other hand, the uncertainty on the initial state of the

soil moisture is not considered, and is fixed to the same initial conditions in

all simulations. The chosen initial conditions are characterized by setting a

hydrostatic equilibrium.

The probability distributions of the soil parameters represent the vari-

ability of the parameters across the catchment. The distributions are set to

be representative of the available data on the soil, vegetation and topological

properties of the Morcille catchment. They are assigned based on experi-

mental measurements from the catchment of application, available scientific

literature and expert knowledge. For more details, we refer to Rouzies et al.

(2023). To account for the vertical variability of the soil characteristics, the
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Name Definition Unit Distribution

θs.surf. water content at saturation [L3L−3] N (0.3375, 0.03382)

θs.inter. water content at saturation [L3L−3] N (0.3322, 0.03322)

θs.deep water content at saturation [L3L−3] N (0.316, 0.03162)

θr.deep residual water content [L3L−3] N (0.0612, 0.01532)

mn.deep Van Genuchten retention curve parameter [−] N (0.1791, 0.01792)

hg.deep Van Genuchten retention curve parameter [−] N (−9.69, 0.9692)

Table 1: Distributions of the Parameters Considered for the Global Sensitivity Analysis.

The suffixes surf., inter., deep denote the soil horizon. The parameter θr.deep is readjusted

through a truncation on the gaussian to the interval [0, 1].

vertical soil column is decomposed in three soil horizons, each considered

internally homogeneous when it comes to soil hydrodynamical properties.

As only one soil column is studied in this work (Figure, 1), only six

parameters whose sensibility indices are of interest are chosen out of the

original 145 PESHMELBA parameters by performing a screening with the

HSIC criterion using 3000 model simulations (Iooss et al., 2023). The input

parameters representing soil properties used in this study, along with their

distributions, are listed in Table 1. The catchment soil is mainly sandy.

3.2. Representation of soil moisture profiles in PESHMELBA

In this study case, each spatial element is represented by a four-meter

deep vertical column composed of 25 cells of varying thickness. The cell

thickness varies from 5mm up to 1m, with the finest discretization being at

the soil surface. The 25 cells are considered to come from three soil horizons.

The soil horizons are called: surface - surf. (depth 1 cm, composed of two

cells), intermediate - inter. (depth 10cm, seven cells) and deep (depth 4m,
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Figure 2: a) Cumulative rainfall events as a function of time, two rain realizations (zA

and zB) are put in evidence by differing colors and line types. b) Moisture profiles at the

end of the six hours. Two sets of soil hydrodynamic properties are used in two different

simulations for each of the rains zA and zB . The heavier rain, zB (orange dotted line)

leads to moisture profiles with a deeper saturation front than the lighter rain zA (green

two-dashed line). Horizontal dashed lines show the soil horizons. c) Soil description of the

vertical column and its three soil horizons.

16 cells), see Figure 2.

Figure 2 (a) illustrates the rains used in the study. The cumulative

amount of the rainfall events amounts to 15-75 mm in 6 hours, which presents

a significant range of rain events. The same Figure 2 (b) highlights the dif-

ferences in moisture profiles coming from both rains and soil hydrodynamic

properties. It can be seen that the heavier rain, zB, leads to a moisture profile

saturated up to the 19th cell for both sets of soil hydrodynamic properties.

The rain zA leads to moisture profiles with a shallower saturation front (14th
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and 15th cell, depending on the set of hydrodynamic properties). On the

other hand, the most visible difference for the example shown between two

moisture profiles coming from the same rain, but different hydrodynamic

properties, is the difference between the water contents of the deep horizon,

more precisely the values of cells 8 to 19 for Ms(·, zB), resp. cells 8 to 14 for

Ms(·, zA).

In this study, the model PESHMELBA is denoted with Ms, while the

operator H is used to denote the mapping of the model state to the moisture

profiles, as only the moisture profiles are our output of interest. The (scalar)

function of interest whose sensitivity to input parameters is studied, is defined

as the L2 norm of the difference between the simulated moisture profile and

an observed one yobs, which is considered fixed in all simulations:

fs : D × Ω → R,

(X, ω) 7→ |H [Ms(X,Z(ω))]− yobs|2,
(15)

where ω is an abstract random event, whose realization leads to one par-

ticular rain measurement zi = Z(ωi) taking place and X are the input pa-

rameters representing soil hydrodynamic properties whose trajectory-based

Sobol’ indices we are interested in.

4. Results

In this section, we first apply classical global sensitivity analysis to two

separate rainfall events, to see how the most influential parameters differ in

these two cases. Then, the Sobol’ indices and the associated rankings are
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obtained for all the available measured rainfall events described in Section 3.

As all Sobol’ indices are obtained through PCE metamodels, the precision of

the metamodels is also commented and evaluated through the Q2 coefficient.

Finally, to obtain a single ranking over the Ω space, the aggregated sensitivity

indices are calculated and compared with the ranking of the Sobol’ indices

means.

4.1. Global sensitivity analysis in two forcings

To see whether the GSA results differ in two cases of forcings, the Sobol’

indices are obtained for the six input parameters under two rain events, de-

noted zA and zB (introduced in Figure 2). For the calculation of the Sobol’

indices a space-filling experimental design of Ntrain = 50 points is generated

in the six-dimensional parameter space as a Latin Hypercube Sample, that

is a space-filling design which fills optimally the six-dimensional parameter

space, (Carnell, 2024). A PCE metamodel is built from the 50 PESHMELBA

simulations, with least-angle regression (Marelli and Sudret, 2014). Sobol’

indices are obtained from the PCE following Eq. 4.

Figure 3 illustrates the first order and total Sobol’ indices of the six input

parameters for the rain events zA and zB. The GSA results under zB show

that the most influential parameter is θs.deep, accounting for more than 70% of

the output variance, whereas the last ranked parameter is hgdeep, presenting

a virtually null Sobol’ index, both for the first order and interactions. The

parameters θs.inter and θs.surf account for around 10% of the output variance,

and the closeness of the values of the first and total Sobol’ indices shows the

absence of interactions with other input parameters. Inversely, mndeep and
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Figure 3: First and total order Sobol’ indices with corresponding 95% bootstrap confidence

intervals for the six input parameters, when the rain events are zB (high rain) and zA

(low rain), introduced in Figure 2).

hgdeep show that most of their contribution to output variability is through

indirect effects as interactions with other parameters.

The GSA results obtained under rain zB show that to reduce the out-

put uncertainty conditioned to this rain, the efforts should primarily be put

into a more precise knowledge of the parameter θs.deep. However, when the

rain event zA is used as the model forcing, the Sobol’ index of the parameter

θs.deep is significantly smaller, leading to this parameter not being ranked first

anymore. Indeed, under the rain zA, it is the parameter θs.inter that accounts

for the largest part of the output variance. The parameter sensitivities differ

significantly in the two situations, as the first ranked parameter is not the

same under the two rain events. In the next section, the sensitivity analysis

is explored for all available rain events.
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4.2. Trajectory-based Sobol’ indices

In this section, we explore the values of Sobol’ indices under all available

rain realizations. First, the quality of the metamodels used for the estimation

of Sobol’ indices is evaluated. Then, the distributions of the Sobol’ indices

under the available rain realizations are studied. Finally, two summarizing

quantities, the mean of the Sobol’ indices and the aggregated sensitivity index

(ASI, Eq. 14) are compared and commented.

To obtain Sobol’ indices under all available rain measurements, a PCE

metamodel is built for each rain realization zr. Each metamodel is fitted on

a training set of the original model evaluations {(xj, fs (xj, zr)}Ntrain
j=1 . The

points {xj}Ntrain
j=1 are chosen as a Latin Hypercube Sample. To reduce the

number of training points needed, least-angle regression is used (Marelli and

Sudret, 2014). To ensure consistency between the original model and the

metamodels, the samples size of the experimental design {xj}Ntrain
j=1 is in-

creased until reaching a coefficient Q2 > 0.95 for each metamodel f
(r)
PCE(x).

The Q2 (Eq. 8) is evaluated on an independent test set of 100 PESHMELBA

simulations for each rain. For this case study, this meant using a LHS of

Ntrain = 50 points for the training set, which is very low compared to the

classical Sobol’ sampling, Figure 4.

The total Sobol’ indices obtained from the PCE metamodels are shown

on Figure 5 as histograms. The total Sobol’ indices are presented for five

input parameters, as the Sobol’ indices of parameter hgdeep are found to be

virtually null in all rain realizations. It can be seen that the histogram of

θs.deep covers a wide range of values, reaching from a total Sobol’ index from
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Figure 4: Left: the increase of the Q2 coefficient with the number of training points used

for evaluating the PCE metamodel. Each line corresponds to a metamodel constructed

for one trajectory, i.e. one fixed rain event. When the number of training points reaches

Ntrain = 50, the coefficient Q2 is above 0.95 for all rain realizations. Right: comparison

between outputs produced with the original model and the outputs produced with the

PCE metamodels.

0.20 up to 0.80. The parameter θs.inter covers ranges from 0.05 to 0.45, over-

lapping with the histogram of θs.deep and having a larger Sobol’ index for

certain rain realizations. The histograms of mndeep and θr.deep cover smaller

ranges, showing a more consistent influence on the output over different rain

realizations.

For an easier interpretation of the results, the parameters are sorted in

decreasing order from 1 to 6 for each rain realization. The number of appear-

ances at each rank is counted. Figure 5 lists the six input parameters along

with their number of appearances at each rank. A color coding is introduced

to distinguish between two groups of ranking results: rankings listing θs.deep

first and rankings that do not. When the color coding is applied to the cu-
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mulative rains leading to such rankings, it can be seen that the rains with

high cumulative precipitation (more than 50mm in 6 hours) all lead to θs.deep

being ranked first. This seems reasonable, as heavier rains lead to deeper

soil saturation fronts, thus the major changes of moisture profile after such

event come from the change of the water content at saturation.

However, among the rains with less than 50mm accumulated in 6 hours,

the ranking of the first parameter is not consistent. While θs.deep remains

the first ranked parameter for most rain realizations, there is a significant

proportion of rain events where variations in θs.inter contribute the most to

output variability. The lack of a clear distinction between these two groups

of rain events shows that it is not straightforward to predict the results of a

GSA solely based on the similarity of cumulative rain series. This highlights

the importance of conducting a GSA under an ensemble of forcing scenarios

to accurately assess the impact of different parameters.

Furthermore, when GSA is used to identify non-influential parameters,

disregarding the full range of rain variability can result in overlooking rain

events that highlight its contribution to output variability. For example, in

the case of the histogram representing the Sobol’ parameters of θs.surf (Figure

5), certain realizations are very close to zero. This suggests that ignoring the

rain variability could lead to not observing rain events that highlight its

contribution, and could lead to a mistaken conclusion that θs.surf has no

impact on output variability. In this case, the only parameter found to have

no influence under any of the rain events examined is hgdeep.
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Figure 5: Top left: histograms of the total Sobol’ indices, obtained for the input parameters

under different rain realizations. The parameter hgdeep is not listed, as its Sobol’ index

is virtually null in all rain realizations. Top right: the cumulative rain over six hours of

the 192 rainfall events. Bottom: the number of appearances of the input parameters at

each rank (from 1st to 6th), for a ranking based on the total Sobol’ index. The two colors

correspond to the rank of the parameter θs.deep, distinguishing between the rankings that

list θs.deep as 1st and the rankings that do not.
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4.3. Aggregation over the uncontrollable space

The results in Figure 5 show how the rankings of the parameters can

differ with respect to the rain realization used for the forcing of the model.

The emphasis is put on the disagreement among the parameters appearing

at the top of the list, as it can potentially lead to diverging choices in further

data acquisition and model calibration.

Indeed, in a context where the aim of the GSA is to determine the order

of parameters in which the reduction of their uncertainty contributes the

most to the reduction of the output uncertainty, the results show that differ-

ent conclusions can be made depending on the rain realization. Thus, while

reducing the uncertainty of the parameter θs.deep contributes greatly to the

reduction of output uncertainty under rain zB, it would contribute less to

the reduction of output uncertainty under zA (Figure 3).

When using GSA to select the parameters whose uncertainty reduction

is a top priority, a unique ranking of the parameters should consider the

contributions of each parameter to the total output variance over the entire

probability space Ω representing the uncontrollable uncertainties. To do

this, the contributions of each parameter should be weighted by the total

variance of the output conditioned on each rain event. In other words, if

the output uncertainty conditioned on zA is larger than the one conditioned

on zB, prioritizing the reduction of uncertainties associated with parameters

that have an impact on the (already small) uncertainty under zB may not

contribute to overall uncertainty reduction across the whole domain of rain
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Figure 6: The sample mean (Eq. 11) and the aggregated sensitivity indices ASI indices

(Eq. 14) of the total Sobol’ indices for the six input parameters, with corresponding

confidence intervals.

realizations.

The Sobol’ indices previously obtained are used to calculate the aggre-

gated sensitivity indices (ASI, Eq. 14). The values of ASI and the mean

coincide in cases where the conditional variances of the output are the same

in all rain realizations. Figure 6 reports the ASITi
indices, along with the

sample mean of the Sobol’ indices (Eq. 11). The two quantities are very

close, reflecting the steadiness of the output variance conditioned to different

rain realizations.

The difference between the ASI and the Sobol’ means in our case study is

not very significant, as both the mean and the ASI give essentially the same

rankings. The parameter θs.deep is ranked first, both when looking the total

Sobol’ index mean (in mean, θs.deep accounts for 50% of the output variance)

and the corresponding ASI (50% of the total output variance). It is only for

the parameter θs.inter that the ASI is slightly lower than the µTi
, meaning
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that the output variances conditioned on rains leading to high ranks of θs.inter

are lower than the output variances conditioned on rains ranking θs.inter lower.

The parameter hgdeep shows a virtually null ASI index, confirming that its

influence over the whole domain of forcing variations is of no importance.

5. Discussion and conclusion

In this work, we perform a global sensitivity analysis of a model output

by disentangling the uncertainty of an uncontrollable external forcing (rain),

and the uncertainty of the controllable operational parameters (soil hydrody-

namic properties). To do so, we consider the Sobol’ indices of the parameters

as random variables. The randomness of the Sobol’ indices comes from the

stochastic nature of the rain. We show that the ranking of the parameters

differs with respect to the rain realization used. Indeed, while the most influ-

ential parameter in most cases is the water content at saturation of the deep

horizon, there is also a significant amount of rain realizations under which

the lead is taken by the water content at saturation of the intermediate hori-

zon. Finally, we aggregate the Sobol’ indices by taking into consideration

the contributions of each parameter to overall uncertainty reduction across

the whole domain of rain realizations.

5.1. On the source of Sobol’ index variability

Variable Sobol’ indices of operational parameters can be expected in mod-

els where interactions are present between the model parameters and the un-

controllable external forcing. Indeed, consider a stochastic simulator as the

one used in this work (Eq. 9), and consider its Hoeffding-Sobol’ (ANOVA)
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decomposition. The summands of this decomposition can then be grouped

according to whether they involve operational parameters, stochastic inputs

or both:

fs(X,Z) = f0 + fs1(X) + fs2(Z) + fs12(X,Z)

Consider the interaction term between the stochastic and operational

variables to be negligible. In this case, the target function is essentially

additive with respect to the two groups of variables:

fs(X,Z) ≈ f0 + fs1(X) + fs2(Z) (16)

Note that, for models where the interaction term is negligible, the Sobol’

indices of the operational variables X do not depend on the realization of

the stochastic input. Indeed, the variations of the operational parameters

influences the output only through the term fs1. Hence, the trajectory-based

Sobol’ indices (Eq. 10) for a realization zr can be rewritten:

S
(r)
i =

Var[E[fs(X, zr)|X i]]

Var[fs(X, zr)]

=
Var[E[fs1(X)|X i] + f0 + fs2(zr)]

Var[f0 + fs1(X) + fs2(zr)]

=
Var[E[fs1(X)|X i]]

Var[fs1(X)]
,

showing that the Sobol’ indices are independent of the realization zr.

Thus, it is only in the presence of a non-negligible interaction term fs12(X,Z)

the Sobol’ indices of the operational parameters can vary with respect to the

realization of the uncontrollable forcing.
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This shows that, in presence of interactions between the parameters and

the external forcing, the GSA-informed decisions about uncertainty reduc-

tion of the controllable parameters that would benefit the model under one

realization of the external forcing, do not benefit the model over the whole

uncontrollable domain Ω.

5.2. On the aggregation

To synthesize the impact of the operational parameters on the whole

output uncertainty, the indices are aggregated. This allows to correctly in-

corporate the information on the variance of each output conditioned on ω.

In this work, the aggregation considers all ω realizations equally likely. Still,

if one was interested in having different probabilities for the events, this could

be accounted for by introducing corresponding weights in Eq. 14. Weights

can be also be introduced if certain realizations of Ω are more important

than others (for example, realizations exceeding a certain threshold and for

which the model should be particularly precise).

5.3. On the computational cost

From a computational aspect, estimating the distributions of the sensi-

tivity indices adds an outer loop in the sensitivity analysis, thus needing even

more model simulations than ordinary GSA. In this work, we have resorted

to PCE metamodels as means of limiting the number of simulations needed

in the inner loop. Optimizing the experimental design in the Ω space is not

discussed, as the number of rain measurements in our case study is rather
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limited. If a larger amount of realizations of the stochastic input is available,

either from measurements or from stochastic simulators, (Leblois and Cre-

utin, 2013), different ways of choosing a space-filling experimental design in

Ω could be compared. However, the optimal choice of a space-filling design

greatly depends on the nature of Ω and the way in which its randomness is

propagated through the model and to the target function. If the distribu-

tion of the Sobol’ indices is not the primary interest, cheaper methods can be

used. Furthermore, if one only needs screening results, variance-based indices

can be replaced with HSIC-based sensitivity indices. Fellmann et al. (2024)

propose an HSIC adaptation for set-based outputs. This approach could be

used to separate the uncertainty coming from operational parameters and

external forcings by replacing the maps with the domain of forcing inputs.

5.4. On the sources of stochastic uncertainty

In our study, the stochastic uncertainty comes from the natural variability

of rain realizations. However, this uncertainty in hydrological models comes

from many other sources, such as the initial saturation in the soil columns

or the choice of the vertical discretization of the soil column, but also other

forcings such as temperature or evapotranspiration. Another common un-

controllable forcing in hydrological modeling is that of the future climate

projections, which comes with a new form of uncertainty that may drasti-

cally change the model sensitivity results. Lastly, the presented methodology

does not call for a specific structure of the abstract event ω. In other words,

the stochastic input may not be parametrized, but a sufficient number of re-

alizations of the event should be available to correctly represent the studied

domain.
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In our study, the size of the parameter space is relatively small. However,

it already illustrates the possible differences of parameter importance under

varying uncontrollable sources of uncertainty. The benefit coming from the

distinction of the two sources of uncertainty is yet to be seen on larger, more

complex case studies, where we could expect to find more differences between

the sensitivity analyses. In the case of the PESHMELBA model, a partic-

ularly interesting source of uncertainty to be studied in future works is the

uncertainty of the pesticide application dates, which have a significant im-

pact on the model simulations. We believe that this approach can contribute

to making more informed choices in the further steps of model uncertainty

reduction, in particular for robust calibration and model design.

Software and Data Availability Section

The data supporting all the figures and the code for recreating them

are available on Zenodo doi.org/10.57745/C455R6, (Radǐsić, 2024a). The

scripts used to obtain Sobol’ indices use the open-source MATLAB software

for uncertainty quantification UQLab Version 2.0.0 https://www.uqlab.com,

(Marelli and Sudret, 2014). The simulations used for this work are available

on doi.org/10.57745/4MDYNU, (Radǐsić, 2024b). They are obtained with

the PESHMELBA version archived on Zenodo doi.org/10.15454/2HAU8R,

(Rouzies and Lauvernet, 2022).
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Lüthen, N., Marelli, S., Sudret, B., 2021. Sparse Polynomial Chaos Ex-

pansions: Literature Survey and Benchmark. SIAM/ASA Journal on

Uncertainty Quantification 9, 593–649. doi:https://doi.org/10.1137/

20M1315774.
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Radǐsić, K., 2024b. Replication Data for: Impact of input forcings variability

on the global sensitivity analysis of a hydrological model. doi:https://

doi.org/10.57745/4MDYNU. [Dataset].

41
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