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A B S T R A C T

MatGeom (for ‘‘MATLAB Geometry’’) is a pure MATLAB library for geometry processing in two and three
dimensions, that aims at facilitating the processing and analysis of scientific data. It provides a collection of
functions for the manipulation of common 2D and 3D geometries such as points, lines, ellipses, polygons,
or polygon meshes. Functions allow for combining together geometries (intersections, mutual distances,
projections, fitting to a set of points), evaluating quantitative features (area, volume, curvatures, orientations),
or drawing with various options. The library is fully documented: user manual, code comments, function
headers, and demonstration scripts.
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. Motivation and significance

The processing of geometric data is a recurrent task in many sci-
ntific domains, either when analyzing data obtained from imaging
e.g. microscopy, tomography) or laser scanning, or when modeling and
itting of geometric models to data.

A large number of geometry processing libraries have been devel-
ped over the years. The most generic one is certainly CGAL, that
rovides a high level of abstraction and a high level of control on
he precision of computation results [1]. Other significant libraries
omprise libigl [2], GeometricTools [3], or the Wykobi library [4], to
ame only a few. These libraries are proposed for the C++ language,
aking them powerful for building end-user applications. They are
owever not easy to integrate into common data analysis workflows
hat are usually written in interpreted language such as MATLAB,
ython or R. Moreover, the C++ language is relatively more complex

E-mail address: david.legland@inrae.fr.

than the above-mentioned languages, requiring higher programming
skills, and often larger development time.

Besides integrated software, geometric data are often analyzed
within interpreted platforms such as MATLAB (or its open-source
counter-part octave), Python, or R. Within the MATLAB environment,
a large number of geometry processing toolboxes have been proposed.
Many of them have been developed for specific data structures, such as
2D or 3D polygon meshes [5–7]. In particular, the gptoolbox provides
a large number of state-of-the-art methods for the processing of 3D
polygon meshes [6]. The ACME library is a 3D geometry library
written in C++, that can be compiled for MATLAB [8]. It provides
several algorithms for 3D computational geometry, in particular for
the computation of collisions and intersections, and focusses on the
management of a large number of elements. It is however limited to a
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small number of geometric primitives. The GIBBON toolbox is an open-
ource MATLAB toolbox, that provides a large number of geometry
isualization and processing tools [9]. It focusses on Computer Aided

Design (CAD), mesh generation from 3D volume images, and Finite
Element Modeling of 3D structures represented as polygon meshes.

As a complement to more specialized toolboxes, the MatGeom li-
rary aims at providing a simple yet versatile library for the processing

of geometry data within the MATLAB environment, in two or three
dimensions, without requiring external dependencies nor compilation
rocedure. It was designed with the objective of quickly providing
olutions to common problems in the analysis, editing and modeling
f geometric data, by considering a larger variety of geometric prim-
tives (ellipses, ellipsoids, cylinders...), and providing a large number
f utility functions not necessarily provided within other toolboxes. It
lso aims at leveraging the need for computer-science related skills,
nd making it simple to extend by developing specific scripts or func-
ions. Moreover, the use of pure MATLAB language makes its de facto
vailable within the open-source Octave software [10].

2. Software description

2.1. Software functionalities

Features include the creation of geometries of various types, the
combination of basic geometries (intersection, projection, distance), or
he determination of an equivalent geometry from a collection of points

(e.g. computation of convex hull, or fitting an equivalent circle, ellipse
or ellipsoid).

The MatGeom library was designed with the aim to keep a low
evel of complexity, to facilitate both its compatibility with other

software and its appropriation by users. It relies on numeric arrays for
epresenting geometric data, and on functions to perform geometric
omputations.

2.1.1. Array representation of geometries
Each geometric primitive is represented as a numeric row vector.

or example, 2D or 3D points or vectors are represented using a 1 × 2
r 1 × 3 array containing their coordinates, ellipses are represented
s 1 × 5 array corresponding to center, minor and major radius,
nd orientation values, etc. Collections of elementary geometries are
asily represented as two-dimensional numeric arrays concatenating
epresentation of each geometry. More complex geometries such as

polygons or polygon meshes are based on 𝑛 × 2 or 𝑛 × 3 numeric array
ontaining vertex coordinates, eventually combined with topological
nformation (a face vertex index array). This simplicity allows simple

interoperability with native MATLAB functions or other libraries, and
makes it easy to export geometry data into text files.

2.1.2. Function-based library
Geometry processing is performed via MATLAB functions that fol-

low specific naming conventions. Processing functions start with a verb
describing the action, and post-concatenate the type of the geometry
expected as input: ‘‘resamplePolygon’’, ‘‘drawEllipse’’, ‘‘smoothMesh’’,
etc.

Geometries may also be quantified through descriptive features
uch as perimeter, surface area, curvatures, dihedral angles, etc. The
unctions that compute a descriptive feature usually start with the name
f the type of the geometry, followed by the name of the feature, for
xample: ‘‘polygonArea’’, ‘‘ellipsePerimeter’’, ‘‘meshCurvatures’’...

Each primitive is associated to a ‘‘drawXXX’’ function to facili-
ate its graphical representation, using classical plotting options from
ATLAB.

2.1.3. Library documentation
All operations are described in a user manual, illustrated with

simple examples in order to facilitate re-usability. In addition, each
function is fully documented, most of them providing a description
of function syntax together with a running sample code, and a list of
related functions.

It is expected that the simplicity of the library make it easy to use
by a non computer-scientist user, easy to interconnect with more spe-
cialized toolboxes, and easy to extend by developing specific processing
scripts or functions.

2.2. Software architecture

The MatGeom library is organized into several modules, that gather
functions operating on similar data structures. The geom2d and the
geom3d modules provide the core features of geometric operations in
the 2D or 3D Euclidean spaces. The polygons2d and the meshes3d pro-
vides a collection of functions for geometry processing of 2D polygons
and polylines, and of 3D polygon meshes. The graphs module is devoted
to the manipulation of ‘‘geometric graphs’’, where vertices correspond
to 2D or 3D points, and edges to adjacencies between vertices.

2.2.1. Module geom2d
The geom2d module provides functions for processing points, vec-

tors, linear shapes (including straight lines, line segments, or rays). It
also manages smooth curves such as circles or ellipses, or utility geome-
tries such as bounding boxes. Several functions have been generalized
to manage inputs with any dimensionality. It also manages geometric
(affine) transforms, by providing functions for creating transforms, for
transforming geometries, or fitting registration transforms.

2.2.2. Module polygons2d
The polygons2d module gathers the functions operating on polygons

and polylines represented as a list of vertices. Polygons or polylines are
represented by 𝑛𝑝× 2 arrays containing the coordinates of the 𝑛𝑝 vertices
defining the geometry. Multiple polygons can be represented by a cell
array, each cell containing the vertex coordinates of one of the polygon
rings.

The polygons2d module comprises edition functions (like resam-
pling, smoothing, or reversing a polygon), computation of intersections
with a linear geometry or another polygon, the computation of mea-
sures (perimeter, area, normal angles) or derived geometries (centroid),
or more complex operations such as triangulation or skeletonization of
a polygon.

2.2.3. Module geom3d
The geom3d module is the equivalent of the geom2d module for

the 3D Euclidean space. It provides functions for processing 3D points,
vectors, linear shapes (including 3D lines and planes) or smooth surface
geometries such as ellipsoids, cylinders, or torus.

As for the geom2d module, geometries are represented using row
vectors. Functions allow for computing distances, angles, or intersec-
tions between geometries, computing projection of points, or comput-
ing position of points within geometries.

A large number of functions are provided for the management of 3D
affine transforms, either to create elementary transforms, to combine
them, to transform geometries, or to convert between the different
representations: rotation matrix, Euler angles, axis-angle... The trans-
formation corresponding to the rigid registration of two 3D point sets
can be computed by using the Iterated Closest Point algorithm.
2 
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2.2.4. Module meshes3d
The meshes3d module allows for managing and processing 3D

polygonal meshes. Several types of mesh are supported: trimesh,
quadmesh, or more generic meshes with variable number of vertices per
face. Polygon mesh processing require to consider both the location of
the vertices (as a 𝑛𝑝×3 numeric array) and the topology of the mesh. The
topology of meshes is represented by a 𝑛𝑓 × 3 (for triangular meshes)
or 𝑛𝑓 × 4 (for quadrangular meshes) array containing the indices of
vertices corresponding to each of the 𝑛𝑓 faces. Functions operating on
meshes expect either a pair of input arguments, or a MATLAB structure
containing at least the two fields ‘‘vertices’’ and ‘‘faces’’.

The library provides functions to read and write meshes from files
in common file formats, or to generate polygonal models approxi-
mating smooth surfaces (spheres, cylinders, torus). A large number of
mesh processing operations have been implemented, comprising global
mesh processing (mesh smoothing, triangulation, recursive subdivi-
sion), interactions with other geometries (intersections with lines or
planes, clipping, distance to points), computation of related geometries
(face normals, bounding box), or quantification of geometrical features
(surface area, curvature map, edge dihedral angle).

2.2.5. The graphs module
The graphs module is devoted to the manipulation of ‘‘geometric

graphs’’. Geometric graphs are defined within MatGeom as traditional
graphs (a set of edges defines the adjacencies between a set of vertices),
with the additional assumption that vertices are associated to a 2D or
3D position. The topology of graphs is represented by a 𝑛𝑒 × 2 array
containing indices of adjacent vertices, with 𝑛𝑒 being the number of
edges in the graph.

Geometric graphs can be useful for representing geometric features
obtained from images such as the boundary of a binary image, or the
adjacency graph of regions within a segmented image. They also can
be used as basis for more complex operations on polygons or polygonal
meshes, such as the computation of polygon skeleton.

2.3. Comparison with other software

In comparison with other software and libraries, MatGeom aims
at providing a generic and simple to use library, that can be used in
conjunction with more specialized libraries.

The target audience of MatGeom is more the data analyst than a
specialist of geometry processing. For example, if the question is to
explore geometric data and comparing them with fitted primitives, then
MatGeom may be useful. If the performance is an issue, for example
when manipulating polygon or meshes with very large number of
vertices, or if the user needs to create more specialized data structure,
then the use of the reference library CGAL, or of a more specialized
software, may be more relevant. The use of the CGAL library within
MATLAB however requires integration of compiled C++ code, which is
not always a trivial task.

Compared to the Acme library, the MatGeom library provides a
larger number of geometric primitives, and provides also 2D geometry
processing tools. If the number of elements is very large, then the Acme
library is expected to be more efficient.

When working with 3D for polygon meshes, the gptoolbox provides
a larger number of geometry processing tools than MatGeom and relies
on well-established libraries such as CGAL or libigl. The MatGeom
library can easily be used as a complement, either to combine meshes
with other geometric primitives (planes, ellipsoids...), or to facilitate
the visualization of computation results.

Fig. 1. Analysis of the geometry of a collection of points. Computation of the fitting
line, of the oriented bounding box, and of the equivalent ellipse of three subsets of the
collection.

Listing 1 : Using the geom2d module for data analysis.

% load data

str = load( 'fisheriris ');
data = str.meas;

% create point collection

pts = data(:, [3 1]);

% display

figure; axis equal; hold on; axis([0 8 3 9]);

drawPoint(pts, 'bx ');

% Fit line on the whole collection

line = fitLine(pts);

drawLine(line, 'color ', 'k ', 'linewidth ', 2);

% Draw oriented box

obox = orientedBox(pts);

drawOrientedBox(obox, 'color ', 'k ', 'linewidth ', 1);

% Process by species

[labels, ~, inds]= unique(str.species);

colors = [1 0 0; 0 0.8 0; 0 0 1];

for i = 1:3

pts_i = pts(inds == i, :);

drawPoint(pts_i, 'marker ', 'x ', 'color ', colors(i,:), '
linewidth ', 2);

elli = equivalentEllipse(pts_i);

drawEllipse(elli, 'color ', colors(i,:), 'linewidth ', 2)

drawEllipseAxes(elli, 'color ', colors(i,:), 'linewidth ',
2)

end

3. Illustrative examples

3.1. Data exploration

The listing 1 illustrates some features of the geom2d module to
display point data sets, retrieve geometric primitives that summarizes
them, and provide graphical display. The result is shown on Fig. 1.

3.2. Polygon processing

The listing 2 demonstrates the usage of the library for more complex
processing on polygon data. The sample data represent the contour of
3 
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Listing 2 : Polygon processing example script.

read polygon data as a numeric N−by−2 array

oly = load( 'leaf_poly.txt ');

display the polygon using basic color option

igure;axis equal;hold on;axis([0 600 0 400]);

rawPolygon(poly, 'k ');

compute polygon bounding box

oly2 = boundingBox(poly);

rawBox(poly2, 'k ');

compute convex hull of polygon vertices

oly3 = convexHull(poly);

rawPolygon(poly3, 'LineWidth ',2, 'Color ', 'k ');

apply smoothing to the original polygon.

oly4 = smoothPolygon(poly, 51);

rawPolygon(poly4, 'Color ', 'b ', 'LineWidth ',2);

compute a simplified version of the polygon

oly5 = simplifyPolygon(poly, 20);

rawPolygon(poly5, 'Color ', 'r ', 'LineWidth ',2);
rawVertices(poly5, 'Color ', 'k ',...

'Marker ', 's ', 'MarkerFaceColor ', 'w ');

compute intersections with an arbitrary line

ine = createLine([0 250], [600 350]);

rawLine(line, 'k ');
nters = intersectLinePolygon(line, poly5);

rawPoint(inters, 'Color ', 'r ', 'Marker ', 'o ',...
'MarkerFaceColor ', 'w ', 'LineWidth ', 2);

ig. 2. Demonstration of various geometry operations on a polygon. Thin black
urve: original polygon. Blue curve: smoothing of the polygon. Red curve: polygonal
implification of the polygon. Thick black curve: computation of the convex hull.
hin black box: bounding box. Red dots: intersection with an arbitrary line. (For

interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

 leaf, stored as a collection of pairs of coordinates. The result is shown
n Fig. 2.

.3. Mesh processing

The meshes3d module provides functions for the manipulation of
D surface meshes, also known as polygonal meshes. The library sup-
ort triangular meshes, quadrangular meshes, as well as meshes with

Listing 3 : Mesh processing example script.

% read sample mesh and display mesh using equal−scale axes

mesh = readMesh( 'bunny_F1k.ply ');
figure; hold on; axis equal; view(3);

drawMesh(mesh, 'faceColor ', [.7 .7 .7]);

axis([−8 10 −6 8 −8 10]); view(15, 20);

% Display face normals and centroids

normals = meshFaceNormals(mesh);

centroids = meshFaceCentroids(mesh);

figure; hold on; axis equal; view(3);

drawMesh(mesh, 'faceColor ', [.7 .7 .7]);

axis([−8 10 −6 8 −8 10]); view(15, 20);

drawArrow3d(centroids, normals);

% Compute distance point mesh

point = [8 −3 8;2 −5 8;−6 −4 −4];

[dist, proj] = distancePointMesh(point, mesh);

% also compute a distance map for a vertical slice

intersecting the mesh

lx = linspace(−8, 10, 181); lz = linspace(−8, 10, 181);

[x, z] = meshgrid(lx, lz); y = ones(size(x)) * 3;

pts = [x(:) y(:) z(:)];

dists = distancePointMesh(pts, mesh);

distMap = reshape(dists, size(x));

% display mesh

figure; hold on; axis equal; view(3);

drawMesh(mesh, 'faceColor ', [.7 .7 .7]);

axis([−8 10 −6 8 −8 10]);view(15, 20);

% display the distance map

surf(x, y, z, distMap, 'linestyle ', 'none ');
% display point−to−mesh distances

drawPoint3d(point, 'ko ');
drawPoint3d(proj, 'k* ');
drawEdge3d([point proj], 'color ', 'k ', 'linewidth ', 2)

% Compute the two main curvatures on each vertex of the mesh

[k1, k2] = meshCurvatures(mesh.vertices, mesh.faces);

figure; hold on; axis equal; view(3);

drawMesh(mesh, 'VertexColor ', k1 .* k2);

axis([−8 10 −6 8 −8 10]); view(15, 20);

set(gca, 'clim ', [−0.01 0.01]);

colormap jet;

% Clip mesh with a plane

plane = createPlane([0 0 0], [−5 5 3]);

[v2, f2] = clipMeshByPlane(mesh, plane);

figure; hold on; axis equal; view(3);

drawMesh(v2, f2, 'faceColor ', [.7 .7 .7]);

axis([−8 10 −6 8 −8 10]); view(15, 20);

% also draw the boundary

boundary = meshBoundary(v2, f2);

drawPolygon3d(boundary, 'linewidth ', 2, 'color ', 'm ');

The listing 3 illustrates a selection of mesh processing features
available within the MatGeom library. Some of their results are shown
on Fig. 3.

4. Impact

The development of the library originally started as a need for val-

rbitrary number of face vertices for some functions. idating the development of image processing and analysis algorithms

4 
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Fig. 3. Demonstration of various mesh processing operations on the standard ‘‘Stanford Bunny’’ triangle mesh. Computation of face normal vectors and centroids. Computation of
distance between 3d points and mesh. Computation of Gaussian curvature for each vertex of the mesh. Clipping of the mesh with a plane and extraction of mesh boundary.

[11,12], and for the modeling of biological structures [13]. The initial
set of functions was later used and expanded to develop image analysis
workflows in the context of plant sciences, either from two-dimensional
images [14,15], or from 3D volumetric images [16].

The library was furthermore used by other people, mostly for re-
search in biology: study of tissue morphogenesis in Drosophila[17,18],
of space perception within insects [19], or of anatomical structure
of animal organs [20–22]. It was also used for medical research in
neurosurgery [23], for the modeling of neuronal activity [24], or for
modeling torsion angles of biological molecules [25]. Besides applica-
tions in biology, the MatGeom library was also used to analyze coatings
properties of sprays [26], to simulate retinal optic flow during natural
locomotion [27], or for applications in robotics [28,29].

Some features of the MatGeom library have also been integrated
into other software. Examples include the Microscopy Image Browser, for
the reconstruction of 3D biological structures from serial sections [30],
FoCa, a planning system for the study of proton radiotherapy [31], or
DICE, an application for the quantification of fractures within granular
materials [32]. These integrations can be seen as a positive marker of
the facility to use the MatGeom library in interaction with other tools.

5. Conclusions

Using a well established code base, the MatGeom library provides
geometry processing features that made it useful for a variety of ap-
plications, ranging from data analysis to modeling. MatGeom can be
used in conjunction with other MATLAB libraries, and is open to public
contributions.

A number of improvements can be envisioned. The management of
a larger variety of primitives (like Bezier curves, NURBS, or curves and

surfaces defined by a parametric equation) could facilitate the modeling
from complex data. From a performance point of view, the introduction
of efficient data structures could improve the management of a larger
number of elements, or of geometries based on a large number of
vertices. The use of parallel computation seems also promising [33].

The management of a large number of functions (more than 500 in
the last version of the library) can raise some difficulty both from a
user point of view (to quickly identify the right function for the right
task) and from a developer point of view (to maintain a consistent
set of functions interacting together). As MATLAB provides Object-
Oriented programming, its use could simplify the global organization
of the library, by encapsulating features related to a given family of
geometries (e.g. ellipsoids) into a specific class. A difficulty would be to
maintain a low level of complexity for the library user, while providing
new features and consolidating existing ones.
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