
HAL Id: hal-04850432
https://hal.inrae.fr/hal-04850432v1

Submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

MatGeom: A toolbox for geometry processing with
MATLAB.
David Legland

To cite this version:
David Legland. MatGeom: A toolbox for geometry processing with MATLAB.. SoftwareX, 2025, 29,
pp.101984. �10.1016/j.softx.2024.101984�. �hal-04850432�

https://hal.inrae.fr/hal-04850432v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

O

M
D
I
I

A

K
G
G
P
P
G

C

1

e
(
f

o
p
t
c
n
m
h
t
P

h
R

SoftwareX 29 (2025) 101984

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

atGeom: A toolbox for geometry processing with MATLAB
avid Legland

NRAE, UR BIA, 44316 Nantes, France
NRAE, PROBE Research Infrastructure, BIBS Facility, 44316 Nantes, France

R T I C L E I N F O

eywords:
eometry processing
eometric computing
olygon
olygon mesh
eometry

A B S T R A C T

MatGeom (for ‘‘MATLAB Geometry’’) is a pure MATLAB library for geometry processing in two and three
dimensions, that aims at facilitating the processing and analysis of scientific data. It provides a collection of
functions for the manipulation of common 2D and 3D geometries such as points, lines, ellipses, polygons,
or polygon meshes. Functions allow for combining together geometries (intersections, mutual distances,
projections, fitting to a set of points), evaluating quantitative features (area, volume, curvatures, orientations),
or drawing with various options. The library is fully documented: user manual, code comments, function
headers, and demonstration scripts.

ode metadata

Current code version 1.2.8
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00469
Permanent link to Reproducible Capsule For example: https://zenodo.org/records/12800469
Legal Code License BSD 2-Clause ‘‘Simplified’’ License.
Code versioning system used git
Software code languages, tools, and services used MATLAB
Compilation requirements, operating environments & dependencies No compilation required (pure MATLAB library), and no dependency to third-party

libraries.
If available Link to developer documentation/manual https://github.com/mattools/matGeom
Support email for questions david.legland(at)inrae.fr

. Motivation and significance

The processing of geometric data is a recurrent task in many sci-
ntific domains, either when analyzing data obtained from imaging
e.g. microscopy, tomography) or laser scanning, or when modeling and
itting of geometric models to data.

A large number of geometry processing libraries have been devel-
ped over the years. The most generic one is certainly CGAL, that
rovides a high level of abstraction and a high level of control on
he precision of computation results [1]. Other significant libraries
omprise libigl [2], GeometricTools [3], or the Wykobi library [4], to
ame only a few. These libraries are proposed for the C++ language,
aking them powerful for building end-user applications. They are
owever not easy to integrate into common data analysis workflows
hat are usually written in interpreted language such as MATLAB,
ython or R. Moreover, the C++ language is relatively more complex

E-mail address: david.legland@inrae.fr.

than the above-mentioned languages, requiring higher programming
skills, and often larger development time.

Besides integrated software, geometric data are often analyzed
within interpreted platforms such as MATLAB (or its open-source
counter-part octave), Python, or R. Within the MATLAB environment,
a large number of geometry processing toolboxes have been proposed.
Many of them have been developed for specific data structures, such as
2D or 3D polygon meshes [5–7]. In particular, the gptoolbox provides
a large number of state-of-the-art methods for the processing of 3D
polygon meshes [6]. The ACME library is a 3D geometry library
written in C++, that can be compiled for MATLAB [8]. It provides
several algorithms for 3D computational geometry, in particular for
the computation of collisions and intersections, and focusses on the
management of a large number of elements. It is however limited to a
ttps://doi.org/10.1016/j.softx.2024.101984
eceived 29 August 2024; Received in revised form 11 November 2024; Accepted 15 November 2024
vailable online 26 November 2024
352-7110/© 2024 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00469
https://zenodo.org/records/12800469
https://github.com/mattools/matGeom
mailto:david.legland(at)inrae.fr
mailto:david.legland@inrae.fr
https://doi.org/10.1016/j.softx.2024.101984
https://doi.org/10.1016/j.softx.2024.101984
http://creativecommons.org/licenses/by/4.0/

David Legland

s
v

b

p
s
o
i
o
a
a
t
a

t

l

r
c

F
o
a
a
e
r

c
i

s
f
o
e

t
M

SoftwareX 29 (2025) 101984
small number of geometric primitives. The GIBBON toolbox is an open-
ource MATLAB toolbox, that provides a large number of geometry
isualization and processing tools [9]. It focusses on Computer Aided

Design (CAD), mesh generation from 3D volume images, and Finite
Element Modeling of 3D structures represented as polygon meshes.

As a complement to more specialized toolboxes, the MatGeom li-
rary aims at providing a simple yet versatile library for the processing

of geometry data within the MATLAB environment, in two or three
dimensions, without requiring external dependencies nor compilation
rocedure. It was designed with the objective of quickly providing
olutions to common problems in the analysis, editing and modeling
f geometric data, by considering a larger variety of geometric prim-
tives (ellipses, ellipsoids, cylinders...), and providing a large number
f utility functions not necessarily provided within other toolboxes. It
lso aims at leveraging the need for computer-science related skills,
nd making it simple to extend by developing specific scripts or func-
ions. Moreover, the use of pure MATLAB language makes its de facto
vailable within the open-source Octave software [10].

2. Software description

2.1. Software functionalities

Features include the creation of geometries of various types, the
combination of basic geometries (intersection, projection, distance), or
he determination of an equivalent geometry from a collection of points

(e.g. computation of convex hull, or fitting an equivalent circle, ellipse
or ellipsoid).

The MatGeom library was designed with the aim to keep a low
evel of complexity, to facilitate both its compatibility with other

software and its appropriation by users. It relies on numeric arrays for
epresenting geometric data, and on functions to perform geometric
omputations.

2.1.1. Array representation of geometries
Each geometric primitive is represented as a numeric row vector.

or example, 2D or 3D points or vectors are represented using a 1 × 2
r 1 × 3 array containing their coordinates, ellipses are represented
s 1 × 5 array corresponding to center, minor and major radius,
nd orientation values, etc. Collections of elementary geometries are
asily represented as two-dimensional numeric arrays concatenating
epresentation of each geometry. More complex geometries such as

polygons or polygon meshes are based on 𝑛 × 2 or 𝑛 × 3 numeric array
ontaining vertex coordinates, eventually combined with topological
nformation (a face vertex index array). This simplicity allows simple

interoperability with native MATLAB functions or other libraries, and
makes it easy to export geometry data into text files.

2.1.2. Function-based library
Geometry processing is performed via MATLAB functions that fol-

low specific naming conventions. Processing functions start with a verb
describing the action, and post-concatenate the type of the geometry
expected as input: ‘‘resamplePolygon’’, ‘‘drawEllipse’’, ‘‘smoothMesh’’,
etc.

Geometries may also be quantified through descriptive features
uch as perimeter, surface area, curvatures, dihedral angles, etc. The
unctions that compute a descriptive feature usually start with the name
f the type of the geometry, followed by the name of the feature, for
xample: ‘‘polygonArea’’, ‘‘ellipsePerimeter’’, ‘‘meshCurvatures’’...

Each primitive is associated to a ‘‘drawXXX’’ function to facili-
ate its graphical representation, using classical plotting options from
ATLAB.

2.1.3. Library documentation
All operations are described in a user manual, illustrated with

simple examples in order to facilitate re-usability. In addition, each
function is fully documented, most of them providing a description
of function syntax together with a running sample code, and a list of
related functions.

It is expected that the simplicity of the library make it easy to use
by a non computer-scientist user, easy to interconnect with more spe-
cialized toolboxes, and easy to extend by developing specific processing
scripts or functions.

2.2. Software architecture

The MatGeom library is organized into several modules, that gather
functions operating on similar data structures. The geom2d and the
geom3d modules provide the core features of geometric operations in
the 2D or 3D Euclidean spaces. The polygons2d and the meshes3d pro-
vides a collection of functions for geometry processing of 2D polygons
and polylines, and of 3D polygon meshes. The graphs module is devoted
to the manipulation of ‘‘geometric graphs’’, where vertices correspond
to 2D or 3D points, and edges to adjacencies between vertices.

2.2.1. Module geom2d
The geom2d module provides functions for processing points, vec-

tors, linear shapes (including straight lines, line segments, or rays). It
also manages smooth curves such as circles or ellipses, or utility geome-
tries such as bounding boxes. Several functions have been generalized
to manage inputs with any dimensionality. It also manages geometric
(affine) transforms, by providing functions for creating transforms, for
transforming geometries, or fitting registration transforms.

2.2.2. Module polygons2d
The polygons2d module gathers the functions operating on polygons

and polylines represented as a list of vertices. Polygons or polylines are
represented by 𝑛𝑝× 2 arrays containing the coordinates of the 𝑛𝑝 vertices
defining the geometry. Multiple polygons can be represented by a cell
array, each cell containing the vertex coordinates of one of the polygon
rings.

The polygons2d module comprises edition functions (like resam-
pling, smoothing, or reversing a polygon), computation of intersections
with a linear geometry or another polygon, the computation of mea-
sures (perimeter, area, normal angles) or derived geometries (centroid),
or more complex operations such as triangulation or skeletonization of
a polygon.

2.2.3. Module geom3d
The geom3d module is the equivalent of the geom2d module for

the 3D Euclidean space. It provides functions for processing 3D points,
vectors, linear shapes (including 3D lines and planes) or smooth surface
geometries such as ellipsoids, cylinders, or torus.

As for the geom2d module, geometries are represented using row
vectors. Functions allow for computing distances, angles, or intersec-
tions between geometries, computing projection of points, or comput-
ing position of points within geometries.

A large number of functions are provided for the management of 3D
affine transforms, either to create elementary transforms, to combine
them, to transform geometries, or to convert between the different
representations: rotation matrix, Euler angles, axis-angle... The trans-
formation corresponding to the rigid registration of two 3D point sets
can be computed by using the Iterated Closest Point algorithm.
2

David Legland SoftwareX 29 (2025) 101984
2.2.4. Module meshes3d
The meshes3d module allows for managing and processing 3D

polygonal meshes. Several types of mesh are supported: trimesh,
quadmesh, or more generic meshes with variable number of vertices per
face. Polygon mesh processing require to consider both the location of
the vertices (as a 𝑛𝑝×3 numeric array) and the topology of the mesh. The
topology of meshes is represented by a 𝑛𝑓 × 3 (for triangular meshes)
or 𝑛𝑓 × 4 (for quadrangular meshes) array containing the indices of
vertices corresponding to each of the 𝑛𝑓 faces. Functions operating on
meshes expect either a pair of input arguments, or a MATLAB structure
containing at least the two fields ‘‘vertices’’ and ‘‘faces’’.

The library provides functions to read and write meshes from files
in common file formats, or to generate polygonal models approxi-
mating smooth surfaces (spheres, cylinders, torus). A large number of
mesh processing operations have been implemented, comprising global
mesh processing (mesh smoothing, triangulation, recursive subdivi-
sion), interactions with other geometries (intersections with lines or
planes, clipping, distance to points), computation of related geometries
(face normals, bounding box), or quantification of geometrical features
(surface area, curvature map, edge dihedral angle).

2.2.5. The graphs module
The graphs module is devoted to the manipulation of ‘‘geometric

graphs’’. Geometric graphs are defined within MatGeom as traditional
graphs (a set of edges defines the adjacencies between a set of vertices),
with the additional assumption that vertices are associated to a 2D or
3D position. The topology of graphs is represented by a 𝑛𝑒 × 2 array
containing indices of adjacent vertices, with 𝑛𝑒 being the number of
edges in the graph.

Geometric graphs can be useful for representing geometric features
obtained from images such as the boundary of a binary image, or the
adjacency graph of regions within a segmented image. They also can
be used as basis for more complex operations on polygons or polygonal
meshes, such as the computation of polygon skeleton.

2.3. Comparison with other software

In comparison with other software and libraries, MatGeom aims
at providing a generic and simple to use library, that can be used in
conjunction with more specialized libraries.

The target audience of MatGeom is more the data analyst than a
specialist of geometry processing. For example, if the question is to
explore geometric data and comparing them with fitted primitives, then
MatGeom may be useful. If the performance is an issue, for example
when manipulating polygon or meshes with very large number of
vertices, or if the user needs to create more specialized data structure,
then the use of the reference library CGAL, or of a more specialized
software, may be more relevant. The use of the CGAL library within
MATLAB however requires integration of compiled C++ code, which is
not always a trivial task.

Compared to the Acme library, the MatGeom library provides a
larger number of geometric primitives, and provides also 2D geometry
processing tools. If the number of elements is very large, then the Acme
library is expected to be more efficient.

When working with 3D for polygon meshes, the gptoolbox provides
a larger number of geometry processing tools than MatGeom and relies
on well-established libraries such as CGAL or libigl. The MatGeom
library can easily be used as a complement, either to combine meshes
with other geometric primitives (planes, ellipsoids...), or to facilitate
the visualization of computation results.

Fig. 1. Analysis of the geometry of a collection of points. Computation of the fitting
line, of the oriented bounding box, and of the equivalent ellipse of three subsets of the
collection.

Listing 1 : Using the geom2d module for data analysis.

% load data

str = load('fisheriris ');
data = str.meas;

% create point collection

pts = data(:, [3 1]);

% display

figure; axis equal; hold on; axis([0 8 3 9]);

drawPoint(pts, 'bx ');

% Fit line on the whole collection

line = fitLine(pts);

drawLine(line, 'color ', 'k ', 'linewidth ', 2);

% Draw oriented box

obox = orientedBox(pts);

drawOrientedBox(obox, 'color ', 'k ', 'linewidth ', 1);

% Process by species

[labels, ~, inds]= unique(str.species);

colors = [1 0 0; 0 0.8 0; 0 0 1];

for i = 1:3

pts_i = pts(inds == i, :);

drawPoint(pts_i, 'marker ', 'x ', 'color ', colors(i,:), '
linewidth ', 2);

elli = equivalentEllipse(pts_i);

drawEllipse(elli, 'color ', colors(i,:), 'linewidth ', 2)

drawEllipseAxes(elli, 'color ', colors(i,:), 'linewidth ',
2)

end

3. Illustrative examples

3.1. Data exploration

The listing 1 illustrates some features of the geom2d module to
display point data sets, retrieve geometric primitives that summarizes
them, and provide graphical display. The result is shown on Fig. 1.

3.2. Polygon processing

The listing 2 demonstrates the usage of the library for more complex
processing on polygon data. The sample data represent the contour of
3

David Legland

%

p

%

f

d

%

p

d

%

p

d

%

p

d

%

p

d

d

%

l

d

i

d

F
c
s
T

a
i

3

3
p
a

SoftwareX 29 (2025) 101984
Listing 2 : Polygon processing example script.

read polygon data as a numeric N−by−2 array

oly = load('leaf_poly.txt ');

display the polygon using basic color option

igure;axis equal;hold on;axis([0 600 0 400]);

rawPolygon(poly, 'k ');

compute polygon bounding box

oly2 = boundingBox(poly);

rawBox(poly2, 'k ');

compute convex hull of polygon vertices

oly3 = convexHull(poly);

rawPolygon(poly3, 'LineWidth ',2, 'Color ', 'k ');

apply smoothing to the original polygon.

oly4 = smoothPolygon(poly, 51);

rawPolygon(poly4, 'Color ', 'b ', 'LineWidth ',2);

compute a simplified version of the polygon

oly5 = simplifyPolygon(poly, 20);

rawPolygon(poly5, 'Color ', 'r ', 'LineWidth ',2);
rawVertices(poly5, 'Color ', 'k ',...

'Marker ', 's ', 'MarkerFaceColor ', 'w ');

compute intersections with an arbitrary line

ine = createLine([0 250], [600 350]);

rawLine(line, 'k ');
nters = intersectLinePolygon(line, poly5);

rawPoint(inters, 'Color ', 'r ', 'Marker ', 'o ',...
'MarkerFaceColor ', 'w ', 'LineWidth ', 2);

ig. 2. Demonstration of various geometry operations on a polygon. Thin black
urve: original polygon. Blue curve: smoothing of the polygon. Red curve: polygonal
implification of the polygon. Thick black curve: computation of the convex hull.
hin black box: bounding box. Red dots: intersection with an arbitrary line. (For

interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

 leaf, stored as a collection of pairs of coordinates. The result is shown
n Fig. 2.

.3. Mesh processing

The meshes3d module provides functions for the manipulation of
D surface meshes, also known as polygonal meshes. The library sup-
ort triangular meshes, quadrangular meshes, as well as meshes with

Listing 3 : Mesh processing example script.

% read sample mesh and display mesh using equal−scale axes

mesh = readMesh('bunny_F1k.ply ');
figure; hold on; axis equal; view(3);

drawMesh(mesh, 'faceColor ', [.7 .7 .7]);

axis([−8 10 −6 8 −8 10]); view(15, 20);

% Display face normals and centroids

normals = meshFaceNormals(mesh);

centroids = meshFaceCentroids(mesh);

figure; hold on; axis equal; view(3);

drawMesh(mesh, 'faceColor ', [.7 .7 .7]);

axis([−8 10 −6 8 −8 10]); view(15, 20);

drawArrow3d(centroids, normals);

% Compute distance point mesh

point = [8 −3 8;2 −5 8;−6 −4 −4];

[dist, proj] = distancePointMesh(point, mesh);

% also compute a distance map for a vertical slice

intersecting the mesh

lx = linspace(−8, 10, 181); lz = linspace(−8, 10, 181);

[x, z] = meshgrid(lx, lz); y = ones(size(x)) * 3;

pts = [x(:) y(:) z(:)];

dists = distancePointMesh(pts, mesh);

distMap = reshape(dists, size(x));

% display mesh

figure; hold on; axis equal; view(3);

drawMesh(mesh, 'faceColor ', [.7 .7 .7]);

axis([−8 10 −6 8 −8 10]);view(15, 20);

% display the distance map

surf(x, y, z, distMap, 'linestyle ', 'none ');
% display point−to−mesh distances

drawPoint3d(point, 'ko ');
drawPoint3d(proj, 'k* ');
drawEdge3d([point proj], 'color ', 'k ', 'linewidth ', 2)

% Compute the two main curvatures on each vertex of the mesh

[k1, k2] = meshCurvatures(mesh.vertices, mesh.faces);

figure; hold on; axis equal; view(3);

drawMesh(mesh, 'VertexColor ', k1 .* k2);

axis([−8 10 −6 8 −8 10]); view(15, 20);

set(gca, 'clim ', [−0.01 0.01]);

colormap jet;

% Clip mesh with a plane

plane = createPlane([0 0 0], [−5 5 3]);

[v2, f2] = clipMeshByPlane(mesh, plane);

figure; hold on; axis equal; view(3);

drawMesh(v2, f2, 'faceColor ', [.7 .7 .7]);

axis([−8 10 −6 8 −8 10]); view(15, 20);

% also draw the boundary

boundary = meshBoundary(v2, f2);

drawPolygon3d(boundary, 'linewidth ', 2, 'color ', 'm ');

The listing 3 illustrates a selection of mesh processing features
available within the MatGeom library. Some of their results are shown
on Fig. 3.

4. Impact

The development of the library originally started as a need for val-

rbitrary number of face vertices for some functions. idating the development of image processing and analysis algorithms

4

David Legland SoftwareX 29 (2025) 101984
Fig. 3. Demonstration of various mesh processing operations on the standard ‘‘Stanford Bunny’’ triangle mesh. Computation of face normal vectors and centroids. Computation of
distance between 3d points and mesh. Computation of Gaussian curvature for each vertex of the mesh. Clipping of the mesh with a plane and extraction of mesh boundary.

[11,12], and for the modeling of biological structures [13]. The initial
set of functions was later used and expanded to develop image analysis
workflows in the context of plant sciences, either from two-dimensional
images [14,15], or from 3D volumetric images [16].

The library was furthermore used by other people, mostly for re-
search in biology: study of tissue morphogenesis in Drosophila[17,18],
of space perception within insects [19], or of anatomical structure
of animal organs [20–22]. It was also used for medical research in
neurosurgery [23], for the modeling of neuronal activity [24], or for
modeling torsion angles of biological molecules [25]. Besides applica-
tions in biology, the MatGeom library was also used to analyze coatings
properties of sprays [26], to simulate retinal optic flow during natural
locomotion [27], or for applications in robotics [28,29].

Some features of the MatGeom library have also been integrated
into other software. Examples include the Microscopy Image Browser, for
the reconstruction of 3D biological structures from serial sections [30],
FoCa, a planning system for the study of proton radiotherapy [31], or
DICE, an application for the quantification of fractures within granular
materials [32]. These integrations can be seen as a positive marker of
the facility to use the MatGeom library in interaction with other tools.

5. Conclusions

Using a well established code base, the MatGeom library provides
geometry processing features that made it useful for a variety of ap-
plications, ranging from data analysis to modeling. MatGeom can be
used in conjunction with other MATLAB libraries, and is open to public
contributions.

A number of improvements can be envisioned. The management of
a larger variety of primitives (like Bezier curves, NURBS, or curves and

surfaces defined by a parametric equation) could facilitate the modeling
from complex data. From a performance point of view, the introduction
of efficient data structures could improve the management of a larger
number of elements, or of geometries based on a large number of
vertices. The use of parallel computation seems also promising [33].

The management of a large number of functions (more than 500 in
the last version of the library) can raise some difficulty both from a
user point of view (to quickly identify the right function for the right
task) and from a developer point of view (to maintain a consistent
set of functions interacting together). As MATLAB provides Object-
Oriented programming, its use could simplify the global organization
of the library, by encapsulating features related to a given family of
geometries (e.g. ellipsoids) into a specific class. A difficulty would be to
maintain a low level of complexity for the library user, while providing
new features and consolidating existing ones.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Many people have contributed to the library, through bug report-
ings, push requests, or proposals for enhancements, and are greatly
acknowledged. In particular, Sven Holcombe and GitHub user oqilipo
have contributed several functions, and deserve particular acknowledg-
ments.
5

David Legland SoftwareX 29 (2025) 101984
References

[1] The CGAL Project. CGAL user and reference manual. 5th ed.. CGAL Editorial
Board; 2023.

[2] Jacobson A, Panozzo D, et al. Libigl: A simple C++ geometry processing library.
2018, https://libigl.github.io/.

[3] Eberly D. Geometric Tools Engine, version 5, https://github.com/davideberly/
GeometricTools.

[4] Partow A. Wykobi, C++ Computational Geometry Library, version 0.0.5, http:
//www.wykobi.com/index.html.

[5] Peyre G. Toolbox Graph, MATLAB central file exchange. 2009, https://www.
mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph, (Last retrieved
23 August 2024).

[6] Jacobson A, et al. gptoolbox: Geometry processing toolbox. 2024, http://github.
com/alecjacobson/gptoolbox.

[7] Engwirda D. Locally-optimal delaunay-refinement and optimisation-based mesh
generation [Ph.D. thesis], School of Mathematics and Statistics, The University
of Sydney; 2014.

[8] Stocco D, Bertolazzi E. Acme: A small 3D geometry library. SoftwareX
2021;16:100845. http://dx.doi.org/10.1016/j.softx.2021.100845.

[9] Moerman KM. GIBBON: The geometry and image-based bioengineering add-on.
J Open Source Softw 2018;3(22):506. http://dx.doi.org/10.21105/joss.00506.

[10] Eaton JW, Bateman D, Hauberg S, Wehbring R. GNU Octave version 9.2.0
manual: a high-level interactive language for numerical computations. 2024,
https://www.gnu.org/software/octave/doc/v9.2.0/.

[11] Legland D, Kiêu K, Devaux M-F. Computation of Minkowski measures on 2D and
3D binary images. Image Anal Stereol 2007;26(6):83–92. http://dx.doi.org/10.
5566/ias.v26.p83-92.

[12] Lehmann G, Legland D. Efficient n-dimensional surface estimation using crofton
formula and run-length encoding. Tech. rep, 2012.

[13] Legland D, Devaux M-F, Kiêu K, Bouchet B. Stereological estimation
for layered structures based on slabs perpendicular to a surface. J Mi-
crosc 2008;232(1):44–55. http://dx.doi.org/10.1111/j.1365-2818.2008.02080.x,
submitted.

[14] Legland D, Devaux M-F, Guillon F. Statistical mapping of maize bundle intensity
at the stem scale using spatial normalisation of replicated images. PLoS ONE
2014;9(3):e90673. http://dx.doi.org/10.1371/journal.pone.0090673.

[15] Schaefer E, Belcram K, Uyttewaal M, Duroc Y, Goussot M, Legland D, et
al. The preprophase band of microtubules controls the robustness of division
orientation in plants. Science 2017;356(6334):186–9. http://dx.doi.org/10.1126/
science.aal3016.

[16] Le TDQ, Alvarado C, Girousse C, Legland D, Chateigner-Boutin A-L. Use of X-ray
micro computed tomography imaging to analyze the morphology of wheat grain
through its development. Plant Methods 2019;15(1):84.

[17] Supatto W, McMahon A, Fraser SE, Stathopoulos A. Quantitative imaging of
collective cell migration during drosophila gastrulation: multiphoton microscopy
and computational analysis. Nat Protoc 2009;4:1397–412. http://dx.doi.org/10.
1038/nprot.2009.130.

[18] Eritano AS, Bromley CL, Bolea Albero A, Schütz L, Wen F-L, Takeda M, et
al. Tissue-scale mechanical coupling reduces morphogenetic noise to ensure
precision during epithelial folding. Dev Cell 2020;53(2):212–28. http://dx.doi.
org/10.1016/j.devcel.2020.02.012.

[19] Dürr V, Schilling M. Transfer of spatial contact information among limbs and
the notion of peripersonal space in insects. Front Comput Neurosci 2018;12.
http://dx.doi.org/10.3389/fncom.2018.00101.

[20] Le Garrec J-F, Domínguez JN, Desgrange A, Ivanovitch KD, Raphaël E,
Bangham JA, et al. Predictive model of asymmetric morphogenesis from 3D
reconstructions of mouse heart looping dynamics. eLife 2017;6:e28951. http:
//dx.doi.org/10.7554/eLife.28951.

[21] Sijilmassi O, López Alonso J-M, Del Río Sevilla A, del Carmen Barrio Asensio M.
Multifractal analysis of embryonic eye structures from female mice with dietary
folic acid deficiency. Part I: fractal dimension, lacunarity, divergence, and
multifractal spectrum. Chaos Solitons Fractals 2020;138:109885. http://dx.doi.
org/10.1016/j.chaos.2020.109885.

[22] Hrncirik F, Roberts IV, Swords C, Christopher PJ, Chhabu A, Gee AH, et al.
Impact of scala tympani geometry on insertion forces during implantation.
Biosensors 2022;12(11). http://dx.doi.org/10.3390/bios12110999.

[23] Hirt L, Thies KA, Ojemann S, Abosch A, Darwin ML, Thompson JA, Kern DS. Case
series investigating the differences between stimulation of rostral zona incerta
region in isolation or in conjunction with the subthalamic nucleus on acute
clinical effects for parkinson’s disease. Interdiscipl Neurosurg 2022;29:101553.
http://dx.doi.org/10.1016/j.inat.2022.101553.

[24] Zhang Y, Chen Y, Wang T, Cui H. Neural geometry from mixed sensorimotor
selectivity for predictive sensorimotor control. 2024, http://dx.doi.org/10.7554/
elife.100064.1.

[25] Tikhonov DA, Kulikova LI, Efimov AV. Analysis of torsion angles between
helical axes in pairs of helices in protein molecules. Math Biol Bioinformat
2018;12(2):398–410. http://dx.doi.org/10.17537/2017.12.398.

[26] Katranidis V, Kamnis S, Gu S. Prediction of coating properties of thermally
sprayed WC–co on complex geometries. J Therm Spray Tech 2018;27:1025–37.
http://dx.doi.org/10.1007/s11666-018-0739-6.

[27] Matthis JS, Muller KS, Bonnen KL, Hayhoe MM. Retinal optic flow during natural
locomotion. Plos ONE 2022;18(2):e1009575. http://dx.doi.org/10.1371/journal.
pcbi.1009575.

[28] Kurz T, Eberhard P, Henninger C, Schiehlen W. From neweul to neweul-M2:
symbolical equations of motion for multibody system analysis and synthe-
sis. Multibody Syst Dyn 2010;24:25–41. http://dx.doi.org/10.1007/s11044-010-
9187-x.

[29] Gonzalez R, Mahulea C, Kloetzer M. A matlab-based interactive simulator for
mobile robotics. In: 2015 IEEE international conference on automation science
and engineering (CASE), Gothenburg, Sweden. 2015, p. 310–5. http://dx.doi.
org/10.1109/CoASE.2015.7294097.

[30] Belevich M, andJoensuu Ilya, Kumar D, Vihinen H, Jokitalo E. Microscopy Image
Browser: A platform for segmentation and analysis of multidimensional datasets.
PLoS Biol 2016;14(1):1–13. http://dx.doi.org/10.1371/journal.pbio.1002340.

[31] Sánchez-Parcerisa D, Kondrla M, Shaindlin A, Carabe A. FoCa: a modular
treatment planning system for proton radiotherapy with research and educational
purposes. Phys Med Biol 2014;59:7341. http://dx.doi.org/10.1088/0031-9155/
59/23/7341.

[32] Menegoni N, Giordan D, Inama R, Perotti C. DICE: An open-source MATLAB
application for quantification and parametrization of digital outcrop model-
based fracture datasets. J Rock Mech Geotech Eng 2023;15(5):1090–110. http:
//dx.doi.org/10.1016/j.jrmge.2022.09.011.

[33] Wang Y, Yesantharao R, Yu S, Dhulipala L, Gu Y, Shun J. ParGeo: A library
for parallel computational geometry. In: 30th annual European symposium on
algorithms (ESA 2022). Leibniz international proceedings in informatics (lIPIcs),
vol. 244. Schloss Dagstuhl – Leibniz-Zentrum für Informatik; 2022, p. 88:1–88:19.
http://dx.doi.org/10.1371/journal.pbio.1002340.
6

http://refhub.elsevier.com/S2352-7110(24)00354-6/sb1
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb1
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb1
https://libigl.github.io/
https://github.com/davideberly/GeometricTools
https://github.com/davideberly/GeometricTools
https://github.com/davideberly/GeometricTools
http://www.wykobi.com/index.html
http://www.wykobi.com/index.html
http://www.wykobi.com/index.html
https://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph
https://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph
https://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph
http://github.com/alecjacobson/gptoolbox
http://github.com/alecjacobson/gptoolbox
http://github.com/alecjacobson/gptoolbox
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb7
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb7
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb7
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb7
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb7
http://dx.doi.org/10.1016/j.softx.2021.100845
http://dx.doi.org/10.21105/joss.00506
https://www.gnu.org/software/octave/doc/v9.2.0/
http://dx.doi.org/10.5566/ias.v26.p83-92
http://dx.doi.org/10.5566/ias.v26.p83-92
http://dx.doi.org/10.5566/ias.v26.p83-92
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb12
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb12
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb12
http://dx.doi.org/10.1111/j.1365-2818.2008.02080.x
http://dx.doi.org/10.1371/journal.pone.0090673
http://dx.doi.org/10.1126/science.aal3016
http://dx.doi.org/10.1126/science.aal3016
http://dx.doi.org/10.1126/science.aal3016
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb16
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb16
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb16
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb16
http://refhub.elsevier.com/S2352-7110(24)00354-6/sb16
http://dx.doi.org/10.1038/nprot.2009.130
http://dx.doi.org/10.1038/nprot.2009.130
http://dx.doi.org/10.1038/nprot.2009.130
http://dx.doi.org/10.1016/j.devcel.2020.02.012
http://dx.doi.org/10.1016/j.devcel.2020.02.012
http://dx.doi.org/10.1016/j.devcel.2020.02.012
http://dx.doi.org/10.3389/fncom.2018.00101
http://dx.doi.org/10.7554/eLife.28951
http://dx.doi.org/10.7554/eLife.28951
http://dx.doi.org/10.7554/eLife.28951
http://dx.doi.org/10.1016/j.chaos.2020.109885
http://dx.doi.org/10.1016/j.chaos.2020.109885
http://dx.doi.org/10.1016/j.chaos.2020.109885
http://dx.doi.org/10.3390/bios12110999
http://dx.doi.org/10.1016/j.inat.2022.101553
http://dx.doi.org/10.7554/elife.100064.1
http://dx.doi.org/10.7554/elife.100064.1
http://dx.doi.org/10.7554/elife.100064.1
http://dx.doi.org/10.17537/2017.12.398
http://dx.doi.org/10.1007/s11666-018-0739-6
http://dx.doi.org/10.1371/journal.pcbi.1009575
http://dx.doi.org/10.1371/journal.pcbi.1009575
http://dx.doi.org/10.1371/journal.pcbi.1009575
http://dx.doi.org/10.1007/s11044-010-9187-x
http://dx.doi.org/10.1007/s11044-010-9187-x
http://dx.doi.org/10.1007/s11044-010-9187-x
http://dx.doi.org/10.1109/CoASE.2015.7294097
http://dx.doi.org/10.1109/CoASE.2015.7294097
http://dx.doi.org/10.1109/CoASE.2015.7294097
http://dx.doi.org/10.1371/journal.pbio.1002340
http://dx.doi.org/10.1088/0031-9155/59/23/7341
http://dx.doi.org/10.1088/0031-9155/59/23/7341
http://dx.doi.org/10.1088/0031-9155/59/23/7341
http://dx.doi.org/10.1016/j.jrmge.2022.09.011
http://dx.doi.org/10.1016/j.jrmge.2022.09.011
http://dx.doi.org/10.1016/j.jrmge.2022.09.011
http://dx.doi.org/10.1371/journal.pbio.1002340

	MatGeom: A toolbox for geometry processing with MATLAB
	Motivation and significance
	Software description
	Software functionalities
	Array representation of geometries
	Function-based library
	Library documentation

	Software architecture
	Module geom2d
	Module polygons2d
	Module geom3d
	Module meshes3d
	The graphs module

	Comparison with other software

	Illustrative examples
	Data exploration
	Polygon processing
	Mesh processing

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

