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1  |  BEHAVIOUR AL ECOLOGY AND 
GENOMIC S

In 1963, Tinbergen published his landmark paper that has changed 
the way ecologists and evolutionary biologists study behavioural 
traits (Bateson & Laland, 2013). He proposed that understanding 
behaviours as adaptations would require integrating the answers to 
four complementary questions about (i) the underlying mechanisms 
of the trait, (ii) its development, (iii) evolutionary history, and (iv) its 

effects on fitness (Tinbergen, 1963). Genomic data can be used to 
help address each of these questions but, until recently, has been 
largely underutilised by behavioural ecologists (Figure 1a). Most work 
has attempted to answer Tinbergen's question about mechanisms 
(Bengston et al., 2018; Rittschof & Robinson, 2014). Behaviours, 
however, are not only traits that evolve; they can affect evolution-
ary processes by influencing which genomes interact in time and 
space. For example, natal and breeding dispersal (followed by mate 
choice) determine gene flow and therefore the starting point for 
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founder effects and strength of drift. Behaviours can also influence 
heritability (i.e. non- genetic inheritance and indirect genetic effects, 
Adrian-	Kalchhauser	et	 al.,	2020) and may even be a precursor for 
genetic adaptation (i.e. Bailey et al., 2017; Jarrett & Kilner, 2017) as 
behaviour is often a first and fast response to environmental change 
(Wong & Candolin, 2015). Therefore, here we move beyond mech-
anisms to highlight how current genomic tools (listed in Table 1) can 
be used to study the evolutionary history, development, and fitness 
consequences of behavioural adaptations, and to better incorporate 
behavioural variation in studies of genetic change.

Earlier developments in genetic approaches led to major ad-
vances in behavioural ecology (e.g. using microsatellites to deter-
mine	parentage,	Avise,	1996).	 So	why	have	 calls	 to	use	genomic	
tools (Bengston et al., 2018; Rittschof & Robinson, 2014;	Sorenson	
& Payne, 2002;	 Springer	 et	 al.,	2011) had limited impact on the 
field (Figure 1)? This might be because much of the emphasis has 
been on ‘finding the gene/s for a behaviour’ but this is still rarely 
feasible or cost- effective in the wild (Bubac et al., 2020)	 (See	
Box 1). Behavioural and molecular ecology have also historically 
relied on different approaches with increasingly divergent jargon. 

F I G U R E  1 The	use	of	genomic	(i.e.	
next- generation and third- generation 
methods using high- throughput 
sequencing) and genetic (any non- genomic 
method	utilising	DNA	or	RNA)	tools	in	
behavioural ecology using (a, b) abstracts 
from	International	Society	for	Behavioural	
Ecology	(ISBE)	conference	talks.	Despite	
a dramatic reduction in sequencing costs 
(dashed line), genomic tools are used 
rarely in behavioural ecology (a), although 
a range of methods and approaches are 
applied across a wide range of topics 
(b). The titles and abstracts of accepted 
talks	in	ISBE	conferences	between	
2006 and 2022 were checked manually 
from abstract booklets for mentioning 
usage of “genomic methods” (i.e. next 
generation,	high	throughput,	deep	or	RAD	
sequencing, *omics*, transcriptom* or 
RNA-	sequencing).	Talks	mentioning	usage	
of	molecular	methods	(or	DNA	or	RNA)	
that were not genomic were counted as 
using “genetic methods”. Only regular 
talks with abstracts in the programs 
were included, leaving out plenaries, 
keynote speakers and cancelled talks 
from	ISBE2022	from	the	total	number	
of accepted talks. Only articles clearly 
stating the genomic methods used were 
included	to	make	(b).	The	included	ISBE	
talks with abstracts are listed in the 
Table S1.
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While both behavioural and molecular ecologists study adaptation 
and address ultimate ‘why’ and proximate ‘how’ questions, be-
havioural ecology was founded on the ‘phenotypic gambit’, where 
knowing heritable genetic mechanisms is considered unnecessary 
as long as the trait correlates with fitness proxies (Grafen, 1984). 
Meanwhile, to resolve technological and methodological issues 
inherent to studying the heritability of polygenic traits (like be-
haviour), molecular ecologists have largely focused on traits 
thought easier to measure (e.g. morphology, often colouration; 
Dochtermann et al., 2019) and assumed to be determined by few, 
large- effect loci (Kraus, 2019). However, heritability estimates 
for behavioural traits (when investigated) are often within range 
of those for physiological and life- history traits (Dochtermann 
et al., 2019) and it is becoming evident that a single gene or super-
gene is unlikely to be a common explanation for phenotypic vari-
ation (Bubac et al., 2020), including in model systems (e.g. chicken 
Gallus gallus plumage and egg colouration: Vignal & Eory, 2019). 
Furthermore, with rapid advances in epigenomics and knowledge 
of regulatory mechanisms, it is becoming clear that the genome is 
an environmentally responsive entity with analogies to behaviour 
(Rittschof & Robinson, 2014): how the genome is read and tran-
scribed changes throughout the life of an organism and can trans-
mit environmental responses more quickly across generations 
than previously thought. Taking the behaviour of the genome into 
account may even have the potential for a paradigm shift in our 
understanding of evolution (Corning, 2020).

Behavioural ecology provides a rich understanding of why be-
haviour and associated traits (e.g. morphology and physiology) 
evolve at the phenotypic level, along with a tool- kit of quantitative 
and experimental methods to address how the actions of individu-
als influence population- level processes in the wild (Cuthill, 2005; 
Owens, 2006). In contrast, the declining costs of next- generation 
sequencing (Figure 1a) have helped molecular ecologists use ge-
nomic data across a range of approaches and (non- model) organ-
isms to identify genes and traits relevant for fitness and adaptation 
(Table 1, Barrett et al., 2019; Ellegren, 2014; Hancock et al., 2011). 
For example, (i) increasing the number of genetic markers across the 
genome can help improve the robustness of phylogenetic trees and 
comparative analyses, by resolving discrepancies between differ-
ent loci (Jarvis et al., 2014); (ii) by comparing neutral and selected 
markers across genomes, we can now infer population demographic 
histories and local adaptation in addition to population structure 
and gene flow (Hahn, 2018); and (iii) genome sequencing provides 
increased resolution to determine parentage and facilitates inferring 
offspring (or hybrid) fitness (through pedigree reconstruction, e.g. 
Chen et al., 2016). Perhaps most importantly, (iv) genomics allows 
us to go further than just improving on previous genetic methods: 
we can acquire information about species' evolutionary history and 
adaptive potential and predict population resilience in the face of 
global change (Bay et al., 2018).

Massive genomic datasets for species where we already have 
(or have the potential to collect) rich behavioural data are becoming 
available	(e.g.	Avianbase:	Eöry	et	al.,	2015), so how can we overcome To
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this cultural divide in approaches and inherent jargon (e.g. Table 1)? 
Here we bring together behavioural and molecular ecologists (Box 2) 
to work through a case study example and demonstrate how we 
can combine information from both the genome and behaviour to 

study adaptation. We use avian brood parasitism, one of the classic 
textbook examples in behavioural ecology (Thorogood et al., 2019), 
and assess what is (and what is not) possible with the rapidly ex-
panding, but often overwhelming (Krüger et al., 2017; Travisano & 

BOX 1 Behavioural genomics in the wild

Many of the previous calls for behavioural ecologists to adopt genomic tools have focused on using approaches from behavioural 
genomics (Bengston et al., 2018; Fischer et al., 2021; Rittschof & Robinson, 2014;	Springer	et	al.,	2011). Here, the goal is to uncover 
the molecular mechanisms underlying behavioural traits and ideally, this requires measuring levels of gene expression during a behav-
ioural response (within the whole organism, organs or single cells; see transcriptomics in Table 1), determining which genes are up-  or 
downregulated compared to when the behaviour is not expressed, then experimentally testing causation by e.g. gene knock- out ex-
periments or crosses (gene editing in Table 1). Most of the methods available, however, were originally developed using model organ-
isms (e.g. humans Homo sapiens, fruit fly Drosophila melanogaster, zebra fish Danio rerio, laboratory mice Mus musculus and rats Rattus 
norvegicus), and much of the success thus far has come from studying organisms that lend themselves to highly controlled laboratory- 
based experiments (e.g. great tits Parus major, Laine et al., 2016) or where lethal sampling of tissues has fewer ethical concerns (e.g. 
Heliconius butterflies: Rossi et al., 2020). This limits wide- scale adoption to study behavioural traits in wild populations. For example:

Quantitative trait locus (QTL) analyses designed to account for polygenic heritability require large sample sizes of behaviourally- 
phenotyped and pedigreed individuals, coupled with long- term monitoring, which can be difficult to obtain and require significant 
resources, including long- term funding, for organisms in the wild (Bubac et al., 2020).

Top-	down	approaches	such	as	genome-	wide	association	studies	(GWAS)	are	most	effective	when	traits	are	determined	by	few	genes	
or ‘supergenes’ and associations are not masked by environmentally induced plasticity (see Table 1 for examples). However, large- 
effect loci and simple genetic architectures only occasionally explain phenotypic variation (Bubac et al., 2020) and identifying small 
effect genes contributing to behavioural traits has proven challenging even in humans, despite hundreds of thousands of genomes 
sequenced	(Abdellaoui	&	Verweij,	2021). In addition, regardless of the genetic architecture, environmental variation may only affect 
the	presence	of	alleles	in	one	setting	(i.e.	conditional	neutrality,	Anderson	et	al.,	2013), or produce an opposing gene expression pat-
tern	in	two	different	environments	(i.e.	plasticity),	meaning	that	the	different	phenotypes	cancel	out	the	association.	GWAS	methods	
are	however	being	developed	to	account	 for	confounding	variation	 (e.g.	naturalGWAS:	François	&	Caye,	2018	and	RepeatABLE:	
Rönnegård et al., 2016).

Bottom- up gene expression studies depend on the researchers' ability to induce and measure relevant and consistent behavioural 
responses (including the control or reference behaviour), and determine the correct timing and location to sample tissue where the 
genes are expected to be expressed (which can be measured within the whole organism, organs or single cells). This is especially 
problematic when studying behaviour in the wild as there is substantial uncertainty regarding where and when to sample expression 
of genes and behaviour (Rittschof & Hughes, 2018) and most tissues require lethal sampling. Furthermore, lethal sampling makes it 
impossible to continue behavioural measurements to probe individual variation and plasticity. Developing and validating methods 
using	blood	samples	may	provide	a	useful	alternative	(Anderson	et	al.,	2022).

Furthermore, the lack of relevant functional annotation of genes and knowledge of regulatory gene networks is a major hindrance 
for any genome- wide or gene expression studies in the wild (Bengston et al., 2018; Vignal & Eory, 2019), although available annota-
tions for markers expressed (or underexpressed) are increasing, e.g. social behaviour in quail Coturnix japonica (Morris et al., 2020).

Finally,	gene	editing	approaches	using	methods	such	as	CRISPR-	cas9	(Table 1) to experimentally test associations are not feasible (or 
ethical) with most wild vertebrate study organisms (Lunshof, 2015) and are still largely a blunt tool to probe complex traits.

More	broadly,	 there	 is	ongoing	debate	as	 to	whether	searching	for	a	 ‘gene	 (or	genes)	 for	behaviour’	 is	worthwhile	 (Abdellaoui	&	
Verweij, 2021; Zuk & Balenger, 2014). Detailed studies on the 3D structures of (human) genomes and epigenomics are revealing 
that phenotypic traits are often determined by complex regulatory pathways, affecting the timing of expression in networks of tens 
to hundreds of interacting genes (e.g. epistasis and pleiotropy), and even the formation of supergenes is regulated by several genes 
associated with hormones (Maney & Küpper, 2022). These developments have led to a paradigm shift in genomics from focusing 
on gene sequences, to understanding the regulatory and evolutionary mechanisms occurring at the molecular level (Charney, 2012; 
Corning, 2020; see e.g. Larsson et al., 2021 for insights from single- cell genomics). In this review, we therefore outline approaches 
and methods to advance the field of behavioural ecology without the need to ‘find a gene for behaviour’.
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Shaw,	2013; Zuk & Balenger, 2014), a range of genomic tools and 
analytical methods available to address broad questions of interest.

2  |  AVIAN BROOD PAR A SITISM A S A 
C A SE STUDY

Obligatory brood parasites (about 1% of birds, some insects and the 
cuckoo catfish, Thorogood et al., 2019) trick hosts into rearing for-
eign offspring as their own. The resulting selection for host defences, 
and counter- adaptations in avian brood parasites (Figure 2), for ex-
ample, has provided behavioural ecologists with a tractable system 
to study coevolution in the wild. Experimental methods to test hy-
potheses about behavioural defences and parasite trickery are well- 
defined (Davies, 2011), and technological developments are widely 
used to quantify phenotypes (e.g. egg pattern and colour to identify 
individual cuckoos Cuculus canorus; Šulc et al., 2022; van den Berg 
et al., 2020). Compared to the rich body of knowledge describing be-
havioural defences and offence; however, almost nothing is known 
about the molecular mechanisms underpinning these traits, and 
heritability remains mostly assumed. The field of genetics has, how-
ever, already provided some insight into the evolutionary history of 
brood parasitism (Krüger & Pauli, 2017) and host- race specialisation 
(Fossøy et al., 2011, 2016; Gibbs et al., 2000) and emerging work is 
starting to demonstrate the power of using genomic data to under-
stand the genetic architecture of parasite adaptations (Merondun 
et al., 2024) and the evolutionary consequences of selection pres-
sures exerted by hosts (Langmore et al., 2024). Nevertheless, the 
adoption of genomic tools remains limited to only a fraction of para-
site and host species (e.g. there are at least 140 known host species 
of common cuckoos), and we are only starting to scratch the surface 
of what is possible (Brown et al., 2020;	DaCosta	&	Sorenson,	2016; 
Lynch et al., 2020; Mills et al., 2020;	 Ruiz-	Rodríguez	 et	 al.,	2018; 
Spottiswoode	et	al.,	2022; Wang et al., 2016; discussed in relevant 
sections below).

Despite repeated predictions that genomics would re- 
revolutionise the study of avian brood parasitism as molecular meth-
ods	did	in	the	90s	(Sorenson	&	Payne,	2002;	Stoddard	&	Kilner,	2013; 
Tanaka, 2016), there has been relatively little work making use of 
data or insights from high- throughput sequencing (Figure 1 and 
Figure S1). This is surprising when compared to the use of genom-
ics to tackle other evolutionary questions about hosts and parasites 
(Andrews	et	al.,	2016) and the contributions of biologists working on 
avian genetics and genomics (Wink, 2019). For example, they were 
instrumental in developing the field of quantitative genetics with an 
animal	model	approach	 (Merilä	&	Sheldon,	2001), generated a de-
tailed understanding of avian genome structure (Zhang et al., 2014) 
and conducted some of the first studies of genomic adaptation in 
wild populations (Bay et al., 2018; Kraus, 2019). Therefore, here we 
discuss how applying genomic tools to avian brood parasitic systems 
could be used to better predict (i) where and when brood parasit-
ism should evolve, (ii) when and how hosts defend, or (iii) how co-
evolutionary trajectories depend on ecological change, three major 

BOX 2 Forming collaborative teams to take the 
field forward?

Behavioural ecology was built on the foundation of 
Tinbergen's four questions (Tinbergen, 1963): we can only 
understand a behavioural trait by investigating its underly-
ing mechanisms, how the trait develops, its evolutionary 
history, and its function (i.e. effect on fitness). Tinbergen 
stressed that answers to each question were complemen-
tary rather than mutually exclusive, and behavioural ecol-
ogy has since grown into one of the most integrative fields 
in biological sciences (Monaghan, 2014). While genomic 
methods could become a useful part of our toolkit to an-
swer aspects of each question, our goal is not to advo-
cate for all behavioural ecologists to become experts in 
genomics. Neither should molecular ecologists necessarily 
all become experts in behaviour. Rather, we should form 
collaborative teams that make use of our wide range of 
complementary skill sets (Figure B1): the four specialists 
represent the different levels of inquiry from conceptual 
question framing to technical problem solving and move 
between phenotypic and genotypic approaches. Naturally, 
the number of people does not need to be four—many sci-
entists may sit closer to the centre on both axes and thus 
bridge the gap between solely phenotypic or genotypic 
approaches.

To illustrate the potential benefits of interdisciplinary 
collaboration here we present a hypothetical workflow 
(Box 2, Figure B1b) from planning, data collection and 
analysis to reporting. The specific sampling design re-
quired for genetic samples, what phenotypes need to be 
quantified, and even the genomic analyses necessary to 
test hypotheses will require input from each team mem-
ber: Behavioural ecologists ask hypothesis- driven ques-
tions based on detailed knowledge of the natural history 
of the study organism to account for different selection 
pressures and confounding factors. However, jumping to 
the genomic era will require detailed knowledge of the 
available methods and the theory behind them to enable 
efficient communication between fields. Collecting accu-
rate behavioural data and analysing it in a meaningful way, 
or even finding and sampling enough individuals in their 
natural	habitats	requires	field	skills.	DNA	extraction	and	
sequencing can often be outsourced, yet the subsequent 
preprocessing of the massive genomic data and choosing 
appropriate methods to draw biologically meaningful infer-
ences from it requires knowledge of bioinformatics. Finally, 
collaborative discussions throughout the process will aid 
the team in reporting their results and conclusions in a 
precise but understandable way to the benefit of wider 
audiences interested in behavioural evolution.
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    |  7 of 18RÖNKÄ et al.

questions in a field aiming for a deeper understanding of coevolu-
tionary dynamics (Thorogood et al., 2019). Even though we focus 
on long- standing questions in avian brood parasitism, these three 
key concepts (evolutionary origins, plasticity, geographic selection 
mosaics) are of broad relevance across ecology and evolution.

2.1  |  Where and when should brood parasitism 
evolve?

Darwin (1859) proposed that avian brood parasitism evolved from 
an	ancestor	with	parental	care.	Since	then,	three	key	pathways	have	
been suggested (see Krüger & Pauli, 2017 for an in- depth discussion): 
by evolving directly from parental care (Yom- Tov & Geffen, 2006), 
via conspecific brood parasitism as a ‘stepping stone’ (Lyon & 
Eadie, 1991; Payne, 1977), or via cooperative breeding as a precur-
sor (Hamilton & Orians, 1965). Ecological conditions and changes 
in life- history traits are also likely to have influenced the transition 
(Davies, 2000; Hamilton & Orians, 1965). However, previous at-
tempts to test these hypotheses using phylogenetic comparative 
methods have produced mixed results depending on the phylogeny 
used. For example, the first analyses to use molecular phylogenies 
developed	 in	 the	 early	 2000s	 (Aragón	 &	 Soler,	 1999 from cytb, 
Johnson et al., 2000 from cytb, and ND2 mitochondrial genes) sug-
gested that parasitism evolved in Cuculidae cuckoos to reduce the 
costs of reproduction associated with migration and a change in diet 
(Krüger & Davies, 2002) while a similar analysis using an improved 
phylogeny with a different topology and branch lengths suggested 
parasitism evolved before migration (Boerner & Krüger, 2008). Even 
these results may not be accurate, however, as the phylogeny they 
used included only a small fraction of the mitogenome and no nu-
clear	markers	(Sorenson	&	Payne,	2005), leaving some of the older 
branching events and relationships among subfamilies unresolved. 

This problem is retained in the most up- to- date phylogenies of birds 
whether they prioritise taxonomic coverage (Jetz et al., 2012) or use 
more markers (Prum et al., 2015). Furthermore, brood parasitism has 
evolved independently only seven times in birds, which has limited 
the statistical power of previous comparisons. How can genomic 
tools be used to resolve fundamental questions about the origins of 
brood parasitism?

The first step would be to use genomic data to improve the res-
olution of a phylogeny that includes as many extant brood parasites 
as possible, as well as their hypothesised relatives. While this could 
be achieved using reduced sampling methods e.g. ultraconserved el-
ements	 (UCEs)	or	RAD-	seq	 (Manthey	et	 al.,	2016), whole- genome 
data becoming available from e.g. the Bird 10,000 Genome (B10K) 
project (Feng et al., 2020) would improve phylogeny robustness 
and provide more in- depth information to estimate evolutionary 
pathways and trait evolution (Kapli et al., 2020). For example, in-
congruences between species and single- gene trees can be used to 
detect rapid speciation and diversification events associated with 
life- history changes (e.g. via incomplete lineage sorting and/or in-
trogression; Cole et al., 2022). Or, whole- genome sequences from 
multiple parasitic and non- parasitic species could be compared in 
a phylogenetic context to detect e.g. gene loss (Feng et al., 2021; 
Zhang et al., 2014) related to parental care, and/or molecular ad-
aptations possibly associated with a transition to parasitism (e.g. 
positively selected genes, rapidly evolving genes, pseudogenes; 
Cole et al., 2022). This approach would also enhance predictions of 
both the timing and the ecological and biogeographical conditions 
that facilitate the evolution of this strategy (e.g. see Cole et al., 2022 
for an example investigating behavioural transitions in penguins). 
Moving from phylogenetics to comparative phylogenomics however 
requires careful consideration of the potential pitfalls in big data sta-
tistics	 (Cornuault	&	 Sanmartín,	2022; Young & Gillung, 2020) and 
model interpretation (Louca & Pennell, 2020).

F I G U R E  B 1 (a)	Composition	of	an	
ideal collaborative team to bridge the 
gap between molecular and behavioural 
ecology.	(b)	A	hypothetical	workflow	
of behavioural ecologists and natural 
historians (green) working with molecular 
ecologists and bioinformaticians (blue), 
from project conception to completion 
(large	grey	arrow).	Smaller	arrows	indicate	
each step with their width highlighting 
essential points in the collaboration. Note 
that	DNA/RNA	extraction	and	sequencing	
(shown as stippled) are likely to be 
outsourced.
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Genomic approaches can also bypass the limitation of seven 
independent origins of avian brood parasitism, since comparing 
whole genome or transcriptomic data of even a single brood par-
asitic species with non- parasitic relatives can reveal interesting 
evolutionary pathways. For example, comparing genome struc-
ture and gene expression among just three species (representing 
a kinetoplastid host, a protozoan parasite, and its closest known 

free- living relative) enabled Jackson et al. (2016) to pinpoint pat-
terns of genomic streamlining (i.e. gene loss for functional redun-
dancy and subsequent radiations of novel gene families) associated 
with becoming a parasite. Transcriptomics has also started to be 
used to explore the loss of parental care in avian brood parasites. 
By comparing differentially- expressed genes in the preoptic area 
of the brain (implicated in parental behaviour across vertebrates) 

F I G U R E  2 Examples	of	the	arms	races	between	avian	brood	parasites	and	their	hosts.	Row	1:	Virulence	(a)	low—bronzed	cowbird	
Molothrus aeneus with Bewick's wren Thryomanes bewickii host chicks, (b) high—common cuckoo removing reed warbler's egg (c) mutualism—
great spotted cuckoo and crow Corvus corone host; Row 2: Defences (d) mobbing, (e) egg rejection, (f) chick rejection; Row 3: Mimicry (g) 
hawk mimicry by adult Cuculus cuckoos, (h) Prinia egg mimicry by cuckoo finch, (i) host chick (left) mimicry by Chalcites cuckoo species (right). 
Image	credits:	(a)	Rolf	Nussbaumer/Alamy	Stock	Photo,	(b)	Richard	Nicoll,	(c)	Vittorio	Baglione.	(d)	Alan	McFadyen/Scott	ishph	otogr	aphyh	
ides. com,	(e)	Oldrich	Mikulica.	(f)	Alfredo	Attisano,	(g)	left	panel:	Frans	Lemmens/Alamy	Stock	Photo;	right	panel,	Mike	Lane/Alamy	Stock	
Photo,	(h)	Claire	Spottiswoode,	(i)	Naomi	Langmore.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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with	 three	 related	 Icterid	 species	 (using	 RNA-	seq	 data),	 Lynch	
et al. (2019) suggested a molecular pathway for the loss of pa-
rental care as the two parasitic species showed more juvenile- like 
(i.e. neotenic) patterns of gene expression than their non- parasitic 
sister species. Phenotypes are now thought to be more likely to 
arise from changes in gene interactions than novel gene mutations 
(Heng, 2019), so investigating differential gene expression at the 
network level (e.g. gene co- expression network alignment, Ovens 
et al., 2021) is likely to be a particularly helpful next step in infer-
ring when and how brood parasitism evolved. Furthermore, while 
interpreting the evolutionary significance of comparative patterns 
of gene expression (or any genomic data) is challenging without 
knowledge of gene function, gene networks can also help to 
infer function (Ovens et al., 2021; Raina et al., 2023). The specific 
functions and regulatory pathways of genes associated with be-
havioural traits in higher organisms remain poorly known (Box 1), 
but as more functional annotations of genes involved in parental 
care become available, it may become possible to compare be-
tween different parasite–host systems and track the evolution of 
brood parasitism back in time.

Comparative analyses like these described above are more reli-
able and powerful when conducted with multiple species across a 
well- resolved phylogeny (Deutekom et al., 2019). However, even if 
the phylogeny for brood parasites is improved using genomic data, 
analyses may still be limited by a lack of behavioural and ecological 
data. For example, a phylogenetically controlled study investigating 
associations between brood parasitism and the characteristics of 
Australasian	and	sub-	Saharan	African	species	used	as	hosts	(Feeney	
et al., 2013) suggested that brood parasitism promotes the evolution 
of cooperative breeding (e.g. for improved host defences) but a sec-
ond study with a dataset expanded to include hosts of brood par-
asites	 from	Asia	and	 the	Americas	concluded	 the	opposite—brood	
parasites are attracted to cooperatively breeding hosts for enhanced 
parental care (Wells & Keith Barker, 2017). In common with many 
studies of behaviour (Brouwer & Griffith, 2019; Cockburn, 2020), 
ecological data for brood parasites has traditionally been highly bi-
ased towards temperate regions (Thorogood et al., 2019), leaving 
replicated data on reproductive mode and other life history traits of 
brood	parasite	(and	host)	taxa	in	the	tropics	lagging	behind.	Although	
this is improving (see Kennerley et al., 2022), it is likely that targeted 
sampling of brood parasites and families taking both phylogenetic 
and biogeographical bias into account (Brouwer & Griffith, 2019) will 
be necessary to finally determine when, why and how brood parasit-
ism has evolved in birds.

2.2  |  When and how should hosts defend?

Explaining when and how hosts evolve defences is a key question in 
any host–parasite system as it determines the persistence of both. 
However, while brood parasite hosts have provided excellent ex-
amples of behavioural defences (Figure 2), we still lack a compre-
hensive understanding of how defences arise, why they sometimes 

persist in allopatry (including during speciation events, e.g. Kuehn 
et al., 2014), or whether the absence of resistance in some hosts 
indicates evolutionary lag (i.e. there has not yet been time to evolve 
defences) versus alternative strategies to cope with the fitness costs 
of	parasitism	(i.e.	tolerance,	Avilés,	2017). One model suggests that 
behavioural	plasticity	might	provide	an	answer	(Manuel	Soler,	2014), 
where changing environments and selection pressures lead spe-
cies to either lose plasticity (e.g. 100% of individuals reject foreign 
eggs, cuckoo goes extinct), or lose the trait (i.e. host goes extinct). 
However, this model is challenging to test since the absence of a 
behavioural response in the field does not necessarily mean that the 
ability to perform the defence is absent (i.e. genetic polymorphism 
vs. behavioural plasticity). For example, hosts may ‘fine- tune’ costly 
egg rejection defences to match their perceived risk of parasitisim 
(Thorogood & Davies, 2013) and even in populations or species that 
are allopatric from parasites, altering the perceptual (Lahti, 2006) 
or physical (Yang et al., 2020) challenge of identifying cuckoo eggs 
experimentally can elicit apparently ‘lost’ egg rejection. However, in- 
depth knowledge about plasticity and/or tolerance is unfortunately 
still lacking beyond a handful of host species (Cotter et al., 2019; 
Soler,	 2014). How could we use genomic data to disentangle hy-
potheses for trait absence and determine when and how defences 
evolve?

Field methods to test for plasticity and tolerance require careful 
(and time- consuming) design to rule out cryptic defence traits and it 
is not feasible to test for plasticity in every current, potential or past 
host species. If we knew the genetic basis for a defence behaviour 
then it would be possible to test hypotheses about evolutionary 
histories across populations or species lacking such high- quality be-
havioural data. However, attempts to ‘find the gene’ for egg rejection 
by comparing individuals within species have had limited success: 
while using microsatellites to estimate levels of gene flow between 
parasitised and unparasitised magpie Pica pica	populations	(Martín-	
Gálvez et al., 2006, 2007) helped to identify a candidate marker 
for its rejection of great spotted cuckoo Clamator glandarius eggs 
(Martín-	Gálvez	 et	 al.,	2006), the same marker was not associated 
with egg rejection in a host species of common cuckoos (the great 
reed warbler Acrocephalus arundinaceus, Procházka et al., 2014). This 
may be because both host species adjust their defences based on 
experience	and	context	(Martínez	et	al.,	2020; Moskát et al., 2014), 
making detection of genetic associations with the ‘absence’ of the 
trait challenging, and this line of inquiry has not continued into the 
genomic era.

Instead, we could use a combination of comparative genomic 
analyses to determine which species would be best to target next 
with limited resources for field experiments. Rather than rely on 
genome- wide association studies within species (best suited for de-
tecting large- effect genes, see Box 1), genome architectures could 
be compared across host species. High- quality reference genomes 
are now available for brood parasite hosts with rich behavioural data 
(e.g. superb fairy wren Malurus cyaneus: Peñalba et al., 2019, great 
reed	warbler:	 Sigeman	et	 al.,	2020; Westerdahl et al., 2022, com-
mon reed warbler Acrocephalus scirpaceus:	 Sætre	et	 al.,	2021) and 
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comparing chromosome synteny among groups of well- studied host 
species that show little or no plasticity in their defences (e.g. some 
past and present cowbird hosts, Kuehn et al., 2014; Rothstein, 2001) 
could reveal e.g. candidate inversions associated with behavioural 
differences (see Bentley et al., 2022 for a recent example of using 
this approach to detect evolution of sensory and immune system 
adaptations with sea turtles). Identifying the nature of the genomic 
regions underlying defences would also greatly improve our under-
standing	of	trait	evolution	(Spottiswoode	et	al.,	2022). For example, 
if egg rejection behaviour is associated with an inversion (detected 
using comparative genomics), then it may be difficult to evolve as 
it requires large changes in the genome. However, it could arise via 
introgression from other populations (see Question 3) or during 
speciation	(Stolle	et	al.,	2022). If similar changes to genomic regions 
were shared among host species, results could be used to develop 
markers to detect defences in species where either behavioural data 
is unknown or difficult to obtain, or where they may be cryptic/plas-
tic. Broad- interest research efforts are rapidly increasing the avail-
ability of reference genomes (e.g. Vertebrate Genomes Project, Paez 
et al., 2022; B10K, Feng et al., 2021) to complement the ones already 
available for host species where defences have been tested (Peñalba 
et al., 2019;	 Sætre	 et	 al.,	2021;	 Sigeman	 et	 al.,	2020; Westerdahl 
et al., 2022), but even using improved genome- based phylogenies 
for birds (Feng et al., 2021) could help in targeting research efforts. 
For example, a species that never expresses a defence although all of 
its close relatives do, could be interesting to target for high- quality 
genome sequencing and behavioural experiments designed to in-
duce plasticity of host defences.

The second genomic approach that can be taken without prior 
knowledge of the genes underlying behavioural defences would be 
to use population genetic theory within species to ask if observed 
genomic patterns fit one of the evolutionary scenarios (i.e. missing 
adaptation vs. tolerance). In practice, this would require combining 
multiple approaches to account for different evolutionary forces 
causing genomic patterns. For example, if we have both behavioural 
and genomic data from host populations before and after invasion 
by cuckoos, we could use simulations to compare allele frequency 
changes to a neutral model without selection (i.e. using coalescent 
theory, Beichman et al., 2018).	Such	changes	can	then	be	compared	
to	 the	 output	 of	 flexible	 simulation	 frameworks	 (SLiM,	 Haller	 &	
Messer, 2019; Nemo, Guillaume & Rougemont, 2006), which take 
key parameters inferred from the populations of interest (such as 
mutation rate and fitness) into account to test different evolutionary 
processes.	Although	it	is	clear	that	rejecting	a	virulent	parasite	will	
improve a host's reproductive success, the heritability of expressing 
a defence (or not) is yet to be estimated for any brood parasite–host 
but is necessary to test evolutionary models accurately. To over-
come this problem, we could sequence (behaviourally tested) accep-
tor and rejector individuals from a recently parasitised population 
(where selection for rejection is strong) to build a pedigree from the 
genomic data and quantify fitness based on reproductive output 
(Chen et al., 2019). This approach could be combined with others fo-
cusing on nascent selective sweeps when detecting genomic regions 

with longer runs of homozygosity (Gautier et al., 2017). Finally, ge-
nomic estimates of effective population size through time could also 
inform the fitness trajectory of various populations before and after 
invasion and be combined with evolutionary simulations (Mathur 
et al., 2023).	Study	systems	sampled	in	at	least	two-	time	points	with	
a known parasitism history can be difficult to find in the wild, al-
though ongoing range shifts due to climate change, habitat modifi-
cation, or invasions could provide amenable study systems (see Grim 
&	Stokke,	2016).

2.3  |  Will coevolution persist across time and space 
with ecological change?

As	 discussed	 in	 Question	 2,	 all	 potential	 host	 species	 should	 in	
theory evolve defences and render parasitism untenable given suf-
ficient time (also see Rothstein, 1990). How is it possible then, that 
brood parasites have persisted for millions of years (Question 1)? 
Furthermore, and perhaps most importantly, can we predict what 
will happen next to hosts and brood parasites, given rapid envi-
ronmental change? The Geographic mosaic of coevolution theory 
(GMT, Thompson, 1999, 2005) provides a compelling framework 
to answer these questions. First, it explains how antagonistic co-
evolution can continue for long periods: local environmental vari-
ation, population dynamics and demographics, gene flow, mutation 
and drift combine to produce mosaics of reciprocal selection (‘hot 
spots’) and non- reciprocal selection (‘cold spots’) in time and space 
(Figure 3). The key cold spot that allows parasites to persist is where 
selection on hosts is sufficiently relaxed that they lose their de-
fences. This then allows parasites to eventually reinvade (although 
some work suggests that it is variation in the parasite's virulence 
that determines long- term success (Kaur et al., 2019).	 Second,	 in-
sight into the component parts of GMT can better facilitate predic-
tions about adaptive potential and interacting species' resilience 
to rapid environmental change (Benkman et al., 2008; Hoberg & 
Brooks, 2015; Penczykowski et al., 2016; Thorogood et al., 2020). 
However, there have been few attempts to test GMT with avian 
brood	parasites	and	 their	hosts	 (Ruiz-	Raya	&	Soler,	2017), despite 
them being a putative example in the theory's seminal publications 
(Thompson, 1999, 2005). Behavioural experiments have revealed 
spatial correlations between host and parasite traits (e.g. reed war-
blers vs. common cuckoo: Davies & Brooke, 1988; Lindholm, 1999; 
Lindholm & Thomas, 2000;	 Stokke	et	 al.,	2008; magpies vs. great 
spotted	cuckoo:	Soler	et	al.,	1999); prinias and parrotbills vs. com-
mon cuckoo: Yang et al., 2015, 2020), providing evidence for hot 
spots as well as cold spots where parasitism is absent and defences 
vary, but we lack quantitative estimates of the strength of selection 
and trait remixing at the genomic level. These estimates are essential 
(Nash et al., 2008; Nuismer et al., 2010) to explain how coevolution-
ary interactions persist in time (Gomulkiewicz et al., 2007). There 
have been some attempts to quantify gene flow and local allele fre-
quencies of a putative candidate marker for egg rejection in mag-
pies	(Martín-	Gálvez	et	al.,	2007), but this is where studies on brood 
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parasitism, and tests of GMT for behavioural coevolution more 
broadly, have hit a stumbling block.

How can we quantify selection mosaics and trait remixing in 
avian brood parasite–host systems, given that the heritable mecha-
nisms of coevolved traits remain largely unknown? Here again, com-
bining empirical data with new molecular methods could offer ways 
forward.	 Landscape	 genomics	 (Gene–Environment	 Association	
studies,	 GEA,	Table 1) uses genomic and environmental data col-
lected across a species distribution, or along an environmental gra-
dient of interest. Neutral markers are used to infer the underlying 
spatial and genetic population structure, environmental associations 
can be tested by incorporating e.g. abiotic climatic variables, and 
any remaining markers associated with the environmental variable 
of interest (e.g. current parasitism rate) are evidence of selection. 
However, this method has rarely been used to test for associations 
with biotic variables (Zueva et al., 2018). The space- for- time substi-
tution inherent to landscape genomics (Rellstab et al., 2015) could 
also help solve a major issue: detecting selection usually requires 

long- term data (Teplitsky et al., 2014). However, behavioural studies 
are rarely replicated in time and space, although recent invasions 
of brood parasites to new areas and range edge populations pro-
vide unique opportunities to observe coevolution in action (Grim & 
Stokke,	2016).	Studying	spatial	variation	in	egg	polymorphism	(Yang	
et al., 2017)	and	egg	rejection	(Grim	&	Stokke,	2016) has been sug-
gested to overcome the lack of long- term behavioural datasets, but 
there have thus far been no attempts to evaluate the genomic con-
sequences of environmentally varying brood parasitism risk in avian 
hosts.

With these landscape and comparative genomic approaches, 
it becomes possible to directly measure levels of selection, gene 
flow	and	trait	remixing.	A	major	strength	of	genomic	approaches	is	
the possibility to apply several methods with the same dataset to 
strengthen	 results:	GEA	 can	 be	 combined	with	QTL	 (Quantitative	
Trait Locus analyses, Table 1)	or	GWAS	(Genome-	Wide	Association	
Studies,	 Table 1) to further study which loci are associated with 
host–parasite coevolution and which with unrelated environmental 

F I G U R E  3 A	hypothetical	geographic	mosaic	of	coevolution	between	a	brood	parasitic	cuckoo	and	a	warbler	host	(key	components	in	
bold text), modified from (Thompson, 2005): Circles represent locations where selection varies and arrows between circles describe the 
direction of gene flow	(red	is	host,	purple	is	cuckoo,	and	black	represents	similar	gene	flow	of	both).	Arrow	thickness	indicates	trait remixing 
essential for maintaining genetic variation: If gene flow is absent then local fixation of alleles increases, whereas high levels of gene flow 
cancel out local adaptation. Reciprocal selection occurs in ‘hotspots’ and non- reciprocal selection occurs in ‘coldspots’; these vary according 
to local population dynamics e.g. (a) strong gene flow of experienced hosts or (b) locally fixed host defences exert stronger selection on 
local cuckoos, or (c) a recently invaded host population lacks defences or (d) ‘spill over’ of cuckoos from another host species exerts stronger 
selection on hosts. Coldspots also arise when (e) hosts and cuckoos do not co- occur (i.e. relaxed selection). Behaviour could influence each 
component: Local environmental conditions determine the relative fitness of expressing or retaining behavioural defences (especially when 
plastic) when parasitism is low (i.e. strength of selection), movement of behavioural phenotypes is unlikely to be homogenous (i.e. affecting 
direction and specific genotypes during gene flow), and both defences and population dynamics can depend on the behaviour of others' 
phenotypes/genotypes (i.e. indirect genetic effects).

(a)

(b)

(c)(d)

(e)
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factors. In systems where we have detailed knowledge of host and 
parasite behaviour, demography, and genomics, it could therefore 
be possible to move beyond the phenotypic gambit. For example, 
genome- wide markers have been associated with climate adaptation 
in yellow warblers Setophaga petechia, and used to predict future vul-
nerability to climate change (Bay et al., 2018). Yellow warblers, how-
ever, are also a common host of the brown- headed cowbird Molothus 
ater and the expression of host defences and levels of parasitism 
vary geographically (Kuehn et al., 2016). These data could be used 
to zoom in and look for the molecular mechanisms underlying be-
havioural coevolutionary adaptations (Box 1). Molecular resources 
are	also	becoming	available	for	the	reed	warbler	(Sætre	et	al.,	2021), 
in addition to the wealth of existing knowledge on geographic varia-
tion	in	defence	behaviours	(Stokke	et	al.,	2008).	Studying	such	avian	
brood parasites and host systems would complement the current in-
terest in detecting molecular evidence for biotic selection as exam-
ples of behavioural coevolution are few (e.g. ants: Kaur et al., 2019), 
and most studies of the genomic changes associated with defense 
traits in antagonistic coevolution come from systems in vivo (Nair 
et al., 2019). However, accurate predictions of future coevolution-
ary trajectories require further development of models that take 
all evolutionary forces into account, and not only selection (i.e. ef-
fective migration, mutation, recombination, and drift, Hahn, 2018; 
Luikart et al., 2018). This is a major goal in population genomics, and 
methods are rapidly developing to e.g. better understand the eco-
logical	 processes	 that	 affect	 coevolutionary	 dynamics	 (Amandine	
et al., 2022) and to trace back the geographical locations of genetic 
ancestors (Osmond & Coop, 2021). In summary, analysing genomic 
data along with behavioural data in a brood parasite–host system 
in the wild could not only test the theory of a geographic mosaic of 
coevolution using direct genetic evidence but also help study three 
avenues of inquiry: speciation of hosts and parasites, persistence of 
antagonistic coevolutionary interactions in time and maintaining re-
silience to rapid ecological change.

3  |  CONCLUDING REMARKS

Here we have shown that investing in analysing genomic data along 
with behavioural data in a brood parasite–host system could lead 
to advances in understanding the evolutionary origins of behav-
ioural strategies, the fitness outcomes of plastic trait expression, 
the persistence of antagonistic coevolutionary interactions in time, 
and how resilience to rapid ecological change may be maintained. 
These themes are of broad interest beyond avian brood parasitism 
and show that genomic tools can be used to find answers to more 
than mechanistic questions. By applying genomic comparisons at 
different levels ranging from within individuals to between popula-
tions and species, we can also address how behaviour develops or 
changes through ontogeny, its adaptive value, and its evolutionary 
past. In other words, genomic tools can be integrated with behav-
iour to find answers to all of Tinbergen's ‘four questions’ (see Box 2/
Table 1 and outstanding questions in Box 3).

Although	we	have	emphasised	in	our	review	what	can	be	done	
with genomic tools beyond finding the gene for behaviour, it is im-
portant to note that genomic and phenotypic data, and insights 
about function, evolutionary history, and plasticity gained from 
these approaches can also complement a mechanistic understand-
ing of trait heritability (Box 1). For example, comparative analyses 
among species (e.g. phylogenetic comparative method, Question 1; 
chromosome synteny, Question 2) may identify a genomic region 
that appears repeatedly in association with a behavioural trait. Or, 
using landscape genomic approaches that compare across space 
rather than time (e.g. Question 3), regions associated with current 
selection would be good candidates for more mechanistic ap-
proaches. Or, vice versa, if we knew the ‘gene for behaviour’, we 
could for example track the evolutionary history of the behaviour 
more precisely across taxa (Question 1), determine the capacity for 
a behaviour directly from the genotype without behavioural testing 
(i.e. ‘reverse ecology’, Li et al., 2008), disentangle the heritable and 
plastic components of trait expression (Question 2), collect more di-
rect evidence of selection (Questions 2 & 3), and even predict future 
adaptations (Kaur et al., 2019). Indeed, our review is not intended to 
negate the need for behavioural genomics but if we can use broad 
approaches across teams, we may be more likely to come closer to 
the key goal of understanding trait evolution.

Throughout this article, we have argued why integrating genomics 
into behavioural ecology could be beneficial, but behavioural ecolo-
gists could also help resolve several outstanding issues in genomics. 

BOX 3 Outstanding questions

• Do rates of molecular and phenotypic evolution vary be-
tween avian brood parasites and hosts?

• Egg coloration has long been a focus but we have not 
discussed it here. What are the molecular mechanisms 
that facilitate rapid changes in egg colouration during 
evolving host–parasite arms races? How is egg or plum-
age colouration polymorphism maintained?

• What platforms are needed to best bring behavioural 
ecologists and molecular ecologists together to better 
integrate Tinbergens' four questions?

• If we find candidate genes for behaviours, can field- 
friendly methods be developed to experimentally test 
gene function?

• When does behavioural plasticity facilitate or hinder ad-
aptation? This will require a deeper integration of behav-
ioural experiments with epigenomics.

• Can a richer understanding of behavioural interactions 
improve heritability estimates in studies of genetic and 
non- genetic inheritance (or indirect genetic effects)?

• Do new behavioural adaptations occur from selection 
acting on standing genetic variation, introgression or 
new mutations?
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For example, genomics has been criticised for being data- driven rather 
than led by hypotheses (Kell & Oliver, 2004;	Stern,	2019), and increas-
ingly reliant on searching for correlations rather than experiments to 
test causation (Voit, 2019).	At	 the	 same	 time,	 adopting	 a	Tinbergian	
approach from behavioural ecology could help move forwards as it 
integrates mechanisms with development, function and evolutionary 
history to test hypotheses (see Nesse, 2013 for discussion of how this 
could	revolutionise	many	fields).	Similarly,	variation	in	behaviour	is	often	
perceived to be more difficult to measure than physical traits, but the 
underlying	heritability	of	both	is	intertwined	(Auman	&	Chipman,	2017; 
Davidson, 2010). Reading genome sequences has been insufficient to 
explain phenotypic variation (Battaglia, 2020; Charney, 2012; Chevin 
et al., 2022) and has instead revealed that closing the gap requires un-
derstanding links between the genotype, phenotype, environment and 
species interactions across biological levels (Corning, 2020;	Sanger	&	
Rajakumar, 2019). Behavioural ecologists could bring a deep under-
standing of how and what to measure, as well as the ecology underlying 
the trait in question (Vignal & Eory, 2019), to frame hypotheses appro-
priately.	Since	genomics	are	evolving	rapidly,	any	step-	by-	step	guide	for	
integrating genomic tools to behavioural ecology will soon be outdated. 
Instead, we urge forming collaborative teams (Box 2) to make use of 
our wide range of complementary skill sets. We now have a plethora 
of sequencing techniques and massive datasets becoming available, 
and utilising these data will require appropriate analysis methods that 
are carefully designed to address questions about polygenic traits with 
inherent plasticity. Working together we can finally close the pheno-
type–genotype gap (Kratochwil & Meyer, 2015).
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