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A B S T R A C T

Muller’s ratchet, in its prototype version, models a haploid, asexual population whose size 𝑁 is constant
over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate,
and individuals carrying less mutations have a selective advantage. The classical variant considers fitness
proportional selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et
al. (2009) we propose a parameter scaling which fits well to the ‘‘near-critical’’ regime that was in the focus of
Etheridge et al. (2009) (and in which the mutation–selection ratio diverges logarithmically as 𝑁 → ∞). Using
a Moran model, we investigate the‘‘rule of thumb’’ given in Etheridge et al. (2009) for the click rate of the
‘‘classical ratchet’’ by putting it into the context of new results on the long-time evolution of the size of the
best class of the ratchet with (binary) tournament selection. This variant of Muller’s ratchet was introduced in
González Casanova et al. (2023), and was analysed there in a subcritical parameter regime. Other than that
of the classical ratchet, the size of the best class of the tournament ratchet follows an autonomous dynamics
up to the time of its extinction. It turns out that, under a suitable correspondence of the model parameters,
this dynamics coincides with the so called Poisson profile approximation of the dynamics of the best class of
the classical ratchet.
1. Introduction

Muller’s ratchet is a prototype model in population genetics. Orig-
inally it was conceived to explain the ubiquity of sexual reproduction
among eukaryotes despite its many costs (Muller, 1964; Felsenstein,
1974). In its bare bones version, Muller’s ratchet models a haploid,
asexual population whose size 𝑁 is constant over the generations. The
neutral part of the random reproduction is given by a Wright–Fisher or
a Moran dynamics. Slightly deleterious mutations are acquired along
the lineages at a rate 𝑚, and individuals carrying less mutations have
a selective advantage. The classical variant of Muller’s ratchet consid-
ers fitness proportional selection, where the selective advantage of an
individual carrying 𝜅 deleterious mutations over a contemporanean
that carries a larger number 𝜅′ of deleterious mutations is s

𝑁 (𝜅′ −
𝜅). Since the mutation mechanism is assumed to be unidirectional,
every once in a while the type with the currently smallest number
of mutations 𝜅 will disappear from the population. As Herbert Muller
puts it in his pioneering paper (Muller, 1964), ‘‘an irreversible ratchet

∗ Corresponding author.
E-mail address: igelbrink@math.uni-frankfurt.de (J.L. Igelbrink).

mechanism exists in the non-recombining species . . . that prevents selection,
even if intensified, from reducing the mutational loads below the lightest
. . . , whereas, contrariwise, ‘drift’, and what might be called ’selective noise’
must allow occasional slips of the lightest loads in the direction of increased
weight.’’

It is these ‘‘slips of the lightest loads’’ which are called clicks of the
ratchet. The question ‘‘How often does the ratchet click?’’ was asked
by Etheridge, Pfaffelhuber and one of the present authors in Etheridge
et al. (2009), and there it was found that

𝛾 ∶= 𝑚
s log(𝑁𝑚)

(1.1)

is ‘‘an important factor in determining the rate of the ratchet ’’. Specifically,
under the assumption 1 ≪ 𝑁𝑚 ≪ 𝑁 , Etheridge et al. (2009) states the
following Rule of Thumb for the classical ratchet:

(RTC) The rate of the (classical) ratchet is of the order 𝑁𝛾−1𝑚𝛾 for
𝛾 ∈ ( 12 , 1), whereas it is exponentially slow in (𝑁𝑚)1−𝛾 for 𝛾 < 1

2 .
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Fig. 1. This is an illustration of the Rule of Thumb (RTC) predicting the order of magnitude of the interclick times of the classical ratchet. Each data point was obtained by
pooling the interclick times no. 50 to 150 from 100 simulations of the (classical) ratchet for the corresponding parameter configuration (𝑁, 𝛽, 𝛿) in the (𝛽, 𝛿)-scaling (1.2). In the
xponential regime, (RTC) predicts an order of magnitude exp(𝑐 𝑁1−𝛽−𝛿 ) for the interclick times. In panel (A), we see that the constant 𝑐 is difficult to estimate from simulations
p to 𝑁 = 104, but 𝑐 = 2.3 as chosen there gives a reasonable fit. For the polynomial regime, (RTC) predicts the order of magnitude 𝑁1−𝛿 , which fits very well the data in the
ituation of panel (B).
r

With the mutation–selection ratio

∶= 𝑚
s
,

(RTC) predicts the expected interclick time in the case 𝛾 ∈ ( 12 , 1) as

(𝑁𝑚)−𝛾 = 𝑁𝑒−𝜃 .

As observed by John Haigh (Haigh, 1978), in the deterministic limit
𝑁 → ∞ and 𝑚, s not depending on 𝑁) the type frequency profile
n equilibrium becomes Poisson with parameter 𝜃. Consequently, for
∈ ( 12 , 1) the rule (RTC) goes along with Haigh’s prediction that the

ate of the ratchet should be proportional to the inverse of the size of
he best class.

For a polynomial mutation rate 𝑚 = 𝑁−𝛽 , 0 < 𝛽 < 1, the condition
hat 𝛾 remains constant (or at least bounded away from 0 and ∞) as
→ ∞ amounts to the requirement that the mutation–selection ratio

is of the order log𝑁 as 𝑁 → ∞.
For the purpose of illustration we will consider a family of param-

ter scalings for (𝑚, 𝜃) which we call the (𝛽, 𝛿)-scaling of the classical
atchet :

= 𝑁−𝛽 , 𝜃 = 𝛿 log𝑁. (1.2)

his amounts to moderate mutation–selection, with the mutation–selection
atio 𝜃 diverging logarithmically in 𝑁 . The factor 𝛿 in front of log𝑁
urns out to be critical for the click rate. Indeed, in the (𝛽, 𝛿)-scaling,
1.1) takes the form

(𝛽, 𝛿) = 𝛿
1 − 𝛽

.

he condition 0 < 𝛾 < 1 from (RTC) restricts the pair (𝛽, 𝛿) to the
riangle

∶= {(𝛽, 𝛿) ∶ 0 < 𝛽, 0 < 𝛿 < 1 − 𝛽}. (1.3)

The polynomial and the exponential regime predicted by (RTC) corre-
spond to

 ∶= { 1
2 < 𝛾(𝛽, 𝛿) < 1} = {(𝛽, 𝛿) ∈ 𝛥 ∶ 1

2 (1 − 𝛽) < 𝛿 < 1 − 𝛽},

 ∶= {0 < 𝛾(𝛽, 𝛿) < 1 } = {(𝛽, 𝛿) ∈ 𝛥 ∶ 0 < 𝛿 < 1 (1 − 𝛽)},
122

2 2
and the predictions for the orders of magnitude of the expected in-
terclick times take the form

𝑁(𝑁𝑚)−𝛾 = 𝑁1−𝛿 for 𝛾 ∈ ( 12 , 1), (1.4)

exp
(

const(𝑁𝑚)1−𝛾
)

= exp
(

const𝑁1−𝛽−𝛿) for 𝛾 ∈ (0, 12 ). (1.5)

In view of the predicted transition from polynomial to exponential
click rates we refer to  ∪  as a near-critical regime. See Fig. 1 for an
illustration of (RTC) via simulations.

The evidence for (RTC) that is given in Etheridge et al. (2009) is
based on a diffusion approximation for the evolution of the relative
size 𝑋0 of the best class (which consists of the individuals that carry
the least amount of mutations in the current population). Because of
the fitness proportional selection, the drift coefficient in this diffusion
approximation contains the first moment 𝑀 of the type frequency con-
figuration (𝑋0, 𝑋1,…). In order to obtain an approximate autonomous
dynamics for 𝑋0, the empirical first moment 𝑀 has to be predicted
based on 𝑋0. A classical way to do this uses the so-called Poisson profile
approximation, which we will explain in some detail in Section 3.

In the present paper we will consider a variant of Muller’s ratchet in
which fitness proportional selection is replaced by (binary) tournament
selection. This kind of selection has been studied in the context of
evolutionary computation (Blickle and Thiele, 1996; Bäck et al., 2018)
and has found attention also in the biological literature (Paixão et al.,
2015). In the ratchet’s context this means that selective advantage of
an individual carrying 𝜅 deleterious mutations over a contemporanean
that carries a larger number 𝜅′ of deleterious mutations is constant (say
𝑠
𝑁 for some 𝑠 = 𝑠𝑁 > 0), irrespective of the value of the difference 𝜅′−𝜅.
For the Moran version of the tournament ratchet, which was introduced
in González Casanova et al. (2023) and whose definition we recall in
Section 2, this means that ‘‘pairwise selective fights’’ are always won
by the fitter individual.

Other than in the classical ratchet, the size of the (𝑚, 𝑠)-tournament
atchet’s best class follows an autonomous dynamics up to its time

of extinction; at this time the class which was so far the second-best
becomes the best one. As we will see in Section 3, this dynamics is equal
to that of the Poisson profile approximation of the size of the classical
(𝑚, s)-ratchet’s best class, provided that

𝜌 ∶= 𝑚
𝑠

= 1 − exp(−𝑚∕s) = 1 − 𝑒−𝜃 . (1.6)
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Fig. 2. This is an illustration of the Rule of Thumb for the tournament ratchet (RTT) in the light of Theorem 3.4. Each data point was obtained by pooling the interclick times
o. 50 to 150 from 100 simulations of the tournament ratchet for the corresponding value of 𝑁 . Here, in panel (A) (𝛽, 𝛿) = (0.6, 0.28), which belongs to the polynomial regime  ,
nd in panel (B) (𝛽, 𝛿) = (0.8, 0.08), which belongs to the exponential regime  . Each panel shows two predictions based on the asymptotics of Theorem 3.4, using the initial values
= 𝑁1−𝛿 and b = 𝑁1−𝛿∕2, respectively. In the exponential regime the predictions using a and b, respectively, are virtually indistinguishable, while in the polynomial regime the

rediction using b is by far better than the one using a.
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We now state a main finding of the present paper.
Rule of thumb for the near-critical tournament ratchet (RTT):
As 𝑁 → ∞, the expected time between clicks is
√

𝑁
𝑚

if 𝑁𝑚(1 − 𝜌)2 → 0, (1.7)

≍ exp
(

𝑁𝑚(1 − 𝜌)2
)

if 𝑁𝑚(1 − 𝜌)2 → ∞. (1.8)

Here and below, ≍ stands for logarithmic equivalence, i.e. 𝑎𝑁 ≍ 𝑏𝑁
means log 𝑎𝑁 ∼ log 𝑏𝑁 , or equivalently log 𝑎𝑁

log 𝑏𝑁
→ 1.

We will not give a complete proof of (RTT) in this work, but will
resent Theorem 3.4 which gives strong evidence for its validity. See
ig. 2 for an illustration of (RTT) in the light of Theorem 3.4. In
emark 3.5 we will discuss what are the ingredients missing to go from
heorem 3.4 to a proof of (RTT), and we will also indicate a different
oute to the proof of (RTT), using the technique developed in González
asanova et al. (2023).

We emphasise that, in view of the correspondence (1.6), Theo-
em 3.4 also is a result on the asymptotics of the Poisson profile
pproximation of the classical ratchet, here in terms of Moran pro-
esses with mutation and selection. A similar asymptotics was obtained
n Etheridge et al. (2009) heuristically by passing right away to the
iffusion approximation for logistic branching processes.

In view of (1.6) we define, in analogy to (1.2), the (𝛽, 𝛿)-scaling for
the tournament ratchet as

𝑚 = 𝑁−𝛽 , 𝜌 = 𝑚
𝑠

= 1 −𝑁−𝛿 .

ith this scaling, (RTT) takes the following form: As 𝑁 → ∞, the
expected time between clicks is

≍ 𝑁
1+𝛽
2 if (𝛽, 𝛿) ∈  , (1.9)

≍ exp
(

𝑁1−𝛽−2𝛿) if (𝛽, 𝛿) ∈  . (1.10)

While both (RTC) and (RTT) state the same boundary (𝛾 = 1
2 ) between

the polynomial and the exponential regime, the exponents differ be-
tween (1.4) and (1.9) as well as between (1.5) and (1.10). Specifically,
in the polynomial regime  the exponent 1+𝛽

2 for the tournament
atchet is larger than the exponent 1 − 𝛿 for the classical ratchet.

Here is an explanation for the polynomial regime. The centers of
ttraction of the equilibrium profile weights of the best and the second

√

1 − 𝜌 = 𝑁
𝛿
2 for the
123

est class differ asymptotically by the factor i
tournament ratchet (see (3.5)), while they are given by the Poisson
weights 𝑒−𝜃 and 𝜃𝑒−𝜃 for the classical ratchet and hence for the latter
differ only by the factor 𝜃 = 𝛿 log𝑁 (and thus have the same polynomial
order 𝑁1−𝛿). This latter factor is only logarithmic in 𝑁 ; therefore,
when starting the ‘‘new best class’’ at the time of a click in its ‘‘old’’
center of attraction, the tournament ratchet has a longer way to go than
the classical ratchet. The exponent 1+𝛽

2 in (1.7) will be obtained by a
Green function analysis in the proof of Theorem 3.4. This analysis will
also explain the exponent 1 − 𝛿 in (1.4), which corresponds to Haigh’s
prediction, saying that ‘‘the interclick times are of the order of the size
of the best class’’. An intuitive explanation for the appearance of the
exponent 1− 𝛽 −2𝛿 in (1.8) will be given at the end of Section 3.2. The
reason why this exponent is different from the one appearing in (1.5)
is that Etheridge et al. (2009) work here not with the Poisson profile
approximation, but with (a rescaling of the diffusion approximation of)
the so-called relaxed Poisson profile approximation.

Similar as Etheridge et al. (2009), the papers Pfaffelhuber et al.
(2012), Neher and Shraiman (2012), Audiffren and Pardoux (2013),
Mariani et al. (2020), Bräutigam and Smerlak (2022) used a diffusion
approximation for the classical ratchet and modifications thereof. Met-
zger and Eule (Metzger and Eule, 2013) consider, as a proxy to the
classical ratchet, a two-type Moran model with selective advantage 𝑠
of type 0 over type 1 and mutation rate 𝑚 from type 0 to type 1. Their
ormula (8) corresponds to our formula (1.6) but their approximations
or the classical ratchet concentrate on a regime in which 𝜃 remains

bounded (see the discussion around (Metzger and Eule, 2013, (23)),
and also Waxman and Loewe (2010, (7),(8))), whereas we focus here
on a regime in which 𝜃 = 𝜃𝑁 diverges logarithmically in 𝑁 .

In González Casanova et al. (2023) it was discovered that the tour-
ament ratchet has a dual which consists of a hierarchy of competing
ogistic processes. The main results of González Casanova et al. (2023)
on the click rate of the tournament ratchet and its type frequency pro-
ile between clicks) were obtained for the so-called subcritical regime
see Section 2.2) and were proved there via duality, with the help
f recent results on logistic processes (see Lambert (2005), Sagitov
nd Shaimerdenova (2013), Chazottes et al. (2016)). This ‘‘backward
n time’’ view, which comes on top of an Ancestral Selection Graph
ecorated with mutation events, opens a route for proving the above
tated result (RTT) and for analysing the type frequency profile of the
ournament ratchet also in the near-critical regime. This will be pursued

n future work.
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In González Casanova et al. (2023) the rate of the tournament
ratchet was identified in the subcritical regime (i.e. for 𝜌 = 𝑚∕𝑠 < 1 and
not depending on 𝑁) up to logarithmic equivalence. Thus our Theo-
rem 3.4 (b), which is valid both for the near-critical and the subcritical
regime, provides an essential step in sharpening the rate asymptotics
of González Casanova et al. (2023) from logarithmic equivalence to
asymptotic equivalence, see Remark 3.5(a).

2. Muller’s ratchet as a Moran process with mutation and selec-
tion

2.1. Model and basic concepts

In the Moran version of Muller’s ratchet, neutral resampling within
any ordered pair of individuals happens at rate 1

2𝑁 , and mutation from
𝜅 to 𝜅 + 1 takes place at rate 𝑚∕𝑁 along each individual lineage.
Selective reproduction for an individual 𝑖 of type 𝜅(𝑖) happens at rate
1
𝑁

∑

𝑗 𝛷(𝜅(𝑗) − 𝜅(𝑖)), where the sum is taken over all those individuals
𝑗 whose type 𝜅(𝑗) is larger (and therefore ‘‘worse’’) than 𝜅(𝑖). Here 𝛷
s the fitness function, with 𝛷(0) = 0 and 𝛷(−𝑑) = −𝛷(𝑑) for 𝑑 ∈ N.
or the classical case of proportional selection, one has 𝛷(𝜅′ − 𝜅) =
(𝜅′ − 𝜅), while for the case of (binary) tournament selection one has
(𝜅′ − 𝜅) = 𝐬 (𝟏{𝜅′>𝜅} − 𝟏{𝜅′<𝜅}). In the sequel we will refer to these two

Moran variants of Muller’s ratchet briefly as the classical ratchet and
the tournament ratchet. Both models have (𝑁,𝑚, 𝐬) as their parameter
triple, and in both models a crucial role is played by the mutation–
selection ratio 𝑚

𝐬 . In this section we reserve the symbol 𝐬 for the selection
parameter. Later, this will be specified as different parameters 𝑠 and s

for the tournament and the classical ratchet, respectively. The following
definition gives the rates for the type frequencies of the two ratchets.

Definition 2.1.

(a) Writing 𝑁𝜅 for the current number of individuals of type 𝜅, the
jump rates are specified as follows:
- Resampling: for 𝜅 ≠ 𝜅′,

(𝑁𝜅 , 𝑁𝜅′ ) jumps to (𝑁𝜅 + 1, 𝑁𝜅′ − 1) at rate 1
2𝑁𝑁𝜅𝑁𝜅′

- Mutation: for 𝜅,
(𝑁𝜅 , 𝑁𝜅+1) jumps to (𝑁𝜅 − 1, 𝑁𝜅+1 + 1) at rate 𝑚𝑁𝜅

- Selection: for 𝜅 < 𝜅′,
(𝑁𝜅 , 𝑁𝜅′ ) jumps to (𝑁𝜅 + 1, 𝑁𝜅′ − 1) at rate
⎧

⎪

⎨

⎪

⎩

𝐬
𝑁𝑁𝜅𝑁𝜅′ (𝜅′ − 𝜅) for the classical ratchet
𝐬
𝑁𝑁𝜅𝑁𝜅′ for the tournament ratchet

(b) The currently best type is

𝐾∗(𝑡) ∶= min
{

𝜅 ∈ N0 ∶ 𝑁𝜅 (𝑡) > 0
}

.

(c) The click times of the ratchet are the jump times of 𝐾∗, i.e. the
times at which the currently best type is lost from the popula-
tion. The type frequency profile seen from the currently best type
has the (random) weights

𝑋(𝑁)
𝑘 (𝑡) ∶= 1

𝑁
𝑁𝐾∗(𝑡)+𝑘(𝑡), 𝑘 = 0, 1, 2… (2.1)

We say that a (non-random) type frequency profile (𝑝𝑘)𝑘∈N0
obeys

the mutation–selection equilibrium conditions (for the parameters 𝑚
and 𝐬) if

𝑚(𝑝𝑘 − 𝑝𝑘−1) = 𝐬 𝑝𝑘
⎛

⎜

⎜

⎝

∑

𝑘′∈N0

𝑝𝑘′𝛷(𝑘′ − 𝑘)
⎞

⎟

⎟

⎠

, 𝑘 = 0, 1, 2… , (2.2)

where we put 𝑝−1 ∶= 0.
For the classical ratchet, (2.2) turns into

𝑚(𝑝𝑘 − 𝑝𝑘−1) = 𝐬 𝑝𝑘(𝜇 − 𝑘), 𝑘 = 0, 1, 2… , (2.3)

where 𝜇 ∶=
∑

𝓁 𝓁𝑝𝓁 is the first moment of the profile. As already noticed
124

by John Haigh (Haigh, 1978), (2.3) is solved by the Poisson weights with
first moment 𝜇 = 𝑚
𝐬 . Indeed, this is the unique solution of (2.3) under

he condition 𝑝0 > 0.
For the tournament ratchet, (2.2) turns into

(

𝑝𝑘 − 𝑝𝑘−1
)

= 𝐬 𝑝𝑘
⎛

⎜

⎜

⎝

∑

𝑘′∈N0

𝑝𝑘′
(

𝟏{𝑘′>𝑘} − 𝟏{𝑘′<𝑘}
)

⎞

⎟

⎟

⎠

, 𝑘 = 0, 1, 2… (2.4)

Here the condition 𝑝0 > 0 leads to the requirement 𝑚 < 𝐬 and yields
𝑝0 = 1 − 𝑚

𝐬 . Various properties of the solution (𝑝𝑘′ ) of (2.4) are stated
n González Casanova et al. (2023) Theorem 2.4. The r.h.s. of (2.4)
quals

𝑝𝑘

(

1 − 𝑝𝑘 − 2
𝑘−1
∑

𝑘′=0
𝑝𝑘′

)

, 𝑘 = 0, 1, 2… (2.5)

A formal analogy between (2.3) and (2.4) results because (2.5) is close
to 2𝐬 𝑝𝑘(

1
2−𝑔(𝑘)), where 𝑔 is the cumulative distribution function of (𝑝𝑘′ ).

n this sense the role played by the profile’s first moment in (2.3) is
aken by the profile’s median in (2.4).

.2. The subcritical regime of the tournament ratchet

We now report briefly on the main results of the recent paper
González Casanova et al., 2023). The parameters of the tournament
atchet will be denoted by (𝑚, 𝑠) and its mutation–selection ratio by
∶= 𝑚

𝑠 . In González Casanova et al. (2023), as 𝑁 → ∞, the mutation–
selection ratio 𝜌 = 𝑚

𝑠 is kept constant and smaller than 1, and it is
ssumed that 𝑚 → 0 and 𝑚𝑁 → ∞. (For technical reasons, 𝑚𝑁 is
ssumed to be of larger order of log log𝑁 , which keeps the regime

slightly away from that of weak mutation, in which 𝑚𝑁 would be of
order one as 𝑁 → ∞.) We will refer to this regime as the subcritical
regime of the tournament ratchet. Informally stated, the main results
of González Casanova et al. (2023) are

∙ In the subcritical regime the click rate of the tournament ratchet on the
1
𝑚 -timescale is, as 𝑁 → ∞, logarithmically equivalent to

−2𝑁𝑚
(

1
𝜌−1+log 𝜌

)

. (2.6)

∙ In the subcritical regime and for 𝑁 large, the empirical type frequency
profile at generic time points between clicks of the tournament ratchet is with
high probability close to the mutation–selection equilibrium system (𝑝𝑘) given
by (2.4) with 𝑝0 = 1 − 𝜌.

See Theorems 2.2 and 2.3 in González Casanova et al. (2023),
which there are proved via a hierarchical duality. As discussed in
Remark 3.5. (a), Theorem 3.4 (b) can be considered as a significant
step in sharpening (2.6) to an asymptotic equivalence.

3. A synopsis of the classical and the tournament ratchet

3.1. The dynamics of the best classes

For 𝑘 = 0, 1,… let 𝑌 C
𝑘 (𝑡) = 𝑁C

𝐾∗+𝑘(𝑡) and 𝑌 T
𝑘 (𝑡) = 𝑁T

𝐾∗+𝑘(𝑡) be the
izes of the

(𝑘+1)st -best class of the classical and the tournament ratchet, where
𝑁C

𝜅 )𝜅∈N0
and (𝑁T

𝜅 )𝜅∈N0
follow the dynamics specified in Definition 2.1.

ere we assume that the mutation rate 𝑚 is equal for both ratchets, but
he selection coefficients are different:

=

{𝑚
𝜃 =∶ s for the classical ratchet
𝑚
𝜌 =∶ 𝑠 for the tournament ratchet.

The jump rates from 𝑛 to 𝑛 − 1 are given for both 𝑌 C
0 and 𝑌 T

0 by

𝑛
(1
2

(

1 − 𝑛
𝑁

)

+ 𝑚
)

, (3.1)

but the jump rates from 𝑛 to 𝑛 + 1 are different: those of 𝑌 T
0 are

𝑛
(

1 (

1 − 𝑛 )

+ 𝑚 (

1 − 𝑛 )

)

, (3.2)

2 𝑁 𝜌 𝑁
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while those of 𝑌 C
0 are

𝑛

(

1
2

(

1 − 𝑛
𝑁

)

+ 𝑚
𝜃

∞
∑

𝑘=1
𝑘𝑋𝑘

)

(3.3)

where (𝑋𝑘(𝑡))𝑘∈N0
is the type frequency profile as defined in (2.1), with

(𝑁C
𝜅 ) in place of (𝑁𝜅 ). Writing

(𝑡) ∶=
∞
∑

𝑘=1
𝑘𝑋𝑘(𝑡)

for the first moment of the type frequency profile
(

𝑋𝑘
)

, the upward
jump rate (3.3) takes the form

𝑛
( 1
2

(

1 − 𝑛
𝑁

)

+ 𝑚𝑀
𝜃

)

. (3.4)

An inspection of the jump rates in Definition 2.1 reveals that for each
𝑘 ∈ N the process (𝑌 T

0 ,… , 𝑌 T
𝑘 ) obeys an autonomous dynamics up to

the extinction time of 𝑌 T
0 ; for 𝑘 = 0 this is evident from (3.1) and (3.2).

For later reference we note here that (𝑌 T
0 , 𝑌 T

1 ) has, asymptotically as
𝑁 → ∞, the center of attraction

(a, b) ∶=
(

𝑁(1 − 𝜌), 𝑁
√

1 − 𝜌
)

(3.5)

provided 𝑁𝑚 → ∞ and 𝜌 → 1. To see this, note that the dynamics
of (𝑌 T

0 , 𝑌 T
1 ) is autonomous up to the first hitting of {0} × {0,… , 𝑁},

and that the states of (𝑌 T
0 , 𝑌 T

1 ) for which the upward jump rates are
asymptotically equal to the downward jump rates have the asymptotic
(𝑁𝑝0, 𝑁𝑝1), with (𝑝0, 𝑝1) given by (2.4) and (2.5). In addition to 𝑝0 =
1 − 𝜌, this leads to the equation

𝑝1(1 − 𝑝1 − 2(1 − 𝜌)) = 𝜌(𝑝1 − (1 − 𝜌)),

with the solution

𝑝1 =
√

1 − 𝜌

(
√

𝜌 + 1
4
(1 − 𝜌) − 1

2
√

1 − 𝜌

)

∼
√

1 − 𝜌 as 𝜌 ↑ 1.

n contrast to the tournament ratchet, the rates (3.4) depend not only
n the size of the best class but also on the profile

(

𝑋𝑘 (𝑡)
)

𝑘≥0 (via its
irst moment 𝑀(𝑡)). There are various ways to predict 𝑀(𝑡) on the basis

of 𝑌 C
0 (𝑡), and thereby to replace (3.4) by a rate which is autonomous.

One of them will be described in the remainder of this section, a
second one will be addressed in Remark 3.2. As observed already by
John Haigh (Haigh, 1978), such a strategy requires a regime in which
‘‘genetic drift’’, i.e. the fluctuations due to neutral reproduction, needs
a time to take 𝑌 C

0 to extinction which is large compared to the time
which the noiseless classical ratchet needs to ‘‘relax’’ towards its (new)
equilibrium. The dynamics of the latter is

d𝑥𝑘(𝑡) =
(

s
∑

𝓁

𝑥𝓁(𝓁 − 𝑘) + 𝑚(𝑥𝑘−1(𝑡) − 𝑥𝑘(𝑡))

)

d𝑡, 𝑘 = 0, 1,… (3.6)

(with 𝑥−1 ≡ 0). As already indicated after (2.3), the unique vector of
probability weights on N0 which has a non-vanishing weight at 0 and
is a stationary point of (3.6) is given by the Poisson profile

𝜋𝑘 = 𝑒−𝜃 𝜃
𝑘

𝑘!
, 𝑘 ≥ 0. (3.7)

For the initial profile

𝑥(0) ∶= 1
1−𝜋0

(

𝜋1, 𝜋2,…
)

,

he relaxation time 𝜏 which it takes for 𝑥0(𝑡) to come down from 1
1−𝜋0

𝜋1
o 𝑒

𝑒−1𝜋0 turns out to be

𝜏 =
log 𝜃
s

,

(see Etheridge et al. (2009, Remark 4.3)1). The time to extinction of a
neutral Moran(𝑁)-process starting in 𝑁𝜋0 = 𝑁𝑒−𝜃 is of the order 𝑁𝑒−𝜃 .

1 In order to ease the look-up we use here and below the numbering of the
rxiv version of Etheridge et al. (2009), which otherwise is identical in content
ith the version published in the LMS Lecture Note Series.
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Haigh’s requirement can thus be formulated as

𝑁𝑒−𝜃 ≫
log 𝜃
s

,

hich in the (𝛽, 𝛿)-scaling (1.2) just means that 𝛽 + 𝛿 < 1.

.2. The Poisson profile approximation for the classical ratchet

Here the idea is to think of the profile
(

𝑋𝑘
)

𝑘≥1 as (nearly) pro-
ortional to the Poisson profile (3.7), and as the mass 𝜋0 − 𝑋0 being
istributed proportionally upon this profile. This leads to the so-called
oisson profile approximation of

(

𝑋𝑘
)

𝑘≥1 based on 𝑋0, given by

(𝑋0) ∶=
(

𝑋0,
1 −𝑋0
1 − 𝜋0

(

𝜋1, 𝜋2,…
)

)

.

(cf Etheridge et al. (2009, (2.5))). The first moment of 𝛱(𝑋0) is

𝑀(𝑋0) ∶=
(

1 −𝑋0
) 𝜃
1 − 𝜋0

,

in accordance with Etheridge et al. (2009, (5.3a)). Plugging this into
(3.4) in place of 𝑀 leads to the following Poisson profile approximation
of the upward jump rates (3.4):

𝑛
( 1
2

(

1 − 𝑛
𝑁

)

+ 𝑚
1 − 𝑒−𝜃

(

1 − 𝑛
𝑁

))

. (3.8)

e denote the birth-and death-process on N0 with downward jump
rates (3.1) and upward jump rates (3.8) by 𝑌PPA; this process can be
seen as an approximation of 𝑌 C

0 .

Remark 3.1. A crucial observation is that the upward jump rates (3.2)
and (3.8) are equal if and only if 𝜌 = 1− 𝑒−𝜃 . In other words, under the
‘‘dictionary’’ (1.6), the jump rates (3.1) and (3.2) of the size of the best
class of the (𝑚, 𝑠)-tournament ratchet are equal to the jump rates (3.1)
nd (3.8) of the Poisson profile approximation for the size of the best
lass of the classical (𝑚, s)-ratchet.

Remark 3.2. Not least to provide a systematic framework for previous
approaches (Stephan et al., 1993; Gordo and Charlesworth, 2000) to
the approximation of the size of the ratchet’s best class, Etheridge
et al. (2009) embedded the Poisson profile approximation (PPA) into
a one-parameter family RPPA(𝐴), 𝐴 ≥ 0, the so-called relaxed Poisson
profile approximations. Roughly, the idea was to take some delay into
account for the prediction of 𝑀 based on 𝑋0. For 𝐴 = 1, this results
(see Etheridge et al. (2009, (5.3b))) in

𝑀(𝑋0) ∶= 𝜃 + 1
𝑒 − 1

(

1 −
𝑋0
𝜋0

)

, (3.9)

hich then is plugged into the upward jump rate (3.4) in place of 𝑀 . In
Fig. 6 we compare the quality of the PPA and RPPA(1) approximations
for the rate of the classical ratchet in the light of simulations of our
Moran model.

3.3. On the expected time to extinction of the best class

In this subsection we focus on the birth-and-death process 𝑌 ∶= 𝑌 T
0

ith jump rates (3.1) and (3.2). As observed in Remark 3.1, this process
as the same dynamics as the process 𝑌PPA defined in Section 3.2,

provided the mutation rates are equal and the selection coefficients are
translated through the ‘‘dictionary’’ (1.6).

Remark 3.3. Before turning to a rigorous analysis, let us give a
heuristics for the long-term behaviuor of 𝑌 , which also points towards
(RTT) as well as part of (RTC). The rates (3.1) and (3.2) display 3 parts:
the fluctuation terms ± 𝑛

2

(

1 − 𝑛
𝑁

)

, the net linear birth rate 𝑛𝑚
𝜌 (1 − 𝜌)

and the quadratic death rate 𝑚
𝜌

𝑛2

𝑁 . The center of attraction of 𝑌 (which
we encountered already in (3.5)) is that (asymptotic) value of 𝑛 for
which the net linear birth rate equals the quadratic death rate and thus
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Fig. 3. The empirical occupation times of the size of the best class in a simulation of the tournament ratchet are compared to the Green functions 𝐺(a, ⋅), 𝐺(b, ⋅), which are
omputed numerically using formula (4.4). Panels (A) and (B) feature the exponential and the polynomial regime, respectively, with 𝛾 = 0.2 in panel (A) and 𝛾 = 2

3
in panel (B).

n panel (B) the population size is 𝑁 = 500 and simulations were run up to the first 104 +1 clicks, where the first click was ignored. In (A), 101 clicks were observed and the first
ne ignored. Here the population size was 𝑁 = 100. See Etheridge et al. (2009, Figure 5) for similar plots concerning the classical ratchet.
𝑌

quals a = 𝑁(1 − 𝜌). As long as 𝑌 is below a∕2, it is stochastically

bounded from below by a binary Galton–Watson process 𝑌 𝓁 with
supercriticality 𝑚(1 − 𝜌)∕2, and stochastically bounded from above by
a binary Galton–Watson process 𝑌 𝑢 with supercriticality 𝑚(1 − 𝜌). By
Haldane’s formula (which in this case coincides with the formula for
the escape probability of a simple random walk with constant drift),
the survival probability of the offspring of one individual in 𝑌 𝓁 (resp
𝑌 𝑢) is ∼ 𝑁−𝛽−𝛿 (resp. ∼ 2𝑁−𝛽−𝛿). Hence the probability that 𝑌 when
tarting in a∕4 hits 0 before reaching a∕2, is asymptotically between
1 − 2𝑁−𝛽−𝛿)𝑁

1−𝛿∕4 and
(

1 −𝑁−𝛽−𝛿)𝑁
1−𝛿∕4, which converge to 0 if and

nly if 1 − 𝛽 − 2𝛿 > 0, i.e. 𝛾 > 1
2 . In this case the number of

excursions which 𝑌 makes from a∕4 up to a∕2 before going extinct
is geometric with expectation asymptotically between exp

(

1
4𝑁

1−𝛽−2𝛿
)

and exp
(

1
2𝑁

1−𝛽−2𝛿
)

. This gives an intuitive explanation why 𝛾 = 1
2 is

he bound between the exponential and the polynomial regime, and
lso sheds light on the result of Theorem 3.4

In the case 𝛾 > 1
2 , the center of attraction plays a negligible

ole. What becomes relevant then is that threshold for 𝑛 above which
he quadratic death rate 𝑚

𝜌
𝑛2

𝑁 becomes large. Obviously, the order of

magnitude of this threshold is
√

𝑁
𝑚 = 𝑁

1+𝛽
2 . Above this threshold, 𝑌 is

trongly pushed downwards, making the time spent above the threshold
egligible. Below the threshold, 𝑌 behaves similar to a (driftless linear)
irth-and-death process with upward and downward jump rates (3.1).
his gives a qualitative explanation of the orders of magnitude of the
xpected times to extinction that are obtained in Theorem 3.4 also for
he polynomial regime.

The proof of the following theorem is the content of Section 4. This
roof relies on an asymptotic analysis of the Green function represented
y formula (4.3). The fit of a numerical calculation of the Green
unction based on this formula with the empirical occupation times of
he size of the best class of the tournament ratchet is displayed in Fig. 3.

heuristic explanation of the orders obtained in Theorem 3.4 has been
iven in Remark 3.3.

In the following we use the notation

(𝑁) ≪ 𝑔(𝑁) ⟺ lim
𝑁→∞

𝑓 (𝑁)
𝑔(𝑁)

= 0. (3.10)

Also, we will usually suppress the 𝑁-dependence in the notation, as for
xample in 𝑌 , 𝑚 and 𝜌 in the following theorem. Note that this theorem
omprises a larger regime than the one described by the (𝛽, 𝛿)-scaling

for (𝛽, 𝛿) ∈ 𝛥, see (1.3).
126
Theorem 3.4. Let 𝑇0 be the extinction time of the birth-and-death process
with jump rates (3.1) and (3.2), let 1 ≫ 𝑚 ≫ 1

𝑁 , and let 𝜌 be a sequence
in [𝜌0, 1) for some fixed 𝜌0 ∈ (0, 1).

(a) [Polynomial regime] Assume 𝑁𝑚(1− 𝜌)2 → 0 as 𝑁 → ∞. Let (𝑗𝑁 )
be a sequence of natural numbers in [𝑁]. If 𝑗𝑁 ≪

√

𝑁∕𝑚
log(𝑁∕𝑚) , then

E𝑗𝑁 [𝑇0] ∼ 2𝑗𝑁

(

log
√

𝑁
𝑚

− log 𝑗𝑁

)

, (3.11)

whereas if 𝑗𝑁 ≫
√

𝑁
𝑚 , then

E𝑗𝑁 [𝑇0] ∼
𝜋3∕2

2

√

𝑁
𝑚
. (3.12)

The expected number of returns of the process 𝑌 to ⌈a⌉, when starting
above a = (1−𝜌)𝑁 , is asymptotically equivalent to 1

𝑚(1−𝜌) as 𝑁 → ∞.
(b) [Exponential regime] Assume 𝑁𝑚(1 − 𝜌)2 → ∞ and 1 ≪ 𝑗𝑁 ≤ 𝑁

as 𝑁 → ∞. Then

E𝑗𝑁 [𝑇0] ∼
(

1 − exp
(

−2𝑚
(

1
𝜌
− 1

)

𝑗𝑁

))√

𝜋
𝑚𝑁

𝑣𝑁 , (3.13)

with

𝑣𝑁 ∶= 1

𝑚
(

1
𝜌 − 1

) exp
(

2𝑁𝑚(1 − 𝜌)2𝜂(𝑚, 𝜌)
)

, (3.14)

𝜂(𝑚, 𝜌) ∶= − 1
2𝑚

[

1
1 − 𝜌

log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝓁=1

(

1 − 1
(1 + 2𝑚)𝓁

)

(1 − 𝜌)𝓁−1

𝓁(𝓁 + 1)

]

.

In particular, with

𝑒𝑁 ∶= 1
1 − 𝜌

√

𝜋
𝑚𝑁

𝑣𝑁 (3.15)

one has

E𝑗𝑁 [𝑇0] ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑒𝑁 if 𝑗𝑁 ≫ 1
𝑚(1−𝜌)

𝑒𝑁 (1 − exp(−2𝐶∕𝜌)) if 𝑗𝑁 ∼ 𝐶
𝑚(1−𝜌)

𝑒𝑁 2𝑗𝑁 𝑚(1∕𝜌 − 1) if 𝑗𝑁 ≪ 1
𝑚(1−𝜌) .

(3.16)

The expected number of returns of the process 𝑌 to ⌊a⌋, when starting
above a = (1 − 𝜌)𝑁 , is asymptotically equivalent to (3.14) as

𝑁 → ∞.
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R

Fig. 4. For 𝑁 = 105 we compare the size of the ‘‘new best class’’ of the classical ratchet immediately after a click (observed in simulations) with the two theoretical predictions
𝑁𝜋0 = 𝑁1−𝛿 and 𝑁𝜋1 = 𝑁1−𝛿𝛿 log𝑁 , cf. Remark 3.6. (b). For various values of 𝛾 = 𝛿∕(1 − 𝛽), we consider (the logarithms of) these observed and predicted quantities as functions
of 𝛽. Each data point was obtained by pooling the interclick times no. 5 to 30 from 20 simulations of the classical ratchet for the corresponding parameter configuration. Roughly,
the average of the observed logarithmic sizes of the new best class seems to wander away from 𝑁𝜋0 towards 𝑁𝜋1 (and beyond) as 𝛾 increases.
emark 3.5.

(a) Theorem 3.4 constitutes an essential step on the way to a proof
of the claim (RTT) formulated in (1.7) and (1.8). One way to
complete this proof could lead via the analysis of the system
(𝑌 𝑁

0 , 𝑌 𝑁
1 ) of the sizes of the best and the second-best class of the

tournament ratchet; recall that this system is autonomous up to
the time of extinction of its first component. Then, 𝑌 𝑁

0 (0) and
𝑌 𝑁
1 (0) stand for the (random) sizes of the new best and second

best class at the time of a click. With 𝑇𝑁
0 denoting the extinction

time of 𝑌 𝑁
0 , we conjecture that both in the polynomial and in

the exponential regime 𝑌 𝑁
1 (𝑇𝑁

0 ) will with high probability be
≫

√

𝑁
𝑚 , provided that both 𝑌 𝑁

0 (0) and 𝑌 𝑁
1 (0) are ≫

√

𝑁
𝑚 .

(b) While the present work focuses on a forward-in-time approach,
an alternative route for proving (RTT) is provided by the back-
ward-in-time approach that was developed in González Casanova
et al. (2023) in terms of a hierarchical duality for the tournament
ratchet. This requires the extension of the backward-in-time
analysis from the subcritical to the near-critical regime, and will
be a subject of future research.

Remark 3.6.

(a) Theorem 3.4(b) suggests the conjecture that not only in the
exponential regime of the near-critical case 𝜌 ↑ 1, but also in the
entire subcritical case 𝜌 < 1 the rate of the tournament ratchet
is asymptotically equivalent to (3.15). This would improve the
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logarithmic equivalence (2.6) obtained in González Casanova
et al. (2023, Theorem 2.2) to an asymptotic equivalence. Here it
is worth noticing that (as we will show at the end of Section 4.2)
the exponents in (2.6) and (3.14) obey for all 𝜌 < 1

(1 − 𝜌)2𝜂(𝑚, 𝜌) ∼ 1
𝜌
− 1 + log 𝜌 as 𝑚 → 0. (3.17)

(b) In the light of Remark 3.1, Theorem 3.4 is relevant not only
for the tournament ratchet, but also for the Poisson profile
approximation of the classical ratchet. Prominent starting values
for 𝑌 are
– with regard to the classical ratchet: 𝑛𝐶0 ∶= 𝑁𝜋1 = 𝑁𝜃𝑒−𝜃 , which
in the (𝛽, 𝛿)-scaling equals 𝑁1−𝛿𝛿 log𝑁 ,
– with regard to the tournament ratchet: 𝑛𝑇0 ∶= 𝑁

√

1 − 𝜌, which
according to (3.5) is the asymptotic center of attraction of the
size of its second best class, and in the (𝛽, 𝛿)-scaling equals
𝑁1−𝛿∕2.
Figs. 4 and 5 illustrate that these asymptotics of the starting
values can indeed be seen in simulations of the classical and the
tournament ratchet. The starting values 𝑛𝐶0 and 𝑛𝑇0 are used in
Figs. 6 and 7.
For (𝛽, 𝛿) ∈  we have

1 − 𝛿 <
1 + 𝛽
2

< 1 − 𝛿
2 .

Hence Theorem 3.4(a) gives, in accordance with (1.4) and (1.7),

E𝑛𝑇0
[𝑇0] ≍ 𝑁

1+𝛽
2 and E𝑛𝐶0

[𝑇0] ≍ 𝑁1−𝛿 .

(c) Recalling that 𝑚 = 𝜌𝑠 with 𝜌 < 1 (and all these parameters

depending on 𝑁), the difference of the upward and downward
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jump rates (3.1) and (3.2) is

𝜆𝑛 − 𝜇𝑛 = 𝑛
(

𝑠 − 𝑚 − 𝑠 𝑛
𝑁

)

and their sum is 𝜆𝑛 + 𝜇𝑛 ∼ 𝑛 as long as 𝑛 ≪ 𝑁 . Hence the
dynamics of 𝑌 𝑁 (although its state space is {0, 1,… , 𝑁} rather
than N0) bears similarities to that of a logistic branching process.
Indeed, we conjecture that a logistic branching process 𝑌 𝑁 with
upward and downward jump rates 𝜆𝑛 and 𝜇𝑛 given by

𝜆𝑛 = 𝑛
( 1
2
+ 𝑠

)

, 𝜇𝑛 = 𝑛
( 1
2
+ 𝑚 + 𝑠 𝑛

𝑁

)

(3.18)

will exhibit very similar asymptotics of the expected times to
extinction as those obtained for the process 𝑌 𝑁 in Theorem 3.4.
This would complement results of Sagitov and Shaimerdenova
(2013) and Chazottes et al. (2016), both of which do not cover
the parameter regime given by (3.18). The paper Sagitov and
Shaimerdenova (2013) considers jump rates of the form 𝜆𝑛 =
𝑛𝑠, 𝜇𝑛 = 𝑛𝑚 + 𝑛(𝑛 − 1)𝜃 with constant 𝑠, 𝑚 and small 𝜃; this
corresponds to (3.18) but without the fluctuation terms 1

2 which
are of dominant order in (3.18). (For conceptual clarification we
point out that Sagitov and Shaimerdenova (2013) addresses the
case of a constant ratio 𝑠∕𝑚 > 1 as supercritical, while in our
context this corresponds to a subcritical mutation–selection ra-
tio.) The paper Chazottes et al. (2016) considers quasi-equilibria
and extinction times of a class of birth-and-death processes that
is more general than logistic branching processes, but imposes a
scaling condition of the dynamics which is not fulfilled by (3.1)
and (3.2). Still, both papers point to interesting routes which
may offer alternatives to our way of proving Theorem 3.4.

4. Proof of Theorem 3.4

4.1. Green function

The proof is based on an asymptotic analysis of the Green function
of 𝑌 = 𝑌 𝑁 ,

(𝑗, 𝑛) ∶= 𝐺𝑁 (𝑗, 𝑛) = E𝑗

[

∫

𝑇0

0
𝐼{𝑌𝑁

𝑡 =𝑛}d𝑡
]

, 1 ≤ 𝑗, 𝑛 ≤ 𝑁

as 𝑁 → ∞. By assumption the upward and downward jump rates of 𝑌
from 𝑛 are given by

𝜆𝑛 ∶= 𝑛
(

1
2

(

1 − 𝑛
𝑁

)

+ 𝑚
𝜌

(

1 − 𝑛
𝑁

)

)

, (4.1)

𝜇𝑛 ∶= 𝑛
( 1
2

(

1 − 𝑛
𝑁

)

+ 𝑚
)

.

ecall that all quantities, including 𝜆𝑛 and 𝜇𝑛, depend on 𝑁 , even if we
uppress this in the notation for the sake of readability. We express the
reen function in terms of the oddsratio products

0 ∶= 1, 𝑟𝑘 ∶=
𝑘
∏

𝑙=1

𝜇𝑙
𝜆𝑙

, 𝑘 ∈ {1,… , 𝑁 − 1} . (4.2)

The following lemma is well known, see e.g. Sagitov and Shaimer-
denova (2013, (2.4)) for a proof of (4.5) via a decomposition with
respect to excursions from 𝑗. For convenience we include a derivation
f (4.3) in Section 4.5. See also Doering et al. (2005, (15)) for a similar
epresentation of 𝐺(𝑗, 𝑛).

emma 4.1. For 1 ≤ 𝑗, 𝑛 ≤ 𝑁 ,

(𝑗, 𝑛) = 1
𝜇𝑛

𝑗−1∧𝑛−1
∑

𝑙=0

𝑛−1
∏

𝑘=𝑙+1

𝜆𝑘
𝜇𝑘

. (4.3)

In Fig. 3, formula (4.3) is compared to empirical occupation times
rom simulations of the process 𝑌 .
128
With

𝑅𝑘 ∶=
𝑘−1
∑

𝑖=0
𝑟𝑖, 𝑘 ∈ {1,… , 𝑁} ,

we obtain from (4.3):

𝐺(𝑗, 𝑛) =

⎧

⎪

⎨

⎪

⎩

𝑅𝑗∧𝑛
𝜆𝑛𝑟𝑛

if 𝑛 < 𝑁,
𝑅𝑗

𝜇𝑁 𝑟𝑁−1
if 𝑛 = 𝑁.

(4.4)

onsequently,

𝑗 [𝑇0] =
𝑁
∑

𝑛=1
𝐺(𝑗, 𝑛) =

𝑁−1
∑

𝑛=1

𝑅𝑛∧𝑗

𝜆𝑛𝑟𝑛
+

𝑅𝑗

𝜇𝑁 𝑟𝑁−1
. (4.5)

Note that

𝑈 (𝑗) ∶= log 𝑟𝑗 (4.6)

(sometimes also referred to as potential, cf. Doering et al. (2005, (16)))
is an additive functional, and (4.3) translates into

𝐺(𝑗, 𝑛) = 1
𝜇𝑛

𝑗−1∧𝑛−1
∑

𝑙=0
𝑒−(𝑈 (𝑛−1)−𝑈 (𝓁)).

.2. Asymptotics for the cumulated oddsratio products

In view of (4.5) we are going to find asymptotics for the terms 𝑟𝑘
and 𝑅𝑘 as 𝑁 → ∞.

Our analysis, see Lemmas 4.3 and 4.6, shows that, as 𝑗 increases, 𝑟𝑗
is essentially constant on a large interval, before it starts to decrease as
𝑗 approaches the center of attraction 𝑁(1−𝜌). The asymptotics of the cu-
mulated oddsratio products 𝑅𝑗 and of the terms 𝐺(𝑗, 𝑛) will be analysed,
depending on the order of magnitude of 𝑗, in Lemmas 4.3, 4.4 and 4.5
for the polynomial regime, and in Lemma 4.6 and Proposition 4.7 for
the exponential regime.

We recall the notation 𝑓 (𝑁) ≪ 𝑔(𝑁) from (3.10). Also, we recall
that we usually suppress the 𝑁-dependence in the notation, as for
example in 𝑚, 𝜌 and 𝑗.

We can express log 𝑟𝑗 as

log 𝑟𝑗 =
𝑗
∑

𝑘=1
log

(

𝜇𝑘

𝜆𝑘

)

= 𝑗 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
𝑗
∑

𝑘=1
log

(

1 − 𝑘∕((1 + 2𝑚)𝑁)
1 − 𝑘∕𝑁

)

.

(4.7)

his expression allows us the following asymptotic description which
s key in what follows.

emma 4.2. Let 𝜉 = 𝜉𝑁 be a sequence converging to 0 so slowly that
𝜉 ≫ 𝑚. Then for 𝑁 large enough and 𝑗 ≤ (1 − 𝜉)𝑁

0 ≤ log 𝑟𝑗 − 𝑗 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

−
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙(𝑙 + 1)

𝑗𝑙+1

𝑁 𝑙 ≤ const ⋅ 𝑚
𝜉
.

(4.8)

Lemma 4.3. Let 𝐾 ∶= 𝐾𝑁 > 0 either be constant or a diverging sequence.
Then for all 𝑘 ≤ 𝐾

√

𝑁∕𝑚

𝑒𝑘
2𝑚∕((1+2𝑚)𝑁)−4(1−𝜌)𝐾

√

𝑚𝑁 ≤ 𝑟𝑘 ≤ 𝑒𝑘
2𝑚∕𝑁+𝐾3∕(

√

𝑚𝑁−𝐾) (4.9)

nd

−4(1−𝜌)𝐾
√

𝑚𝑁
∫

𝑘−1

0
𝑒𝑥

2𝑚∕((1+2𝑚)𝑁)d𝑥 ≤ 𝑅𝑘 ≤ 𝑒𝐾
3∕(

√

𝑚𝑁−𝐾)
∫

𝑘

1
𝑒𝑥

2𝑚∕𝑁d𝑥.

(4.10)

Lemmas 4.2 and 4.3 will be proved in Section 4.5. We conclude
his subsection by showing (3.17). To this end, note the two asymptotic
quivalences

og
(

1 + 2𝑚
)

= log
(

1 +
2𝑚(𝜌 − 1)

)

∼ 2𝑚
(

1 − 1
)

1 + 2𝑚∕𝜌 𝜌 + 2𝑚 𝜌
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a

Fig. 5. For 𝑁 = 105 we compare the size of the ‘‘new best class’’ of the tournament ratchet immediately after a click (as observed by simulations) with a = 𝑁1−𝛿 and b = 𝑁1−𝛿∕2,
which are the centers of attraction of the best and the second best class of the tournament ratchet(cf. Remark 3.6. (b)). For various values of 𝛾 = 𝛿∕(1 − 𝛽), we consider (the
logarithms of) these quantities as functions of 𝛽. Each data point was obtained by pooling the interclick times no. 5 to 30 from 20 simulations of the tournament ratchet for the
corresponding parameter configuration. For a wide range of parameters with 𝛾 between 1∕2 and 1, b is a better fit for the size of the new best class than a.
I
S

L
𝐾

𝐾

T

nd
∞
∑

=1

(

1 − 1
(1 + 2𝑚)𝓁

)

(1 − 𝜌)𝓁−1

𝓁(𝓁 + 1)
∼ 2𝑚

∞
∑

𝓁=1

(1 − 𝜌)𝓁−1

𝓁 + 1
,

which combine to

(1 − 𝜌)2𝜂(𝑚, 𝜌) ∼ 1
𝜌
− 1 − (1 − 𝜌) −

∞
∑

𝓁=2

(1 − 𝜌)𝓁

𝓁
= 1

𝜌
− 1 + log 𝜌.

.3. The polynomial regime: Proof of Theorem 3.4(a)

Throughout this subsection we assume 𝑁𝑚(1 − 𝜌)2 → 0 as 𝑁 → ∞.
We start with the expected number of returns to 𝑎 ∶= ⌊𝑁(1 − 𝜌)⌋ of

he process 𝑌 when starting in 𝑎. (4.4) together with Lemma 4.3 gives

(𝑎, 𝑎) =
𝑅𝑎
𝜆𝑎𝑟𝑎

∼
∫ 𝑎
1 𝑒𝑥

2 𝑚
𝑁 d𝑥

𝜆𝑎𝑟𝑎
.

rom Weisstein (2024, (1), (9)) we get
𝑎

1
𝑒𝑥

2 𝑚
𝑁 d𝑥 ∼ 𝑒𝑎2𝑚∕𝑁

2 𝑚
𝑁 𝑎

,

nd hence by using (4.9) as well as 𝜆𝑎 ∼
1
2𝜌(1 − 𝜌)𝑁 we get

𝐺(𝑎, 𝑎) ∼ 1 as 𝑁 → ∞,
129

𝑚𝜌(1 − 𝜌)2𝑁
which together with the asymptotics 𝜆𝑎 + 𝜇𝑎 ∼ 𝜌(1 − 𝜌)𝑁 gives

𝐺(𝑎, 𝑎)(𝜆𝑎 + 𝜇𝑎) ∼
1

𝑚(1 − 𝜌)
as 𝑁 → ∞. (4.11)

n order to prove the rest the following two lemmas will be proved in
ection 4.6.

emma 4.4. Let 𝜁 ∶= 𝜁𝑁 → 0 such that 𝜁 ≫
[

𝑁(1 − 𝜌)2𝑚
]1∕4, and

= 𝐾𝑁 such that 𝐾 → ∞ and
(

(1 − 𝜌)
√

𝑁𝑚 ∨ (𝑁𝑚)−1∕6
)

→ 0.

hen
𝐾
√

𝑁∕𝑚
∑

𝑘=𝜁
√

𝑁∕𝑚

𝑅𝑘
𝜆𝑘𝑟𝑘

=
√

𝑁
𝑚

(

𝜋3∕2

2
+ 𝑂(𝜁 ) + 𝑂

( 1
𝐾

)

)

as 𝑁 → ∞.

Here and below, we will omit the Gauss brackets in the summation
bounds for better readability.

Lemma 4.5. Let 𝐾 = 𝐾𝑁 and 𝜉 = 𝜉𝑁 be sequences with 𝐾𝑁 → ∞ and
1 ≫ 𝜉 ≫ 𝑚. Then there exists a constant 𝐶 > 0 such that for all 𝑘 with

𝐾
√

𝑁∕𝑚 ≤ 𝑘 ≤ 𝑁(1 − 𝜉)

we have
𝑅𝑘 ≤ 𝐶 𝑁𝑚 . (4.12)

𝑟𝑘 𝑘
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Fig. 6. For fixed population size 𝑁 = 105 the predictions for the expected interclick time of the classical ratchet based on a numerical calculation of the Green function (i) of the
PA and (ii) of the RPPA(1) approximation are compared with simulations. Here, formula (4.3) is used (i) for the jump rates (3.1) and (3.2), and (ii) for the downward jump rate
3.1) and the upward jump rate resulting from (3.4) and (3.9). Each data point was obtained by pooling the interclick times no. 5 to 30 from 20 simulations of the tournament
atchet for the corresponding parameter configuration. Each plot shows this for one fixed value of 𝛾 with varying 𝛽.
a

f

With these three lemmas we have the tools for proving Theo-
em 3.4(a), which concerns the polynomial regime. We will distinguish
etween the cases 𝑗 ≫

√

𝑁∕𝑚 and 𝑗 ≪
√

𝑁∕𝑚, since the potential 𝑈
given by (4.6)) turns out to be essentially flat below

√

𝑁∕𝑚.

.3.1. Proof of (3.11)
Abbreviating 𝛾 ∶= log(1∕𝑚) and recalling that we are in the case

≪

√

𝑁∕𝑚
log (𝑁∕𝑚)

, (4.13)

we decompose the mean extinction time from state 𝑗 given by (4.5) as
follows

E𝑗 [𝑇0] =
𝑗−1
∑

𝑘=1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘
+

𝛾
√

𝑁∕𝑚
∑

𝑘=𝑗

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘
+

𝑁
∑

𝑘=𝛾
√

𝑁∕𝑚+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘

=
𝑗−1
∑

𝑘=1

𝑅𝑘
𝜆𝑘𝑟𝑘

+ 𝑅𝑗

𝛾
√

𝑁∕𝑚
∑

𝑘=𝑗

1
𝜆𝑘𝑟𝑘

+ 𝑅𝑗

𝑁
∑

𝑘=𝛾
√

𝑁∕𝑚+1

1
𝜆𝑘𝑟𝑘

=∶ 𝐸1(𝑗) + 𝐸2(𝑗) + 𝐸3(𝑗). (4.14)

In view of the asymptotics

𝑅𝑘 ∼ 𝑘 for 𝑘 ≪
√

𝑁∕𝑚

nd 𝜆𝑘 ∼ 𝑘∕2 for 𝑘 ≪ 𝑁 , and because of the inequality 𝜆𝑘𝑟𝑘 = 𝜇𝑘𝑟𝑘−1 ≥
𝑚𝑘𝑟𝑘−1 for any 𝑘 ≤ 𝑁 − 1, we have

1(𝑗) + 𝐸3(𝑗) ≤ 4
𝑗−1
∑ 𝑘

𝑘
+

2𝑗
𝑚

𝑁
∑

√

1
𝑘𝑟𝑘−1

.

130

𝑘=1 𝑘=𝛾 𝑁∕𝑚+1
For the sake of readability, let us introduce the function 𝑓 (𝑘) via

𝑚
𝑁

𝑘2𝑓 (𝑘) ∶= 𝑘 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

𝑘𝑙+1

𝑙(𝑙 + 1)𝑁 𝑙 . (4.15)

We see that 𝑓 (𝑘) ≥ 1∕2 when 𝑘 ≫
√

𝑁∕𝑚. Hence there exists a finite
constant 𝐶 such that

𝑁
∑

𝑘=𝛾
√

𝑁∕𝑚+1

1
𝑘𝑟𝑘−1

≤
𝑁
∑

𝑘=𝛾
√

𝑁∕𝑚

𝑒−
𝑚𝑘2
2𝑁

𝑘
≤ ∫

∞

𝛾

𝑒−𝑥2∕2

𝑥
d𝑥 ≤ 𝑒−𝛾2∕2

𝛾2
.

In order to see the first inequality we argue as follows: From Lemma 4.2
we get that for any 𝑘,

log 𝑟𝑘 ≥ 𝑘 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙(𝑙 + 1)

𝑘𝑙+1

𝑁 𝑙

≥ 𝑘 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
(

1 − 1
(1 + 2𝑚)

)

1
2
𝑘2

𝑁
.

From the observation that

log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

∼ −2𝑚
𝜌

(1 − 𝜌),
(

1 − 1
(1 + 2𝑚)

)

1
2
𝑘
𝑁

∼ 𝑚 𝑘
𝑁

nd
𝑘
𝑁

≫ (1 − 𝜌)

or 𝑘 at least of order
√

𝑁∕𝑚 we see that 𝑟𝑘−1 ≥ 𝑒𝑚𝑘2∕(2𝑁). From this we
get

𝐸1(𝑗) + 𝐸3(𝑗) ≤ 4𝑗 + 2𝑗𝑒𝛾 𝑒
−𝛾2∕2

,

𝛾2
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Fig. 7. For fixed population size 𝑁 = 105 the predictions for the expected interclick time of the tournament ratchet based on (i) a numerical calculation of the Green function
using formula (4.3)) and (ii) the asymptotics provided by Theorem 3.4 are compared with simulations. Each data point was obtained by pooling the interclick times no. 5 to 30
rom 20 simulations of the tournament ratchet for the corresponding parameter configuration. Each plot shows this for one fixed value of 𝛾 and for varying 𝛽.
b

L
d

T

which is of lower order than the r.h.s of (3.11). We will now analyse
𝐸2(𝑗), which turns out to be the dominant term. First, as 𝑗 ≪

√

𝑁∕𝑚,
it may be simplified as follows,

𝐸2(𝑗) ∼ 2𝑗
log(1∕𝑚)

√

𝑁∕𝑚
∑

𝑘=𝑗

1
𝑘𝑟𝑘

.

y sandwiching arguments using (4.8) and (4.15) we conclude that
√

𝑁∕𝑚
∑

𝑘=𝑗

1
𝑘𝑟𝑘

∼ ∫

𝛾
√

𝑁∕𝑚

𝑗

𝑒−
𝑚
𝑁 𝑥2𝑓 (𝑥)

𝑥
d𝑥.

hanks to (4.13) there exists a sequence 𝜉 = 𝜉𝑁 → 0 such that 𝜉2 ≫
1∕ log

(

√

𝑁∕𝑚
)

and 𝑗𝑁 ≤ 𝜉𝑁
√

𝑁∕𝑚. From (4.9), if 𝑘 ≤ 𝜉
√

𝑁∕𝑚 and 𝑁
s large enough, then |(𝑚∕𝑁)𝑘2𝑓 (𝑘)| ≤ 2𝜉2. Hence

𝑒−2𝜉
2
(

log
(

𝜉
√

𝑁∕𝑚
)

− log 𝑗
)

≤ ∫

𝜉
√

𝑁∕𝑚

𝑗

𝑒−
𝑚
𝑁 𝑥2𝑓 (𝑥)

𝑥
d𝑥

≤ 𝑒2𝜉
2
(

log
(

𝜉
√

𝑁∕𝑚
)

− log 𝑗
)

.

oreover, 𝑓 (𝑘) ≥ 𝜉2∕2 for 𝑘 ≥ 𝜉
√

𝑁∕𝑚. We deduce

∫

𝛾
√

𝑁∕𝑚

𝜉
√

𝑁∕𝑚

𝑒−
𝑚
𝑁 𝑥2𝑓 (𝑥)

𝑥
d𝑥 ≤ ∫

𝛾
√

𝑁∕𝑚

𝜉
√

𝑁∕𝑚

𝑒−
𝑚
𝑁 𝑥2𝜉2∕2

𝑥
d𝑥 ≤ ∫

∞

𝜉

𝑒−𝑦2𝜉2∕2

𝑦
d𝑦.

y substituting 𝑡 = 𝜉𝑦 in the integral, the right hand side can be written
s
∞ 𝑒−𝑡2∕2 d𝑡,
131

𝜉2 𝑡 a
which is of order 𝜉−2. Since this is of lower order than log
(

√

𝑁∕𝑚
)

we
deduce that

𝐸2(𝑗) ∼ 2𝑗
(

log
(

√

𝑁∕𝑚
)

− log 𝑗
)

. (4.16)

This ends the proof of (3.11). □

4.3.2. Proof of (3.12)
We recall that this concerns the case 𝑗 = 𝑗𝑁 ≫

√

𝑁∕𝑚. Let 𝐾 = 𝐾𝑁
e a sequence which converges to ∞ so slowly that 𝐾

√

𝑁∕𝑚 ≤ 𝑗 and
that 𝐾 satisfies the requirements of Lemma 4.3. Moreover, let 𝜉 = 𝜉𝑁
be a sequence with 𝜉 → 0 and 𝜉 ≫ 𝑚. In the first part of the proof we
impose the condition

𝑗𝑁 ≤ 𝑁(1 − 𝜉𝑁 ). (4.17)

et 𝜁 = 𝜁𝑁 be a sequence converging to 0. Using again (4.5), we
ecompose the mean extinction time from state 𝑗 as follows:

E𝑗 [𝑇0]

=
𝜁
√

𝑁∕𝑚
∑

𝑘=1

𝑅𝑘
𝜆𝑘𝑟𝑘

+
𝐾
√

𝑁∕𝑚
∑

𝑘=𝜁
√

𝑁∕𝑚+1

𝑅𝑘
𝜆𝑘𝑟𝑘

+
𝑁(1−𝜉)
∑

𝑘=𝐾
√

𝑁∕𝑚+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘

+
𝑁−1
∑

𝑘=𝑁(1−𝜉)+1

𝑅𝑗

𝜆𝑘𝑟𝑘
+

𝑅𝑗

𝜇𝑁 𝑟𝑁−1

=∶ 𝐹1 + 𝐹2 + 𝐹3(𝑗) + 𝐹4(𝑗) + 𝐹5(𝑗).

he asymptotic of the second sum, 𝐹2, has been derived in Lemma 4.4
nd leads to the r.h.s. of (3.12). It thus suffices to show that 𝐹 +𝐹 (𝑗)+
1 3
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𝐹4(𝑗) + 𝐹5(𝑗) = 𝑜
(

√

𝑁∕𝑚
)

. With 𝐸2(1) defined in (4.14), and because
f (4.16) we obtain the estimate

1 ≤ 𝐸2(1) ∼ 2 log
(
√

𝑁𝑚
)

= 𝑜
(

√

𝑁∕𝑚
)

.

he term 𝐹5(𝑗) is bounded by 𝑅𝑁−1
𝜇𝑁 𝑟𝑁−1

. By (3.1) and (4.12) the latter

s at most of order 1∕𝑚, which is 𝑜
(

√

𝑁∕𝑚
)

because of the standing
assumption that 𝑁𝑚 → ∞.

Let us now turn to the analysis of 𝐹3(𝑗). For this we have the upper
bound

𝑁(1−𝜉)
∑

𝑘=𝐾
√

𝑁∕𝑚+1

𝑅𝑘
𝜆𝑘𝑟𝑘

. (4.18)

By using

𝜆𝑘 ∼ 𝑘
2

(

1 − 𝑘
𝑁

)

= 1
2
𝑘
𝑁

(𝑘 −𝑁)

and the bound (4.12), the term (4.18) is asymptotically bounded from
above by

2
𝑁−1
∑

𝑘=𝐾
√

𝑁∕𝑚+1

𝑁
𝑘(𝑁 − 𝑘)

𝑁
2𝑚𝑘

= 𝑁2

𝑚

𝑁−1
∑

𝑘=𝐾
√

𝑁∕𝑚+1

1
𝑘2(𝑁 − 𝑘)

.

We claim that this is 𝑜
(

√

𝑁∕𝑚
)

, which is equivalent to

𝑁2

𝑚

√

𝑚
𝑁

𝑁−1
∑

𝑘=𝐾
√

𝑁∕𝑚+1

1
𝑘2(𝑁 − 𝑘)

(4.19)

converging to zero. This term we approximate by an integral

𝑁2

𝑚

√

𝑚
𝑁

𝑁−1
∑

𝑘=𝐾
√

𝑁∕𝑚+1

1
𝑘2(𝑁 − 𝑘)

= 𝑁2

𝑚

√

𝑚
𝑁

⋅
1
𝑁3

⋅𝑁 ⋅
1
𝑁

𝑁−1
∑

𝑘=𝐾
√

𝑁∕𝑚+1

1
(𝑘∕𝑁)2(1 − 𝑘∕𝑁)

∼ 𝑁2

𝑚

√

𝑚
𝑁

⋅
1
𝑁3

⋅𝑁 ⋅ ∫

1− 1
𝑁

𝐾∕
√

𝑚𝑁

1
𝑥2(1 − 𝑥)

d𝑥

1
√

𝑁𝑚 ∫

1− 1
𝑁

𝐾∕
√

𝑚𝑁

1
𝑥2(1 − 𝑥)

d𝑥.

The integral is of order
(

𝐾∕
√

𝑚𝑁
)−1

∨ log𝑁 = ( 1
𝐾

√

𝑚𝑁) ∨ log𝑁.

hus (4.19) is of order (
√

𝑁𝑚∕𝐾)∨log𝑁
√

𝑁𝑚
, which converges to zero as 𝑁 →

.
We are left with the analysis of

4(𝑗) =
𝑁−1
∑

𝑘=𝑁(1−𝜉)+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘
.

his sum is bounded by

𝑗

𝑁−1
∑

𝑘=𝑁(1−𝜉)+1

1
𝜆𝑘𝑟𝑘

.

ince we assumed 𝑗 ≤ 𝑁 − 𝜉𝑁 this is again bounded from above by

𝑅𝑁(1−𝜉)

𝑟𝑁(1−𝜉)

𝑁−1
∑

𝑘=𝑁(1−𝜉)+1

𝑟𝑁(1−𝜉)

𝜆𝑘𝑟𝑘
.

ecall from (4.7) that for 𝑗,𝓁 ∈ N,

og 𝑟𝑗+𝑙 − log 𝑟𝑗 = 𝓁 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
𝑗+𝓁
∑

𝑘=𝑗+1
log

(

1 − 𝑘∕((1 + 2𝑚)𝑁)
1 − 𝑘∕𝑁

)

.

oticing that the term

og
(

1 − 𝑘∕((1 + 2𝑚)𝑁)
)

132

1 − 𝑘∕𝑁
is increasing with 𝑘, and performing a Taylor expansion, we obtain that
for

𝑘 = 𝑁(1 − 𝜉) + 𝓁

we have the inequality

log 𝑟𝑘 − log𝑁(1−𝜉) ≥ 𝓁(1 − 𝜉)𝑚.

Together with Lemma 4.5 and the asymptotic 𝜆𝑘 ∼ 𝑘(1−𝑘∕𝑁) we obtain

𝑅𝑁(1−𝜉)

𝑟𝑁(1−𝜉)

𝑁−1
∑

𝑘=𝑁(1−𝜉)+1

𝑟𝑁(1−𝜉)

𝜆𝑘𝑟𝑘

≤ const ⋅ 𝑁𝑚
𝑁(1 − 𝜉)

𝑁−1
∑

𝑘=𝑁(1−𝜉)+1

1
𝑘(1 − 𝑘∕𝑁)

exp (−𝑚(1 − 𝜉) [𝑘 −𝑁(1 − 𝜉) − 1])

By using

1
𝑘(1 − 𝑘∕𝑁)

≤ 2 for 𝑁(1 − 𝜉) ≤ 𝑘 ≤ 𝑁 − 1

this is bounded by

const ⋅ 𝑚
1 − 𝜉

𝑁−1
∑

𝑘=𝑁(1−𝜉)+1
exp (−𝑚(1 − 𝜉) [𝑘 −𝑁(1 − 𝜉) − 1]) ,

hich in turn can be bounded by

onst ⋅ 𝑚
1 − 𝜉 ∫

𝑁−1

𝑥=𝑁(1−𝜉)+1
exp (−𝑚(1 − 𝜉) [𝑥 −𝑁(1 − 𝜉) − 1])d𝑥

≤ const ⋅ 𝑚
1 − 𝜉 ∫

𝑁(1−𝜉)

0
exp (−𝑚(1 − 𝜉)𝑥)d𝑥.

The latter integral is of order 1∕𝑚 as 𝑁 → ∞. Thus we obtain

𝐹4(𝑗) = 𝑜

(

√

𝑁
𝑚

)

,

which finishes the proof of (3.12) in the case 𝑗 ≤ 𝑁(1 − 𝜉).
In the remaining part of the proof we consider sequences which

not necessarily satisfy the restriction (4.17). In view of the first part
it suffices to show that the expected time which 𝑌 needs to come
down from 𝑁 to 𝑁(1 − 𝜉) is of lower order than

√

𝑁∕𝑚. For this, we
impose an additional condition on the sequence 𝜉, and will show the
following claim: Let 𝜉 = 𝜉𝑁 be a sequence converging to 0 and obeying
𝑚 ≪ 𝜉 ≪ 𝑚(𝑁∕𝑚)1∕4 as 𝑁 → ∞. Then E𝑁 [𝑇𝑁(1−𝜉)] = 𝑜(

√

𝑁∕𝑚).
To prove this claim, let  be the time-discrete birth-and-death

process corresponding to 𝑌 . By (3.1) and (3.2) the probability of  to
go down in the next step when starting in 𝑘 is given by

1
2

(

1 − 𝑘
𝑁

)

+ 𝑚
(

1 − 𝑘
𝑁

)

+ 𝑚 + 𝑚
𝜌

(

1 − 𝑘
𝑁

) .

which for 𝑁(1 − 𝜉) ≤ 𝑘 ≤ 𝑁 is bounded from below by

𝑞 ∶= 1
2

1 + 2𝑚
𝜉

1 + 𝑚
𝜉 + 𝑚

𝜌

.

Let us put 𝑝 ∶= 1 − 𝑞, and consider the (𝑝, 𝑞)-random walk 𝑊 on Z
as well as the random walk 𝑊 on Z ∩ {… , 𝑁 − 2, 𝑁 − 1, 𝑁} that is
btained by reflecting 𝑊 at 𝑁 , i.e. by putting P𝑁 (𝑊1 = 𝑁) ∶= 𝑝,
𝑁 (𝑊1 = 𝑁 − 1) ∶= 𝑞. A suitable coupling of  and 𝑊 (both starting

n 𝑁) shows that for 𝑁(1− 𝜉) ≤ 𝑘 ≤ 𝑁 the expected number visits of 
o 𝑘 before  reaches 𝑁(1 − 𝜉) is not larger than the expected number
f visits of 𝑊 to 𝑘 before 𝑊 reaches 𝑁(1− 𝜉). The expected number of
isits of the transient random walk 𝑊 to its starting point is 𝑞

𝑞−𝑝 ∼ 𝜉
𝑚 ,

and the same is true for 𝑊 . The jump rates (3.1) and (3.2) from state
𝑘 ≥ 𝑁(1 − 𝜉) add up to

𝑘
[

𝑁 − 𝑘 + 𝑚 + 𝑁 − 𝑘 𝑚
]

≥ 1𝑁𝑚.

𝑁 𝑁 𝜌 2
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Altogether, we obtain the estimate

E𝑁 [𝑇𝑁(1−𝜉)] ≤
2

𝑁𝑚
𝜉𝑁

𝑞
𝑝 − 𝑞

∼
2𝜉2

𝑚2
, (4.20)

whose r.h.s. is 𝑜(
√

𝑁∕𝑚) due to our assumption on 𝜉.
This concludes the proof of Theorem 3.4(a). □

4.4. The exponential regime: Proof of Theorem 3.4(b)

Throughout this section we assume 𝑁𝑚(1 − 𝜌)2 → ∞. In this regime
the process 𝑌 should spend a long time around its center of attraction
(1−𝜌)𝑁 , which makes the following decomposition of (4.5) natural: for
a small 𝜁 > 0 write

E𝑗 [𝑇0] =
(1−𝜁 )(1−𝜌)𝑁

∑

𝑘=1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘
+

(1+𝜁 )(1−𝜌)𝑁
∑

𝑘=(1−𝜁 )(1−𝜌)𝑁+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘
+

𝑁
∑

𝑘=(1+𝜁 )(1−𝜌)𝑁+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘

=∶ 𝐴(𝜁 ) + 𝐵(𝜁 ) + 𝐶(𝜁 ). (4.21)

The assertion of Theorem 3.4.(b) will be derived at the end of this sec-
tion from Proposition 4.7, whose proof, in turn, will rely on the follow-
ing lemma. The proof of this lemma as well as that of Proposition 4.7
will be given in Section 4.7.

Lemma 4.6. Let 𝑗 = 𝑗𝑁 be a sequence of natural numbers converging to
∞, and let 𝜉 < 1∕2. Then

• If 𝑗 ≤ 𝜉(1 − 𝜌)𝑁 , then for sufficiently large 𝑁

1 − 𝑒−(1+2𝜉)2𝑚(1−𝜌)𝑗∕𝜌

(1 + 2𝜉)2𝑚(1 − 𝜌)∕𝜌
≤ 𝑅𝑗 ≤

1 − 𝑒−(1−2𝜉)2𝑚(1−𝜌)𝑗∕𝜌

(1 + 2𝜉)2𝑚(1 − 𝜌)∕𝜌
.

• If 1∕(𝑚(1 − 𝜌)) ≪ 𝑗 ≤ (2 − 𝜉)(1 − 𝜌)𝑁 ∧𝑁(1 −
√

𝑚), then, under the
assumption 𝜉 ≥ 2 log(𝑚𝑁(1 − 𝜌)2)∕(𝑚𝑁(1 − 𝜌)2),

𝑅𝑗 ∼
𝜌

2𝑚(1 − 𝜌)
as 𝑁 → ∞.

• If 𝑗 = 𝐶(1−𝜌)𝑁 ≤ 𝑁(1−
√

𝑚), with 1
1−𝜌 ≥ 𝐶 > 2∕𝜌 (implying 𝜌 > 2

3 ),
then

𝑅𝑗 ∼ 𝜌(1 − 𝐶(1 − 𝜌))
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻(𝐶)
)

2𝑚(𝐶 − 1)(1 − 𝜌)
as 𝑁 → ∞,

where the function 𝐻(.) = 𝐻((𝑚, 𝜌), .) on R+ is defined by

𝐻(𝑦) ∶= −
𝑦
2𝑚

[

1
1 − 𝜌

log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

(1 − 𝜌)𝑙−1𝑦𝑙

𝑙(𝑙 + 1)

]

.

(4.22)

This is the central ingredient for the proof of the following propo-
ition, which, in turn, will be key for the proof of Theorem 3.4(b).

roposition 4.7. Let 𝐴(𝜁 ), 𝐵(𝜁 ) and 𝐶(𝜁 ) be defined by (4.21). Then for
𝜁 = 𝜁𝑁 converging to 0 so slowly that 𝜁

√

𝑚𝑁(1 − 𝜌) → ∞, we have

𝐵(𝜁 ) ∼
(

𝑅𝑗 ∧
𝜌

2𝑚(1 − 𝜌)

)√

𝜋
𝑚𝑁

2
1 − 𝜌

exp
(

2𝑚(1 − 𝜌)2𝑁𝐻(1)
)

as 𝑁 → ∞,

(4.23)

and

𝐴(𝜁 ) + 𝐶(𝜁 ) = 𝑜(𝐵(𝜁 )) as 𝑁 → ∞.

The proof of this proposition will be given in Section 4.7.

roof of Theorem 3.4(b). (i) For 𝑗 = 𝑗𝑁 = 𝑂(1∕(𝑚(1 − 𝜌))) and any
sequence 𝜉 = 𝜉𝑁 converging to zero we have

− exp (−(1 ± 2𝜉)2𝑚(1 − 𝜌)𝑗∕𝜌) ∼ 1 − exp (−2𝑚(1 − 𝜌)𝑗∕𝜌) .

Hence Proposition 4.7 together with the first bullet point of Lemma 4.6
133
gives

E𝑗 [𝑇0] ∼ 𝐵(𝜁 ) ∼
1 − exp (−2𝑚(1 − 𝜌)𝑗∕𝜌)

2𝑚(1 − 𝜌)

√

𝜋
𝑚𝑁

2𝜌
1 − 𝜌

exp
(

2𝑚(1 − 𝜌)2𝑁𝐻(1)
)

,

ii) For 𝑗 ≫ 1∕(𝑚(1−𝜌)) Proposition 4.7 together with the second bullet
oint of Lemma 4.6 gives

𝑗 [𝑇0] ∼ 𝐵(𝜁 ) ∼
𝜌

𝑚(1 − 𝜌)2

√

𝜋
𝑚𝑁

exp
(

2𝑚(1 − 𝜌)2𝑁𝐻(1)
)

.

(iii) To conclude (3.13) from (i) and (ii) it suffices to observe
that 𝜂(𝑚, 𝜌) = 𝐻(1), and that the assumption on 𝑗 in (ii) implies the
convergence 1 − exp(−2𝑚(1 − 𝜌)𝑗𝑁∕𝜌) → 1 as 𝑁 → ∞. The claimed
asymptotics (3.16) is an immediate consequence of (3.13).

(iv) It remains to prove the claim on the expected number of
excursions from 𝑎 ∶= ⌊a⌋, with a = (1−𝜌)𝑁 being the asymptotic center
of attraction of 𝑌 . In view of (4.4) this expected number equals

(𝜆𝑎 + 𝜇𝑎)𝐺(𝑎, 𝑎) = (𝜆𝑎 + 𝜇𝑎)
𝑅𝑎
𝜆𝑎𝑟𝑎

. (4.24)

In order to estimate 𝑟𝑎 we observe that (4.8), when expressed in terms
of the function 𝐻 (which was defined in (4.22)), gives the asymptotics

1
𝑟𝑎

∼ exp
(

2𝑚(1 − 𝜌)2𝑁𝐻(1)
)

as 𝑁 → ∞. (4.25)

n addition, the second bullet point of Lemma 4.6 gives

𝑎 ∼
𝜌

2𝑚(1 − 𝜌)
as 𝑁 → ∞. (4.26)

Since 𝜆𝑎 ∼ 𝜇𝑎 as 𝑁 → ∞, the combination of (4.25) and (4.26) shows
that (4.24) is asymptotically equivalent to (3.14). □

4.5. Proofs of Lemmas 4.1, 4.2 and 4.3

Proof of Lemma 4.1. We denote the time-discrete embedded process
corresponding to 𝑌 by  , and write (𝑚, 𝑛) for the expected number
of visits at 𝑛 of  when starting in 𝑚. Let us start with an analysis of
(𝑛, 𝑛). By standard arguments we have

(𝑛, 𝑛) = 1
𝜙(𝑛)

, (4.27)

here 𝜙(𝑛) is the escape probability of  from the state 𝑛, i.e.

(𝑛) =
𝜇𝑛

𝜇𝑛 + 𝜆𝑛
(1 − ℎ(𝑛)(𝑛 − 1)), (4.28)

here ℎ(𝑛) ∶ {0, 1,… , 𝑛} → [0, 1] is -harmonic on {1,… , 𝑛 − 1} and
satisfies the boundary conditions ℎ(𝑛)(0) = 0, ℎ(𝑛)(𝑛) = 1. Hence

ℎ(𝑛)(𝓁) =

∑𝓁−1
𝑗=0 𝑟𝑗

∑𝑛−1
𝑘=0 𝑟𝑘

, 𝓁 = 0,… , 𝑛, (4.29)

with the oddsratio product 𝑟𝑘 as in (4.2). From (4.29) we obtain

1 − ℎ(𝑛)(𝑛 − 1) =
𝑟𝑛−1

∑𝑛−1
𝑘=0 𝑟𝑘

. (4.30)

For 𝐺(𝑛, 𝑛), the expected time spent by 𝑌 in 𝑛 when starting in 𝑛, we
thus obtain the relation

𝐺(𝑛, 𝑛) =
(𝑛, 𝑛)
𝜆𝑛 + 𝜇𝑛

= 1
𝜙(𝑛)

⋅
1

𝜇𝑛 + 𝜆𝑛
.

Combining this with (4.27), (4.28) and (4.30) we arrive at

𝐺(𝑛, 𝑛) = 1
𝜇𝑛

⋅
𝑛−1
∑

𝑘=0

𝑟𝑘
𝑟𝑛−1

= 1
𝜇𝑛

𝑛−1
∑

𝑙=0

𝑛−1
∏

𝑘=𝑙+1

𝜆𝑘
𝜇𝑘

. (4.31)

For 𝑗 > 𝑛 we have

𝐺(𝑗, 𝑛) = 𝐺(𝑛, 𝑛), (4.32)

hile for 𝑗 < 𝑛

(𝑗, 𝑛) = ℎ𝑛(𝑗)𝐺(𝑛, 𝑛) =
∑𝑗−1

𝑙=0 𝑟𝑙
∑𝑛 𝐺(𝑛, 𝑛).
𝑙=0 𝑟𝑙
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c

P

l

A

𝑘

T

𝛥

w

0

w

0

N

𝛥

T
l

0

P
𝑥

F

Together with (4.31) this gives for 𝑗 < 𝑛

𝐺(𝑗, 𝑛) = 1
𝜇𝑛

𝑛−1
∑

𝑘=0

𝑟𝑘
𝑟𝑛−1

⋅

∑𝑗−1
𝑙=0 𝑟𝑙

∑𝑛−1
𝑙=0 𝑟𝑙

= 1
𝜇𝑛

𝑗−1
∑

𝑙=0

𝑛−1
∏

𝑘=𝑙+1

𝜆𝑘
𝜇𝑘

. (4.33)

It remains to observe that the three cases 𝑗 > 𝑛, 𝑗 = 𝑛, 𝑗 < 𝑛 (which are
overed by (4.32), (4.31) (4.33)) combine to (4.3) □

roof of Lemma 4.2. We have already seen

og 𝑟𝑗 =
𝑗
∑

𝑘=1
log

(

𝜇𝑘
𝜆𝑘

)

= 𝑗 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
𝑗
∑

𝑘=1
log

(

1 − 𝑘∕(1 + 2𝑚)𝑁
1 − 𝑘∕𝑁

)

= 𝑗 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
𝑗
∑

𝑘=1

∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙

( 𝑘
𝑁

)𝑙
.

s 𝑗 ≤ 𝑁 − 1, we may apply Fubini’s theorem to write
𝑗
∑

=1

∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙

( 𝑘
𝑁

)𝑙
=

∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙

𝑗
∑

𝑘=1

( 𝑘
𝑁

)𝑙
.

Now sandwiching arguments yield

𝑗𝑙+1

(𝑙 + 1)𝑁 𝑙 = ∫

𝑗

0

( 𝑥
𝑁

)𝑙
d𝑥

≤
𝑗
∑

𝑘=1

( 𝑘
𝑁

)𝑙

≤ ∫

𝑗

1

( 𝑥
𝑁

)𝑙
d𝑥 +

(

𝑗
𝑁

)𝑙
= 1

(𝑙 + 1)𝑁 𝑙 (𝑗
𝑙+1 − 1) +

(

𝑗
𝑁

)𝑙
.

his means that if we introduce

𝑗 ∶=
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙

𝑗
∑

𝑘=1

( 𝑘
𝑁

)𝑙
−

∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙(𝑙 + 1)

𝑗𝑙+1

𝑁 𝑙 ,

e have

≤ 𝛥𝑗 ≤
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙

(

𝑗
𝑁

)𝑙

From the observation that

1 − 1
(1 + 2𝑚)𝑙

≤ 2𝑚𝑙,

e get

≤ 𝛥𝑗 ≤ 2𝑚
∞
∑

𝑙=1

(

𝑗
𝑁

)𝑙
.

ow let 𝜉 ≫ 𝑚. Then 𝑗 ≤ (1 − 2𝜉)𝑁 implies that for 𝑁 marge enough,
𝑗 + 1 ≤ (1 − 𝜉)𝑁 . Hence

𝑗 ≤ 2𝑚
∞
∑

𝑙=1
(1 − 𝜉)𝑙 = 2𝑚

1 − 𝜉
𝜉

= 𝑜(1).

his entails that there exists 𝐶 such that for any 𝑗 ≤ (1 − 2𝜉)𝑁 and 𝑁
arge enough,

≤ log 𝑟𝑗−𝑗 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

−
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙(𝑙 + 1)

𝑗𝑙+1

𝑁 𝑙 ≤ const ⋅ 𝑚
𝜉
. □

(4.34)

roof of Lemma 4.3. We set out from (4.8). Notice that for any
, 𝑦 ≥ 0, 1 − (1 + 𝑥)−𝑦 ≤ 𝑥𝑦. Hence, for 𝑘 ≤ 𝐾

√

𝑁∕𝑚,
∞
∑

(

1 − 1
𝑙

)

𝑘𝑙+1
𝑙 ≤ 2𝑚

∞
∑ 𝑘𝑙+1

𝑙 ≤ 𝑚
∞
∑ 𝑘𝑙+1

𝑙
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𝑙=1 (1 + 2𝑚) 𝑙(𝑙 + 1)𝑁 𝑙=1 (𝑙 + 1)𝑁 𝑙=1 𝑁
= 𝑘2𝑚∕𝑁 + 𝑚𝑁
∞
∑

𝑙=3

𝑘𝑙

𝑁 𝑙

= 𝑘2𝑚∕𝑁 + 𝑚𝑁 𝑘3

𝑁3
1

1 − 𝑘∕𝑁

≤ 𝑘2𝑚∕𝑁 + 𝐾3
√

𝑚𝑁 −𝐾
.

Conversely we have
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

𝑘𝑙+1

𝑙(𝑙 + 1)𝑁 𝑙 ≥
(

1 − 1
(1 + 2𝑚)

)

𝑘2

2𝑁
∼ 𝑘2𝑚∕𝑁.

Finally, for 𝑘 ≤ 𝐾
√

𝑁∕𝑚 we also have
|

|

|

|

|

𝑘 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

|

|

|

|

|

= 𝑘
|

|

|

|

|

log
(

1 −
2𝑚(1 − 𝜌)
𝜌 + 2𝑚

)

|

|

|

|

|

∼ 2𝑚𝑘(1 − 𝜌)

≤ 2𝐾
√

𝑚(1 − 𝜌)2𝑁 = 𝑜(1).

This concludes the proof of (4.9). The estimate (4.10) then follows by
approximating the sum 𝑅𝑘 ∶=

∑𝑘−1
𝑙=0 𝑟𝑙 from below by an integral from

0 to 𝑘 − 1 and from above by an integral from 1 to 𝑘. □

4.6. Proofs of Lemmas 4.4 and 4.5

Proof of Lemma 4.4. Noting that our choices of 𝐾 and 𝜁 entail

𝑘2𝑚
(1 + 2𝑚)𝑁

≫ 4(1 − 𝜌)
√

𝑚𝑁 ∀𝑘 ≥ 𝜁
√

𝑁∕𝑚

as well as

4(1 − 𝜌)𝐾
√

𝑚𝑁 → 0
𝐾3

√

𝑚𝑁 − 1
→ 0.

We can deduce
𝐾
√

𝑁∕𝑚
∑

𝑘=𝜁
√

𝑁∕𝑚

𝑅𝑘
𝑘𝑟𝑘

∼ ∫

𝐾
√

𝑁∕𝑚

𝑦=𝜁
√

𝑁∕𝑚
𝑒−

𝑚
𝑁 𝑦2 d𝑦

𝑦 ∫

𝑦

𝑧=0
𝑒

𝑚
𝑁 𝑧2d𝑧 =∶ 𝐼𝑁

from (4.9) and (4.10). We thus need to find an equivalent of 𝐼𝑁 for
large 𝑁 . Three successive changes of variables entail the equalities:

𝐼𝑁 = ∫

𝐾
√

𝑁∕𝑚

𝑦=𝜁
√

𝑁∕𝑚

d𝑦
𝑦 ∫

𝑦

𝑧=0
𝑒−

𝑚
𝑁 (𝑦2−𝑧2)d𝑧

= ∫

𝐾
√

𝑁∕𝑚

𝑦=𝜁
√

𝑁∕𝑚
d𝑦∫

1

𝜆=0
𝑒−

𝑚
𝑁 𝑦2(1−𝜆2)𝑑𝜆 =

√

𝑁
𝑚 ∫

1

𝜆=0
𝑑𝜆∫

𝐾

𝑧=𝜁
𝑒−𝑧

2(1−𝜆2)d𝑧

=
√

𝑁
𝑚 ∫

1

𝜆=0

𝑑𝜆
√

1 − 𝜆2 ∫

𝐾
√

1−𝜆2

𝑤=𝜁
√

1−𝜆2
𝑒−𝑤

2
𝑑𝑤.

Hence

𝐼𝑁 ≤
√

𝑁
𝑚 ∫

1

𝜆=0

𝑑𝜆
√

1 − 𝜆2 ∫

∞

𝑤=0
𝑒−𝑤

2
𝑑𝑤 =

√

𝑁
𝑚

𝜋
2

√

𝜋
2

=
√

𝑁
𝑚

𝜋3∕2

4
.

or the lower estimate we proceed as follows:

𝜋3∕2

4
− 𝐼𝑁

√

𝑚
𝑁

= ∫

1

𝜆=0

𝑑𝜆
√

1 − 𝜆2

(

∫

𝜁
√

1−𝜆2

𝑤=0
𝑒−𝑤2𝑑𝑤 + ∫

∞

𝑤=𝐾
√

1−𝜆2
𝑒−𝑤2𝑑𝑤

)

≤ ∫

1

𝜆=0

𝑑𝜆
√

1 − 𝜆2

(

𝜁 + ∫

∞

𝑤=𝐾
√

1−𝜆2
𝑒−𝑤2𝑑𝑤

)

≤ 𝜋
2
𝜁 + ∫

1

𝜆=0

𝑑𝜆
√

1 − 𝜆2

(

∫

∞

𝑤=𝐾
√

1−𝜆2
𝑒−𝑤2𝑑𝑤

)

.

We write the double integral on the r.h.s. as

∫

1

0 ∫

∞

𝑧=𝐾
𝑒−𝑧

2(1−𝜆2)d𝑧d𝜆 = ∫

∞

𝑧=𝐾
𝑒−𝑧

2

∫

1

0
𝑒𝑧

2𝜆2d𝜆d𝑧.

By substituting 𝑥 = 𝜆𝑧 the inner integral is equal to

1 𝑧
𝑒𝑥

2d𝑥,

𝑧 ∫0
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𝑘

P

𝑟

S

𝑅

(

c

√

S

w

𝑔

I

which by Weisstein (2024, (1),(9)) is bounded from above by const ⋅
𝑒𝑧2∕𝑧2, such that in total is bounded from above by

∫

∞

𝐾
𝑒−𝑧

2

(

const ⋅ 𝑒
𝑧2

𝑧2

)

d𝑧 ≤ const ⋅ 1
𝐾
,

so in total

𝜋3∕2

4
− 𝐼𝑁

√

𝑚
𝑁

= 𝑂(𝜁 ) + 𝑂
( 1
𝐾

)

.

Hence, as 𝜆𝑘 ∼ 𝑘∕2 for 𝑘 ≪ 𝑁 , we have proved that

𝐾
√

𝑁∕𝑚
∑

=𝜁
√

𝑁∕𝑚

𝑅𝑘
𝜆𝑘𝑟𝑘

∼
𝐾
√

𝑁∕𝑚
∑

𝑘=𝜁
√

𝑁∕𝑚

2
𝑅𝑘
𝑘𝑟𝑘

=
√

𝑁
𝑚

(

𝜋3∕2

2
+ 𝑂 (𝜁 ) + 𝑂

( 1
𝐾

)

)

. □

roof of Lemma 4.5. Lemma 4.2 enables us to write

𝑗 ∼ exp
( 𝑚
𝑁

𝑗2𝑓 (𝑗)
)

for 𝑗 ≤ 𝑁 − 𝜉𝑁.

o

𝑗 =
𝑗
∑

𝑙=1
𝑟𝑙 ∼

𝑗
∑

𝑙=1
exp

( 𝑚
𝑁

𝑙2𝑓 (𝑙)
)

≤ const ⋅ ∫

𝑗

1
exp

( 𝑚
𝑁

𝑥2𝑓 (𝑥)
)

d𝑥

and
𝑅𝑗

𝑟𝑗
≤ const exp

(

− 𝑚
𝑁

𝑗2𝑓 (𝑗)
)

⋅ ∫

𝑗

1
exp

( 𝑚
𝑁

𝑥2𝑓 (𝑥)
)

d𝑥

= const ⋅ ∫

𝑗

1
exp

( 𝑚
𝑁

(

𝑥2𝑓 (𝑥) − 𝑗2𝑓 (𝑗)
)

)

d𝑥. (4.35)

Since 𝑓 is non-decreasing and 𝑓 (𝑥) ≥ 1
2 for 𝑥 ≫

√

𝑁∕𝑚, see the
discussion after (4.15), we have 𝑓 (𝑥) ≤ 𝑓 (𝑗) for 𝑥 ≤ 𝑗 as well as
𝑓 (𝑗) ≥ 1

2 . So since the exponent in the integral in (4.35) is negative,
4.35) is bounded from above by

onst exp
(

− 𝑚
2𝑁

𝑗2
)

⋅ ∫

𝑗

0
exp

( 𝑚
2𝑁

𝑥2
)

d𝑥. (4.36)

By substituting 𝑧 =
√

𝑚
2𝑁 the integral is equal to

2𝑁
𝑚 ∫

√ 𝑚
2𝑁 𝑗

0
𝑒𝑧

2d𝑧,

which by Weisstein (2024, (1),(9)) is bounded from above by

const ⋅ 𝑒
𝑗2⋅ 𝑚

2𝑁

𝑗
⋅
2𝑁
𝑚

.

o (4.36) - and hence also (4.35) - is asymptotically bounded by const ⋅
𝑁
𝑚𝑗 , which concludes the proof of the Lemma. □

4.7. Proofs of Lemma 4.6 and Proposition 4.7

Proof of Lemma 4.6. We start by collecting a few properties of the
function 𝐻 defined in (4.22). The first two derivatives of 𝐻 are

𝐻 ′(𝑦) = − 1
2𝑚

[

1
1 − 𝜌

log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

(1 − 𝜌)𝑙−1𝑦𝑙

𝑙

]

= − 1
2𝑚(1 − 𝜌)

[

log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

(1 − 𝜌)𝑙𝑦𝑙

𝑙

]

= − 1
2𝑚(1 − 𝜌)

log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

1 − (1 − 𝜌)𝑦∕(1 + 2𝑚)
1 − (1 − 𝜌)𝑦

)

= − 1
2𝑚(1 − 𝜌)

log
(

1 + 2𝑚 − (1 − 𝜌)𝑦
(1 + 2𝑚∕𝜌)(1 − (1 − 𝜌)𝑦)

)

= − 1 log
(

1 + 2𝑚 (1 − 𝜌)(𝑦 − 1)
)

. (4.37)
135

2𝑚(1 − 𝜌) 𝜌 (1 + 2𝑚∕𝜌)(1 − (1 − 𝜌)𝑦)
Since 𝜌 ≥ 𝜌0 we have that for 𝑦 < 1
2 and 𝑁 large enough

|

|

|

|

2𝑚
𝜌

(1 − 𝜌)(𝑦 − 1)
(1 + 2𝑚∕𝜌)(1 − (1 − 𝜌)𝑦)

|

|

|

|

≥ 2𝑚
𝜌

(1 − 𝜌) 12
1 + 2𝑚∕𝜌

,

such that
|

|

|

|

|

log
(

1 + 2𝑚
𝜌

(1 − 𝜌)(𝑦 − 1)
(1 + 2𝑚∕𝜌)(1 − (1 − 𝜌)𝑦)

)

|

|

|

|

|

≥ 1
2

2𝑚(1 − 𝜌)
𝜌(1 + 2𝑚∕𝜌)

,

which gives

𝐻 ′(𝑦) ≥ 1
2𝑚(1 − 𝜌)

1
2

2𝑚(1 − 𝜌)
𝜌(1 + 2𝑚∕𝜌)

≥ 1
2𝜌

1
1 + 2𝑚∕𝜌0

≥ 1
4

(4.38)

for 𝑦 ≤ 1
2 and 𝑁 large enough. We continue with the analysis of 𝐻 ′′

and obtain

𝐻 ′′(𝑦) = − 1
2𝑚(1 − 𝜌)

[

−
(1 − 𝜌)

1 + 2𝑚 − (1 − 𝜌)𝑦
+

(1 − 𝜌)
1 − (1 − 𝜌)𝑦

]

= 1
2𝑚

[

1
1 + 2𝑚 − (1 − 𝜌)𝑦

− 1
1 − (1 − 𝜌)𝑦

]

≤ 0.

Hence, 𝐻(0) = 0, 𝐻 reaches its maximum at 𝑦 = 1, and then decreases,
and as 𝑁 → ∞

𝐻(1) = − 1
2𝑚

[

1
1 − 𝜌

log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

(1 − 𝜌)𝑙−1

𝑙(𝑙 + 1)

]

,

and

𝐻 ′′(1) = 1
2𝜌𝑚

[

1
1 + 2𝑚∕𝜌

− 1
]

∼ − 1
2𝜌𝑚

2𝑚∕𝜌 = − 1
𝜌2

, as 𝑁 → ∞.

Moreover, 𝐻 is non-negative on [0, 𝑦0] and negative on (𝑦0,∞), with 𝑦0
satisfying

𝑦0 ∼
2
𝜌

as 𝑁 → ∞.

For later use we also notice that from (4.37) we get for all 𝑦 ∈ R ⧵ {1}

𝐻 ′(𝑦) ∼
1 − 𝑦

𝜌(1 − (1 − 𝜌)𝑦)
as 𝑁 → ∞. (4.39)

We now focus on the second bullet point of the lemma. So 𝑗 is of the
form

𝑗 =
𝑔(𝑁)

2𝑚(1 − 𝜌)
(4.40)

ith 𝑔(𝑁) satisfying

(𝑁) → ∞ and 𝑔(𝑁) ≤ (2∕𝜌 − 𝜉)2𝑚(1 − 𝜌)2𝑁.

n particular, this means
1

𝑚(1 − 𝜌)
≪ 𝑗 ≤ (2∕𝜌 − 𝜉)(1 − 𝜌)𝑁 ∧𝑁(1 −

√

𝑚).

Using (4.7) we obtain by a sandwiching argument

𝑅𝑗 ∼ ∫

𝑗

0
exp

(

𝑥 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙(𝑙 + 1)

𝑥𝑙+1

𝑁 𝑙

)

d𝑥

= 𝑗 ∫

1

0
exp

(

𝑗𝑦

[

log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙(𝑙 + 1)

(𝑗𝑦)𝑙

𝑁 𝑙

])

d𝑦

= 𝑗 ∫

1

0
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻
(

𝑗𝑦
𝑁(1 − 𝜌)

))

d𝑦

= 𝑗
(

∫

𝜀

0
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻
(

𝑗𝑦
𝑁(1 − 𝜌)

))

d𝑦

+∫

1

𝜀
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻
(

𝑗𝑦
𝑁(1 − 𝜌)

))

d𝑦
)

where an adequate choice of 𝜀 (independent of 𝑁) will be made below.
By (4.40) and the above stated properties of the function 𝐻 we get that
for all 𝑦 ∈ [𝜀, 1],

𝐻
(

𝑗𝑦
𝑁(1 − 𝜌)

)

≥ 𝐻
(

𝑔(𝑁)𝜀
2𝑚(1 − 𝜌)2𝑁

)

∧𝐻 (2∕𝜌 − 𝜉) . (4.41)

Moreover, because

𝐻 ′(0) ∼ 1 and 𝐻 ′(2∕𝜌) ∼ −1 as 𝑁 → ∞,

𝜌 𝜌
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l

w
𝐻
m

combining (4.38) and (4.41) and setting 𝜀 = 1
4 we obtain for all

𝑦 ∈ [𝜀, 1] and 𝑁 large enough,

𝐻
(

𝑗𝑦
𝑁(1 − 𝜌)

)

≥ inf
0≤𝑢≤𝜀

𝐻 ′((2∕𝜌 − 𝜉)𝑢)
𝑔(𝑁)𝜀

2𝜌𝑚(1 − 𝜌)2𝑁
∧ inf

0≤𝑢≤𝑦0−2∕𝜌+𝜉
|𝐻 ′(𝑢)|𝜉

≥ 𝑔(𝑁)𝜀
8𝜌𝑚(1 − 𝜌)2𝑁

∧
𝜉
4𝜌

.

Hence

∫

1

𝜀
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻
(

𝑗𝑦
𝑁(1 − 𝜌)

))

d𝑦

≤ exp
(

−2𝑚(1 − 𝜌)2𝑁
(

𝑔(𝑁)𝜀
8𝜌𝑚(1 − 𝜌)2𝑁

∧
𝜉
4𝜌

))

= exp
(

−
𝑔(𝑁)𝜀
4𝜌

)

∨ exp
(

−1
2
𝑚(1 − 𝜌)2𝑁𝜉∕𝜌

)

.

The equivalence 𝐻 ′(0) ∼ 1∕𝜌 also entails that

𝑗 ∫

𝜀

0
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻
(

𝑗𝑦
𝑁(1 − 𝜌)

))

d𝑦

∼ 𝑗 ∫

𝜀

0
exp

(

−2𝑚(1 − 𝜌)2𝑁
𝑗𝑦

𝑁𝜌(1 − 𝜌)

)

d𝑦

= 𝑗 ∫

𝜀

0
exp (−2𝑚(1 − 𝜌)𝑗𝑦∕𝜌)d𝑦

∼
𝜌

2𝑚(1 − 𝜌)
=

𝑗𝜌
𝑔(𝑁)

.

n total, as

xp
(

−
𝑔(𝑁)𝜀
4𝜌

)

= 𝑜
(

1
𝑔(𝑁)

)

and

exp
(

−1
2
𝑚(1 − 𝜌)2𝑁𝜉∕𝜌

)

≤ 2
(𝑁𝑚(1 − 𝜌))2

≤
(

8
𝜌𝑔(𝑁)

)2
= 𝑜

(

1
𝑔(𝑁)

)

this gives 𝑅𝑗 ∼ 𝜌∕(2𝑚(1 − 𝜌)) and thus proves the second bullet point of
the lemma.

We now turn to the third bullet point. So 𝑗 is of the form 𝑗 =
𝐶(1 − 𝜌)𝑁 with 𝐶 > 2∕𝜌 and 𝑗 ≤ 𝑁(1 −

√

𝑚) (Note that 𝐶(1 − 𝜌)𝑁 ≤ 𝑁
nd 𝐶 > 2𝜌 imply 𝜌 > 2∕3.) Using (4.8) and sandwiching arguments
ields

𝑗 ∼ (1 − 𝜌)𝑁 ∫

𝐶

0
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻(𝑦)
)

d𝑦.

𝐻(𝑦) is non-negative for 𝑦 ≤ 𝑦0 with 𝑦0 ∼ 2∕𝜌, and negative for 𝑦 > 𝑦0.
Moreover, 𝐻 ′′ < 0. Consequently we get

𝑅𝑗 ∼ (1 − 𝜌)𝑁 ∫

𝐶

𝑦0
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻(𝑦)
)

d𝑦.

By (4.39) there exists x ≥ 0 such that

𝐻 ′(𝑦) ∈ [−x𝜉 − (𝐶 − 1)∕(𝜌(1 − 𝐶(1 − 𝜌))), x𝜉 − (𝐶 − 1)∕(𝜌(1 − 𝐶(1 − 𝜌)))],

∀𝑦 ∈ [𝐶 − 𝜉, 𝐶 + 𝜉].

This entails

∫

𝐶

𝐶−𝜉
𝑒−2𝑚(1−𝜌)

2𝑁((𝐶−1)∕(𝜌(1−𝐶(1−𝜌)))+x𝜉)(𝐶−𝑦)d𝑦

≤ ∫

𝐶

𝐶−𝜉
𝑒−2𝑚(1−𝜌)

2𝑁(𝐻(𝑦)−𝐻(𝐶))d𝑦

≤ ∫

𝐶

𝐶−𝜉
𝑒−2𝑚(1−𝜌)

2𝑁((𝐶−1)∕(𝜌(1−𝐶(1−𝜌)))−x𝜉)(𝐶−𝑦)d𝑦.

Moreover,

∫

𝐶−𝜉

𝑦0
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻(𝑦)
)

d𝑦 ≤ 𝐶 exp
(

−2𝑚(1 − 𝜌)2𝑁𝐻(𝐶 − 𝜉)
)

= 𝑜
(

exp
(

−2𝑚(1 − 𝜌)2𝑁𝐻(𝐶)
))

.

We deduce that

𝑅𝑗 ∼ (1 − 𝜌)𝑁
𝜌(1 − 𝐶(1 − 𝜌)) exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻(𝐶)
)

136

2𝑚(𝐶 − 1)(1 − 𝜌)2𝑁 𝜁
=
𝜌(1 − 𝐶(1 − 𝜌))
2𝑚(𝐶 − 1)(1 − 𝜌)

exp
(

−2𝑚(1 − 𝜌)2𝑁𝐻(𝐶)
)

,

hich proves the third bullet point of the lemma.
Finally, we focus on the first bullet point. Let 𝑗 ≤ 𝜉(1 − 𝜌)𝑁 with

≤ 1
2 . From the observation that

− 1
(1 + 2𝑚)𝑙

≤ 2𝑚𝑙

e get
∞

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙(𝑙 + 1)

𝑗𝑙

𝑁 𝑙 ≤ 2𝑚
∞
∑

𝑙=1

1
𝑙 + 1

𝑗𝑙

𝑁 𝑙

≤ 𝑚
∞
∑

𝑙=1

𝑗𝑙

𝑁 𝑙

≤ 𝑚
𝜉(1 − 𝜌)

1 − 𝜉(1 − 𝜌)
≤ 𝑚

𝜌
𝜉(1 − 𝜌).

s

og
(

1 + 2𝑚∕𝜌
1 + 2𝑚

)

= log
(

1 + 2𝑚
𝜌

1 − 𝜌
1 + 2𝑚

)

∼ 2𝑚
𝜌

(1 − 𝜌)

we deduce that
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

1
𝑙(𝑙 + 1)

𝑗𝑙

𝑁 𝑙 ≤ 𝜉 log
(

1 + 2𝑚∕𝜌
1 + 2𝑚

)

.

Hence for 𝑗 ≤ 𝜉(1 − 𝜌)𝑁 ≤ (1 − 𝜌)𝑁 ,

−(1 + 𝜉) 2𝑚
𝜌

(1 − 𝜌)𝑗 ≤ 𝑗 log
(

1 + 2𝑚
1 + 2𝑚∕𝜌

)

+
∞
∑

𝑙=1

(

1 − 1
(1 + 2𝑚)𝑙

)

𝑗𝑙+1

𝑙(𝑙 + 1)𝑁 𝑙

≤ −(1 − 𝜉) 2𝑚
𝜌

(1 − 𝜌)𝑗.

Consequently,

1 − 𝑒−(1+2𝜉)(2𝑚∕𝜌)(1−𝜌)𝑗

(1 + 2𝜉)(2𝑚∕𝜌)(1 − 𝜌)
= ∫

𝑗

0
𝑒−(1+2𝜉)(2𝑚∕𝜌)(1−𝜌)𝑥d𝑥

≤ 𝑅𝑗 ≤ ∫

𝑗

0
𝑒−(1−2𝜉)(2𝑚∕𝜌)(1−𝜌)𝑥d𝑥

= 1 − 𝑒−(1−2𝜉)(2𝑚∕𝜌)(1−𝜌)𝑗

(1 + 2𝜉)(2𝑚∕𝜌)(1 − 𝜌)
.

This ends the proof of Lemma 4.6. □

Proof of Proposition 4.7. Let us first study the asymptotics of 𝐵(𝜁 ).
Thanks to the second bullet point of Lemma 4.6 we know that for any
(1 − 𝜁 )(1 − 𝜌)𝑁 ≤ 𝑘 ≤ (1 + 𝜁 )(1 − 𝜌)𝑁 one has 𝑅𝑘 ∼ 𝜌∕(2𝑚(1 − 𝜌)). Hence

𝐵(𝜁 ) ∼
(

𝑅𝑗 ∧
𝜌

2𝑚(1 − 𝜌)

) (1+𝜁 )(1−𝜌)𝑁
∑

𝑘=(1−𝜁 )(1−𝜌)𝑁+1

1
𝜆𝑘𝑟𝑘

.

Moreover, for 𝑘 ∈ [(1 − 𝜁 )(1 − 𝜌)𝑁, (1 + 𝜁 )(1 − 𝜌)𝑁] we have 𝜆𝑘 ∼ 𝜌𝑘∕2.
Hence

2
𝜌(1 + 2𝜁 )(1 − 𝜌)𝑁

(1+𝜁 )(1−𝜌)𝑁
∑

𝑘=(1−𝜁 )(1−𝜌)𝑁+1

1
𝑟𝑘

≤
(1+𝜁 )(1−𝜌)𝑁

∑

𝑘=(1−𝜁 )(1−𝜌)𝑁+1

1
𝜆𝑘𝑟𝑘

≤ 2
𝜌(1 − 2𝜁 )(1 − 𝜌)𝑁

(1+𝜁 )(1−𝜌)𝑁
∑

𝑘=(1−𝜁 )(1−𝜌)𝑁+1

1
𝑟𝑘

.

We are left with the study of
(1+𝜁 )(1−𝜌)𝑁

∑

𝑘=(1−𝜁 )(1−𝜌)𝑁+1

1
𝑟𝑘

∼ 𝑁(1 − 𝜌)∫

1+𝜁

1−𝜁
exp

(

2𝑚(1 − 𝜌)2𝑁𝐻(𝑦)
)

d𝑦,

here the equivalence is a consequence of (4.8). (Note that the function
, see (4.22), appears in (4.8).) Since the function 𝐻 reaches its
aximum at 1 and 𝐻 ′′(1) ∼ −1∕𝜌2, and since 𝜁 satisfies
√

𝑚𝑁(1 − 𝜌) → ∞ as 𝑁 → ∞,
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an application of the Laplace method yields

∫

1+𝜁

1−𝜁
exp

(

2𝑚(1 − 𝜌)2𝑁𝐻(𝑦)
)

d𝑦 ∼

√

2𝜋𝜌2

2𝑚(1 − 𝜌)2𝑁
exp

(

2𝑚(1 − 𝜌)2𝑁𝐻(1)
)

=
√

𝜋
𝑚𝑁

𝜌
1 − 𝜌

exp
(

2𝑚(1 − 𝜌)2𝑁𝐻(1)
)

.

Hence

𝐵(𝜁 ) ∼
(

𝑅𝑗 ∧
𝜌

2𝑚(1 − 𝜌)

)√

𝜋
𝑚𝑁

2
1 − 𝜌

exp
(

2𝑚(1 − 𝜌)2𝑁𝐻(1)
)

.

This completes the proof of (4.23).
To bound 𝐴(𝜁 ), it is enough to notice that for any 𝑘 ≤ (1−𝜁 )(1−𝜌)𝑁 ,

𝜆𝑘 ≥ 𝑘
2
(1 − (1 − 𝜁 )(1 − 𝜌)), 𝑟𝑘 ≥ exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻(1 − 𝜁∕2)
)

,

𝑅𝑘∧𝑗 ≤
𝜌

2𝑚(1 − 𝜌)
.

he first inequality is a direct consequence of the definition of 𝜆𝑘 in
(4.1), the second one stems from equality (4.7), and the last one is a
consequence of Lemma 4.6. Altogether this yields that

𝐴(𝜁 ) ≤ (1 − 𝜁 )(1 − 𝜌)𝜌𝑁
2𝑚(1 − 𝜌)

2
𝑘(1 − (1 − 𝜁 )(1 − 𝜌))

exp
(

2𝑚(1 − 𝜌)2𝑁𝐻(1 − 𝜁∕2)
)

= 𝑜 (𝐵(𝜁 )) .

he term 𝐶(𝜁 ) is more delicate to bound and we have to decompose it
nto several terms. This decomposition depends on the value of 𝜌:

Let us begin with the simplest case, that is 𝜌 ≤ 2∕3. In this case
2∕𝜌)(1 − 𝜌) ≥ 1 and thus (2∕𝜌)(1 − 𝜌)𝑁 ≥ 𝑁 . Recall that the positive

root 𝑦0 of 𝐻 satisfies 𝑦0 ∼ 2∕𝜌. We may decompose 𝐶(𝜁 ) as follows:

𝐶(𝜁 ) =
(𝑦0(1−𝜌)∧1)𝑁(1−

√

𝑚)
∑

𝑘=(1+𝜁 )(1−𝜌)𝑁+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘
+

𝑁
∑

𝑘=(𝑦0(1−𝜌)∧1)𝑁(1−
√

𝑚)+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘

∶= 𝐶𝛼(𝜁 ) + 𝐶𝛽 (𝜁 ).

Using that 𝐻 is non-negative and decreasing on [1, 𝑦0] and 𝑦0 ∼ 2∕𝜌
we obtain from equality (4.7) that for any (1 + 𝜁 )(1 − 𝜌)𝑁 + 1 ≤ 𝑘 ≤
(𝑦0(1 − 𝜌) ∧ 1)𝑁(1 −

√

𝑚),

𝑘𝑟𝑘 = 𝑘𝑞𝑘𝑟𝑘−1 ≥ 𝑘𝑚 exp
(

−2𝑚(1 − 𝜌)2𝑁𝐻(1 + 𝜁∕2)
)

and

𝑅𝑘∧𝑗 ≤
𝜌

2𝑚(1 − 𝜌)
.

ence

𝛼(𝜁 ) ≤
𝜌𝑁

2𝑚(1 − 𝜌)
1
𝑘𝑚

exp
(

2𝑚(1 − 𝜌)2𝑁𝐻(1 + 𝜁∕2)
)

= 𝑜 (𝐵(𝜁 )) .

To bound 𝐶𝛽 (𝜁 ) we apply (4.20) with 𝜉 ∼
√

𝑚 satisfying

(𝑦0(1 − 𝜌) ∧ 1)𝑁(1 −
√

𝑚) = 𝑁(1 − 𝜉).

This shows that 𝐶(𝜁 ) = 𝑜(𝐵(𝜁 )) in the case 𝜌 ≤ 2∕3.
Let us now consider the case 𝜌 > 2∕3. We decompose 𝐶(𝜁 ) into three

terms as follows:

𝐶(𝜁 ) =
(2∕𝜌−𝜁 )(1−𝜌)𝑁

∑

𝑘=(1+𝜁)(1−𝜌)𝑁+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘
+

(2∕𝜌+𝜁 )(1−𝜌)𝑁
∑

𝑘=(2∕𝜌−𝜁 )(1−𝜌)𝑁+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘
+

𝑁
∑

𝑘=(2∕𝜌+𝜁 )(1−𝜌)𝑁+1

𝑅𝑘∧𝑗

𝜆𝑘𝑟𝑘
∶= 𝐶1(𝜁 ) + 𝐶2(𝜁 ) + 𝐶3(𝜁 ).

𝐶1(𝜁 ) may be bounded with similar arguments as for 𝐴(𝜁 ): for any
(1 + 𝜁 )(1 − 𝜌)𝑁 ≤ 𝑘 ≤ (2∕𝜌 − 𝜁 )(1 − 𝜌)𝑁 ,

𝜆𝑘𝑟𝑘 = 𝑘𝑞𝑘𝑟𝑘−1 ≥ 𝑘𝑚 exp
(

−2𝑚(1 − 𝜌)2𝑁𝐻(1 + 𝜁∕2)
)

and 𝑅𝑘∧𝑗 ≤
𝜌

2𝑚(1 − 𝜌)
.

This entails

𝐶1(𝜁 ) ≤
(1 − 2𝜁 )(1 − 𝜌)𝑁

2𝑚𝜌(1 − 𝜌)
1
𝑘𝑚

exp
(

2𝑚(1 − 𝜌)2𝑁𝐻(1 + 𝜁∕2)
)

= 𝑜 (𝐵(𝜁 )) .

Now, recalling the third bullet point of Lemma 4.6, that 𝑅. is
increasing and that 𝑟𝑘 is increasing with 𝑘 when 𝑘 is larger than
(1 + 𝜁 )(1 − 𝜌)𝑁 , we get for (2∕𝜌 − 𝜁 )(1 − 𝜌)𝑁 ≤ 𝑘 ≤ (2∕𝜌 + 𝜁 )(1 − 𝜌)𝑁 ,

𝜆 𝑟 = 𝑘𝑞 𝑟 ≥ 𝑘𝑚 exp
(

−2𝑚(1 − 𝜌)2𝑁𝐻(2∕𝜌 − 2𝜁 )
)
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𝑘 𝑘 𝑘 𝑘−1
and

𝑅𝑘 ≤ 𝑅(2∕𝜌+𝜁 )(1−𝜌)𝑁 ∼ 𝜌(1− (2∕𝜌+ 𝜁 )(1− 𝜌))
exp

(

−2𝑚(1 − 𝜌)2𝑁𝐻(2 + 𝜁 )
)

2𝑚(2∕𝜌 + 𝜁 − 1)(1 − 𝜌)
.

sing that 𝐻 ′(2∕𝜌) ∼ −1∕𝜌, we deduce that there exists a constant K

uch that

2(𝜁 ) ≤ K𝜁 (1 − 𝜌)𝑁
(1 − 𝜌)2𝑁𝑚2

exp
(

2𝑚(1 − 𝜌)2𝑁(𝐻(2 − 2𝜁 ) −𝐻(2 + 2𝜁 ))
)

≤ K𝜁
(1 − 𝜌)𝑚2

exp
(

K𝑚(1 − 𝜌)2𝑁𝜁
)

= 𝑜 (𝐵(𝜁 )) .

Notice that for 𝑘 ≥ (2∕𝜌+ 𝜁 )(1 − 𝜌)𝑁 − 1, 𝑟𝑘 = sup{𝑟𝑙 , 𝑙 ≤ 𝑘}. Hence,
for any 𝑗,

𝐶3(𝜁 ) =
𝑁
∑

𝑘=(2∕𝜌+𝜁 )(1−𝜌)𝑁+1

𝑅𝑘∧𝑗

𝑘𝑞𝑘𝑟𝑘−1

≤ 1
𝑚

𝑁
∑

𝑘=(2∕𝜌+𝜁 )(1−𝜌)𝑁+1

𝑅𝑘
𝑘𝑟𝑘−1

= 1
𝑚

𝑁
∑

𝑘=(2∕𝜌+𝜁 )(1−𝜌)𝑁+1

𝑟0 +⋯ + 𝑟𝑘−2 + 𝑟𝑘−1
𝑘𝑟𝑘−1

≤ 𝑁
𝑚

= 𝑜 (𝐵(𝜁 )) .

This shows that 𝐶(𝜁 ) = 𝑜(𝐵(𝜁 )) in the case 𝜌 > 2∕3, and thus concludes
the proof of Proposition 4.7. □
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