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Abstract  Risk maps are a useful tool to prioritise 
sites for management and allocate resources where 
they are most needed as they can show us where 
impacts of biological invasions are most likely to 
happen or expected to be largest. Given the pace of 
global changes, we need to understand not only the 
risks under current conditions, but future risks taking 
these changes into account. In this study, we use Aus-
tralian acacias alien to South Africa as a case study to 
model their potential distribution under future climate 
change to map their potential impacts at the middle 
and end of the century and the uncertainty related 
to three socio-economic pathways and five climatic 
models. The resulting risk maps across South Africa 
are a pioneering attempt to combine impacts of alien 
species with potential future distributions. We found 

that although climatic suitability and therefore the 
risk is predicted to decrease under climate change in 
51,4% of the country’s area, the opposite is predicted 
for 26% of the area and the highly vulnerable fynbos 
biome remains an area with high projected impacts. 
Such risk maps can help us prioritise management 
actions and aid the development of suitable plans to 
protect biodiversity under current and future climate 
conditions. However, they have to be interpreted with 
caution and we highlight some shortcomings around 
species distribution models in general, vulnerabil-
ity of ecosystems to the potential impacts, data gaps 
on impacts, as well as currently benign or unknown 
invaders, which are not included in the projections.
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Introduction

Biological invasions and climate change are two of 
the main drivers of global biodiversity loss (Master 
and Norgrove 2010;  IPBES 2023). Impacts of bio-
logical invasions are manifold, including changes to 
ecosystem functions such as fire regimes and hydrol-
ogy and changes to biodiversity including extirpa-
tions and extinctions of native species (Vilà et  al. 
2011, 2024; Smith 2020; IPBES 2023). Similarly, 
climate change can have severe impacts on native 
species, for example increasing their risk of extinc-
tions (e.g., Thomas et  al. 2004; Manes et  al. 2021) 
and causing range changes (e.g., Lenoir et  al. 2008; 
Doak et al. 2010). While these drivers can act in iso-
lation, climate change can also affect the invasion of 
alien species as climatic conditions play an important 
role in the growth, survival and distribution of species 
(Master and Norgrove 2010). Climate change can not 
only lead to changes in native species distributions, 
but also those of alien species (Bellard et al. 2013).

Member states of the Convention on Biological 
Diversity (CBD) are mandated to improve the protec-
tion of natural resources under the Kunming-Montreal 
Global Biodiversity Framework (GBF) (Decision 
15/4, CBD/COP/DEC/15/4 2022). Target 1 asks to 
minimize the loss of areas with high biodiversity. To 
achieve this, we need to understand the pressures on 
these areas from drivers such as climate change and 
biological invasions, and map them to prioritise con-
trol. Risk maps have been used for various purposes 
in invasion science. For example, they can be useful 
to improve detection of new incursions or individu-
als of species with limited populations (Kaplan et al. 
2014). They have also been used to map the potential 
impacts to assess sites experiencing the highest cur-
rent or potential impact, translating to sites at risk of 
invasion impacts (Nentwig et al. 2010). However, as 
species’ distributions are expected to change with cli-
mate change, considering only current climatic condi-
tions in such risk maps does not prepare us well for 
future risk scenarios. Therefore, to improve our abil-
ity to manage biological invasions, as stipulated under 

Target 6 of the GBF, we need to understand how 
biological invasions and their impacts could change 
under climate change. Simultaneously, this addresses 
Target 8, which aims to minimize the effect of climate 
change on biodiversity. Still, climate change is not 
routinely included in risk assessments for alien taxa 
(but see Marchioro and Krechemer 2021 for some 
insect pests).

Correlative species distribution models (hereafter 
SDM) are popular in various fields of ecology and are 
increasingly used in invasion science (Guisan et  al. 
2014). They are statistical methods which correlate 
known occurrences of species with environmental 
variables and predict a species’ potential distribu-
tion in other regions over space and time (Guisan and 
Zimmermann 2000). The advantages of SDMs are 
manifold as they are easy to implement and can cover 
large geographic areas. Therefore, they are widely 
used to produce maps of potential invasion by delin-
eating areas based on climatic suitability for a species 
(e.g. Bradley et al. 2010; Tingley et al. 2017). Despite 
known limitations (see for example Hui 2023), they 
have shown potential for accurate prediction of 
alien species spread (Barbet-Massin et al. 2018) and 
response of biological invasions to climate change 
(Sheppard et al. 2014) if properly calibrated.

We selected, as a case study, Australian acacia spe-
cies (Acacia Mill. sensu stricto – synonym: Acacia 
subg. Phyllodineae (DC.) Seringe) which are alien 
in South Africa. This includes 33 species (Magona 
et al. 2018; Jansen and Kumschick 2022; Supplemen-
tary Material Appendix S4.1), of which three species 
(Acacia crassiuscula, A. acuminata and A. koa) had 
to be excluded from all analysis because they had 
less than 10 presence records globally after the filter-
ing steps detailed in the Methods section. Acacias are 
among the most highly impacting alien taxa in South 
Africa with a diverse range of impacts on native bio-
diversity (le Maître et al. 2011; Kumschick & Jansen 
2023). The fynbos biome, which only occurs in the 
Western and Eastern Cape provinces of the country, 
is a megadiverse shrubland containing thousands of 
plant species which occur nowhere else and is par-
ticularly susceptible to invasion of alien trees such as 
acacias (e.g., Wilson et al. 2014).

In this study, we assess (i) the current distribution 
of the acacia species and their potential impacts in 
South Africa, (ii) the potential distribution under cur-
rent climate, and (iii) the projected future distribution 
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under climate change scenarios. We fitted SDM mod-
els per species that were then used to project the habi-
tat suitability across South Africa per time horizon, 
accounting for various climatic scenarios. Then, we 
aggregated an impact score from the species-wise 
SDM projections and the documented impacts per 
species. By overlaying the outputs of the models with 
the species potential impacts, we produced risk maps 
for current and projected future climatic conditions 
and assessed potential change in impacts risk for pro-
tected areas of the Western Cape Province in South 
Africa.

Methods

Occurrence data

We gathered distribution data from the native and 
introduced ranges of the 30 acacia species, and 
used it along with bioclimatic variables to build 
individual ensemble models which were then pro-
jected based on current and future climate in South 
Africa. For each species, worldwide occurrence 
data were obtained from the Global Biodiversity 
Information Facility (GBIF, http://​www.​gbif.​org/) 
using the rgbif package (Chamberlain et  al. 2022). 
For this extraction, we kept all records which had 
complete coordinates, which were tagged as “pres-
ence”, and which were either human or machine 
observations or coming from the literature. No time 
limit was specified. Then we filtered occurrences 
to reduce the uncertainty arising from questionable 
records and only kept records which came from a 
list of 65 trusted GBIF datasets. This list was previ-
ously developed for the global distribution of aca-
cia species (Botella et  al. 2023) and is composed 
of datasets which include at least one documented 
step of taxonomic verification in the recording of 
the occurrences. The documented native and intro-
duced countries of each species were also obtained 
from that study. Besides, we extracted the global 
land cover raster (approx. 300  m resolution) from 
the European Space Agency GlobCover product. 
We excluded records located outside the native and 
introduced countries of the species (obtained from 
Botella et al. 2023) or whose 4 km × 4 km cell was 
located in urban areas based on the GlobCover 
2009 global land cover raster (ESA and UCLouvain 

GlobCover 2009 Project, last accessed 29/01/2024). 
The latter step was implemented to exclude planted 
trees. More precisely, we excluded cells classified 
as “Artificial surfaces and associated areas (Urban 
areas > 50%)” by GlobCover. We then kept only up 
to one record per 4 km × 4 km cell for each species 
to reduce the spatial autocorrelation and the over-
sampling of some areas (Boria et  al. 2014). We 
obtained a total of 37,940 filtered records (Figure 
S4.1 and S4.2). The number of filtered records were 
imbalanced across the 30 considered species, with 
27 for the least sampled (A. adunca) and 3,738 for 
the most sampled (A. dealbata).

Climate variables

To estimate the climatic suitability for each acacia 
species from their occurrence data, we extracted four 
bioclimatic variables from the Climatologies at High 
Resolution for Earth’s Land Surface Areas database 
(CHELSA, Karger et  al. 2017). We chose the mean 
annual air temperature (bio1), mean diurnal air tem-
perature range (bio2), annual precipitation (bio12) 
and precipitation seasonality (bio15) as environmen-
tal variables as they are likely to affect plant produc-
tivity and survival across the landscape (Mod et  al. 
2016), and the correlation between each of these vari-
ables was moderate (Pearson’s |r|< 0.55). These data 
are available globally at a 4 km × 4 km resolution for 
the period 1981–2010.

Then, we predicted the suitable climatic range 
of each species per time period in South Africa. 
The “current” South African climate was derived 
from the 1981–2010 period and the “future” cli-
mate was decomposed in two horizons: mid-century 
(2041–2070) and end of the century (2071–2100). 
For both time horizons, we extracted the four cli-
matic variables based five global climate models from 
CHELSA (“gfdl-esm4”, “ipsl-cm6a”, “mpi-esm1”, 
“mri-esm2”, “ukesm1”) for three shared socio-eco-
nomic pathway scenarios (“ssp1.26”, “ssp3.70” and 
“ssp5.85”) for the South African region: ssp1.26: 
scenario with low greenhouse gas (GHG) emission; 
ssp3.70: scenario with high GHG emission; ssp5.85: 
scenario with very high GHG emission (Fig.  1 and 
Supplementary Material, Appendix S1). This selec-
tion covers a wide range of different predictions and 
was defined to maximise the different degrees of 

http://www.gbif.org/
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predicted climate change. Specifically, the selected 
global climate models have different equilibrium cli-
mate sensitivity values (a measure of the change in 
equilibrium global mean surface temperature after a 
doubling of atmospheric CO2 concentration) ranging 
from 2.8 °C to 5.1 °C.

Species distribution models

Pseudo‑absences selection

For each species we drew ten datasets of pseudo-
absences composed of the same number of pseudo-
absences as presences. For species with less than 
100 presences, we increased the number of pseudo-
absences to 100 in each dataset, to reduce the variance 
(over-fitting) of each model. These pseudo-absences 
were drawn in the countries being part of the native 
and introduced ranges of the species assuming that 
the species likely had an opportunity to establish at 
pseudo-absence locations. Following recommenda-
tions of Barbet-Massin et al. (2012), pseudo-absences 
were selected based on the surface range envelope 

method (Busby 1991), by randomly selecting pseudo-
absences outside the usual climatic range of the spe-
cies occurrences (Thuiller et  al. 2009). Given that 
pseudo-absences were drawn in the native and intro-
duced ranges but outside of the climatic envelope 
where the species occurrences were recorded (PA.sre.
quant = 0), we can assume false absences to be rare. 
Therefore, the final model predictions will approxi-
mate the probability of presence conditional to the 
species presence in the area, i.e. an establishment 
probability.

Model implementation

For each species we built a species distribution 
model using functions and workflow of the bio-
mod2 package (Thuiller et  al. 2009). All codes 
are available on GitHub (Supplementary Material, 
Appendix S2). We applied a random forest clas-
sifier (Liaw and Wiener 2002) on the presence/
pseudo-absence datasets and the four climatic vari-
ables to decipher which climatic conditions are 
suitable for each species. Each forest was composed 

Fig. 1   Step by step explanation of the development of the 
models and maps for future climate projections. Five climate 
models were selected, and three shared socio-economic path-

way scenarios (ssp) modelled. For details on the models and 
variables selected, see text
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of 500 trees, where each branch tests two randomly 
picked variables (mtry = 2, i.e. the square root 
of the number of predictors, as generally recom-
mended for classification), and we impose a mini-
mum of five sampled presence/pseudo-absences 
per terminal node to limit tree-level over-fitting 
and computational costs. We implemented a step 
of cross-validation for which the presence/pseudo-
absence dataset was divided into four blocks along 
the longitude axis with presences equally balanced 
between each block (Wenger and Olden 2012). 
Then, three blocks were used for model train-
ing and one for testing. This approach allows for 
spatial and environmental independence between 
training and testing sets. Kappa and TSS metrics 
were computed each time on the testing dataset. 
As we had ten pseudo-absence datasets and four 
blocks, we computed 40 random forest models for 
each species.

For each species we kept only the random forest 
models with a Kappa and a TSS over 0.7, indicating 
a robust predictive capacity, and which we refer to 
as sub-models. We then derived for each species an 
ensemble of its sub-models that was a “committee 
averaging” of the binarized responses given by the 
sub-models to reduce the error of individual sub-
model predictions (Thuiller et  al. 2009). We used 
a probability threshold of 0.5 to binarize each sub-
model response, corresponding to a majority vote 
among trees of the corresponding random forest. 
Committee averaged values are the proportion of 
sub-models predicting the species as present, and 
a value near 0 or 1 mean that sub-models tend to 
agree to predict absence or presence, respectively. 
Here, we considered that committee averaged val-
ues can be regarded as a proxy for the probability 
of a species to establish. Thus, we obtained one 
projection of establishment probability for South 
Africa under the current climate and 15 scenarios 
(five global climate models x three socio-economic 
pathways) for each time horizon (2041–2070 and 
2071–2100) as represented in Fig.  1. So, for each 
time horizon and each spatial cell, we averaged the 
15 establishment probabilities of the 15 scenarios 
to obtain the final establishment probability of the 
species in that cell. This final establishment proba-
bility gives an equal weight to the 15 plausible sce-
narios. Finally, for each time horizon, we produced 
a potential acacia species richness map summing 

the 30 species establishment probability maps, and 
an associated uncertainty map. The uncertainty 
map shows standard deviation of the potential rich-
ness estimate based on the variability standard 
deviation of the predicted establishment per spe-
cies and its variability across the 15 scenarios.

Risk maps

As we aimed to map the accumulated risk of aca-
cia species potentially causing impacts in different 
regions in South Africa, we firstly derived a poten-
tial impact score per species based on its documented 
impacts. Data on the impacts of the acacia species 
were taken from Jansen and Kumschick (2022). They 
assigned categories of Minimal Concern to Massive 
to each species, based on the impacts reported in 
the literature and following the International Union 
for the Conservation of Nature (IUCN) standard for 
impact classification, the Environmental Impact Clas-
sification for Alien Taxa, EICAT (Blackburn et  al. 
2014; Hawkins et  al. 2015; IUCN 2020a, 2020b; 
Volery et  al. 2020). We used the maximum impact 
category per species as a precautionary measure, 
which is the recommended approach used by the 
IUCN EICAT Standard (IUCN 2020a; Kumschick 
et  al. 2024), noting that other calculation methods 
are possible depending on the aim of the study (see 
also Kumschick et  al. 2024, Boulesnane-Genguant 
et  al. in prep). We transformed the impact catego-
ries into numerical values as follows: Minimal Con-
cern (MC) = 0, Minor (MN) = 1, Moderate (MO) = 2, 
Major (MR) = 3, Massive (MV) = 4. 19 species clas-
sified as Data Deficient (DD), i.e. no data on impact 
was found in a comprehensive literature search, 
and they were excluded from the impact risk maps 
(assigned NA) (Supplementary Material Appendix 
S4.1).

As a prediction of local impact risk per species, 
we multiplied the predicted establishment probability 
derived from the SDMs in each grid cell by the spe-
cies impact score. Finally, we summed up the local 
impact risks across species in each grid cell to obtain 
the impact risk map (see also Nentwig et  al. 2010). 
Hence, each species occurring adds to the risk of the 
potential impacts actually manifesting at that site, 
again using a precautionary approach. Our maps 
therefore do not represent sites where impacts are def-
initely going to occur, as the potential establishment 
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of each species alone does not necessarily happen 
and, even if it does, it does not necessarily result in 
the worst impact documented for that species. Other 
factors such as the recipient community and the abun-
dance of the alien species play important roles in the 
manifestation of impacts. Note also that even if data 
deficient species are present, they do not affect the 
impact risk value, as for species whose maximum 
impact is MC. This might underestimate the impact 
of some species which actually cause higher impacts 
but which have not been studied.

Changes in impact risk in protected areas

To assess the specific change in risk across time on 
protected areas, we assessed the potential changes of 
impact risk for protected areas in the Western Cape 
Province of South Africa. For each protected area, we 
calculated the mean impact risk score and compared 
it under current and future (2071–2100) projected 
climate. To see whether differences could be found 
based on the protected area status, we also calculated 
the mean impact risk score per protected area type. 
In the Western Cape, protected areas are classified 
as follows (with increasing level of protection): pri-
vate nature reserves, provincial nature reserves and 
national parks. We obtained protected areas data from 
the South African National Biodiversity Institute 
(www.​bgis.​sanbi.​org).

Results

Firstly, we present a method to map the potential 
cumulative impacts of alien species under climate 
change projections (Fig.  1, Supplementary Mate-
rial, Appendix S1). It combines the recorded impacts 
alien species have had with the projected species rich-
ness. Applying this method to acacia species in South 
Africa, we find that across all species currently pre-
sent in the country, the suitable area declines over 
time and only the south coast in the Eastern Cape 
province and parts of the Western Cape province still 
remain suitable for a considerable number of spe-
cies (Fig.  2). Large parts of the north eastern (NE) 
part of the country are predicted to become unsuit-
able for most acacias in future. Indeed, while the cur-
rent projected impact score lies between 15 and 25 
in a relatively large part of the NE area, it is inferior 

to 5 in nearly all of the area for the end of the cen-
tury (Fig.  2). When computing the number of spa-
tial cells where the projected impact score changed, 
we found that impact risk increased in only 26.7% 
(324′224 km2) of the area of South Africa by the end 
of the century, but decreased in 51.4% (625′115 km2) 
of the country. Yet, this decrease should be inter-
preted with caution, as the standard deviation of the 
end-of-century impact score, due to the variability 
across socio-economic pathways and climate models, 
is around 2 in the NE area that currently shows a high 
risk (Figure S3). Comparing the current impact risk 
map to a risk map based on actual records for aca-
cia species (Fig.  3), the general pattern looks simi-
lar to potential impacts under current climate, with a 
less continuous distribution along the east coast, and 
a marked region of high risk in the Gauteng prov-
ince. The latter is probably due to the fact that in 
the map showing impacts based on recorded occur-
rences, urban areas were not excluded, and much of 
the Gauteng province would fall under this category 
(Fig. 3). Furthermore, a positive sampling bias in this 
highly populated area might be responsible for higher 
detection rates of the species present and explain 
the relatively high impact risk when based on actual 
occurrences.

Although species richness of acacias is not pro-
jected to be as high in the southwestern part of the 
country as along the south coast, the projected risks 
are similar in both areas (Fig. 2). That shows that the 
areas around Cape Town and Hermanus, although not 
suitable for as many species, might remain suitable 
for the high impacting species. The impact score in 
this area remains most likely high compared to other 
areas even when considering its standard deviation 
(Figure S3).

We found that potential impacts would decrease 
under climate change within protected areas of the 
Western Cape. Our results showed a lower impact 
risk with climate change for protected areas along 
the coast line, almost no change for northern pro-
tected areas and a higher impact risk in few isolated 
protected areas (Fig. 4). However, the impact risk dif-
fered according to the protection status. The impact 
risk remains high in areas of high protection status 
(such as national parks) and low for private protected 
areas (with lower protection status).

http://www.bgis.sanbi.org
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Fig. 2   Cumulative probability of presence ranging from zero 
(no species projected to establish) to thirty (all species with the 
highest probability to establish) of alien acacias (left) and pro-
jected impacts (right) based on the maximum recorded impacts 
of the species present over three time horizons. The cumulative 
probability of presence on the left is the sum of single species 

establishment probability. Each species probability is a mean 
across combinations of global climate models and socio-eco-
nomic scenarios. The right hand column shows the sum of spe-
cies maximum impact weighted by their establishment prob-
ability



	 S. Kumschick et al.   43   Page 8 of 14

Vol:. (1234567890)

Discussion

This study presents, to the best of our knowledge, a 
first attempt at combining impacts of alien taxa with 
their projected distribution under climate change to 
produce risk maps for future climatic scenarios. Our 
results indicate that the projected suitable areas for 
alien acacia species in South Africa are reduced in 
half of the country under climate change (Fig.  2). 
This is similar to a study looking at A. mangium and 
A. auriculiformis in Brazil, where they found a shift 
in potential distribution and a reduction in suitable 
area (Heringer et  al. 2019). More generally, this is 
in line with Bellard et  al. (2018) who showed in a 

review of 71 papers covering 423 alien species that 
climate change is more frequently projected to con-
tribute to a decrease in range size than an increase. 
However, to assume that the problem of acacia inva-
sions is going to sort itself out over time might be 
a bit too optimistic. For once, the sites at highest 
risk are also the regions where the highly vulner-
able fynbos biome is located. This biome is already 
under pressure from the effects of climate change, 
including increased temperature and drought, 
and therefore more vulnerable to other pressures 
(Slingsby et  al. 2017). Protected areas are set up 
to safeguard biodiversity and ecosystem services 
for the future. We show that for the Western Cape 

Fig. 3   Sum of maximum recorded impacts across acacia spe-
cies based on EICAT records in Jansen & Kumschick (2022) 
occurring per Quarter Degree Square (QDS; 25  km × 25  km) 
grid cell. This map is based on actual occurrence records of 
acacia species in South Africa taken from the database of 

Botella et  al. (2023), with sum of impacts overlayed. Con-
trary to the projected maps in Fig. 2, no records were excluded 
(including urban areas). The darker the red color, the higher 
the impact sum of the species occurring in these cells
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province, most protected areas should experience 
less impact risk in future, but some protected areas 
experience increased or similar impact risk (Fig. 4). 
Controlling of harmful acacias now and preventing 
the arrival of new acacias in these areas is crucial to 
reduce the loss of high biodiversity areas, as stipu-
lated in the GBF Target 1.

Furthermore, acacia species which are not cur-
rently alien in the country (not yet introduced) were 
not modelled in this study. That means that other spe-
cies not in our dataset might behave differently from 
what we present here. Therefore, this does not exclude 
the possibility of other acacia species, and other alien 
species in general, becoming more problematic in 
future (see also Sheppard et  al. 2016). Furthermore, 
acacias and trees in general are long lived spe-
cies which can result in a long lag between reduced 
climate suitability and decline in populations or 

observed reduction in impacts, and they often exhibit 
lag phases of several decades before the beginning of 
an invasion (Robeck et al. 2024). Hence, several aca-
cia species could still be in a lag phase preceding an 
invasion in South Africa, and this invasion debt was 
not accounted for in the trends presented here (e.g., 
Rouget et al. 2016).

As with any model, there are uncertainties linked 
to the projections. SDMs are based on several strong 
assumptions (Guisan et  al. 2017; Hui 2023). First, 
occurrence records should reflect the true perfor-
mance of the species. However, sampling biases 
are present in most if not all record databases (Beck 
et  al. 2014). Moreover, low sample size can highly 
impact the performance of SDMs and data avail-
able may not be sufficient to fully inform the models 
(Wisz et al. 2008). To address these shortcomings, we 
designed a conservative methodology to keep only 

Fig. 4   Projected changes in impact risk of acacia species 
under future climate for protected areas of the Western Cape 
province. For each protected area, we compared the mean 
impact risk under current climate and end-of-century (2071–

2100) climate. Negative values (in blues) indicate a reduc-
tion in impact risk, while positive values (in red) indicate an 
increase in impact risk
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the most trustworthy records and limit oversampling 
in some areas. We also kept records from both the 
native and the alien range (Broennimann and Guisan 
2008). Even though we did not set a time constraint 
in our records filtering, the vast majority of records 
kept were collected after 1981, partly matching the 
period of the climate rasters used for SDM building 
(1981–2010). Yet, a significant portion of records 
were collected after 2010, a period that might have 
already shown the imprint of climate change on these 
tree species. Besides, our future projections are an 
average over a range of global climatic models and 
socio-economic pathways which can substantially 
impact projections of a species climatic suitability 
(Petrosyan et  al. 2023). Even though the standard 
deviation of our richness and risk projections (Figure 
S3) is low relative to their mean values (Fig.  2), an 
analysis of the sensitivity of the impact risk to the cli-
mate scenarios and models might enable us to attrib-
ute the causes of this uncertainty.

Second, the species’ performance should respond 
directly to the variation of the selected predictors. In 
this study we chose four climate variables for their 
known link with plant species survival and develop-
ment (Mod et al. 2016) and their availability in both 
fine spatial and temporal scales. Moreover, Shep-
pard et al. (2014), showed that predictions of similar 
SDMs of the response of three invasive plant species 
to climate change was highly correlated with field 
experiments. However, SDMs are correlative and may 
yield incorrect estimates of habitat suitability if cli-
matic variables are correlated to other unknown vari-
ables in the training area (e.g., Guisan et  al. 2017). 
Future projections from our fitted models of climatic 
suitability could be biased by potential confound-
ing factors of climate, as we do not take into account 
other factors which determine the success of alien 
species in a new region, such as dispersal capabilities 
and biotic interactions. Our model fitting procedure 
implicitly assumed that a species had the opportunity 
to colonise a large part of any country where it was 
recorded. Regarding interactions, Australian acacia 
species often have competitive advantages over native 
plant species and tend to become dominant among 
plant communities, especially after disturbance (Mor-
ris et  al. 2011), suggesting that the spatial extent of 
the realised niche would not be strongly restricted by 
competitive interactions compared to the potential 
niche. Yet, other interactions, such as mutualistic and 

trophic interactions with soil fungi (Birnbaum et  al. 
2018) may contribute to constrain the actual range of 
acacias and act as confounding factors of climate in 
fitted SDMs, inducing bias in future projections. Fur-
thermore, factors such as topography could be taken 
into account to improve the models (Bradley and 
Mustard 2006). Thus, our model predictions could be 
improved by considering non-climatic drivers (such 
as soil composition) if these variables were available 
at a fine resolution.

Third, the species’ distribution, represented by 
recorded occurrences, should be stable and fill any 
available niche in the study environment. Several 
studies have shown violations of the niche conserv-
atism hypothesis during invasion with niche shifts 
between the native niche and the introduced niche 
(e.g. Parravicini et  al. 2015; Guisan et  al. 2014). 
Moreover, predictions based on extrapolations on a 
new territory and with future climatic conditions may 
not be robust because the data used for model param-
eterization cannot represent all conditions in the 
extrapolated region (e.g., Elith and Leathwick 2009). 
Thus, it must be kept in mind that our suitability and 
risk maps may be underestimated and should not be 
taken as a prediction of true future species richness 
and impacts.

Fourth, some future climatic conditions may 
not have an analogue amongst the historical cli-
mates of the study area (Williams & Jackson 2007). 
Yet, SDMs cannot predict exactly how species will 
respond to conditions that were not used for calibra-
tion (Pouteau et  al. 2021). This could partly explain 
why most alien species including acacias alien to 
South Africa, are projected to experience a decrease 
in the size of their potential range according to our 
current knowledge (Bellard et al. 2018). Future work 
should consider the identification of novel climates to 
avoid putting too much confidence in climates with 
no current analogues.

Caution is also advised when interpreting the 
risk maps including the sum of potential impacts 
of acacias. Firstly, there are many ways to aggre-
gate impacts, both, within species (calculating one 
impact value taking into account all impact records 
for the species) and across species (calculating an 
impact score for a site where several alien species 
are present) (Boulesnane-Genguant et  al. in prep). 
Some of the most prominent methods to get one 
impact value per species have been to sum scores 
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(e.g., Nentwig et al. 2016), to calculate a mean value 
(e.g., Rumlerova et al. 2016), and to take a maximum 
value (e.g., Blackburn et  al. 2014) (see also Kum-
schick et al. 2024). They each come with underlying 
assumptions which can affect the results. The maxi-
mum score per species, as used here, was chosen for 
range shifting species in the US to anticipate if any 
high impacting invaders are likely to arrive under cli-
mate change (Rockwell-Postel et al. 2020). However, 
the applications of scores aggregated across species 
are scarce (for an example, see Nentwig et al. 2010).

Furthermore, climate change can not only affect 
the potential distribution of species, but also modify 
their invasion behaviour and impacts (e.g., Le Mai-
tre et  al. 2020). Changes to fire regimes could have 
large impacts on alien species and native ecosystems, 
especially in the fynbos biome of South Africa where 
fires have been increasing in frequency and intensity 
due to alien invasions and climate change (Le Maitre 
et al. 2020; Slingsby et al. 2017). Furthermore, CO2 
concentration could lead to woody plant densifica-
tion, which is already shown for native woody plants 
in some southern African habitats (Skowno et  al. 
2017). In the fynbos biome, increased CO2 could 
also favour the alien acacias as they are nitrogen fix-
ers as opposed to the native flora which are adapted 
to low nitrogen conditions (Richardson et  al. 2000). 
In other examples, the synchronisation of the flower-
ing period of native and alien plants may favour the 
latter, through increased interactions with pollinators 
to the detriment of the pollination of native species. 
This is the case in New Zealand with Calluna vul‑
garis whose greater phenological plasticity compared 
to the native species Dracophyllum subulatum means 
that it can reproduce more easily in areas with a high 
floral density (Giejsztowt et  al. 2020). Morphologi-
cal responses to climate change can also increase the 
competitiveness of alien species. For example, milder 
winter temperatures in China facilitate the survival 
of the water hyacinth Pontederia crassipes, and also 
allow it to develop a greater biomass, forming denser 
foliage that excludes submerged native plants the fol-
lowing season (You et  al. 2013). In terrestrial envi-
ronments, rising temperatures can also encourage the 
development of alien plants, reducing the availability 
of water for native plants, which are then at a disad-
vantage when it comes to coping with dry spells. This 
is the case with Tamarix spp. introduced in the United 
States, which develop greater capacity to capture and 

use water resources than native riparian species under 
the effect of drought (Hellmann et al. 2008).

Given all these potential interactions between cli-
mate change and impacts of alien species, what we 
are showing here is not an accurate representation 
of sites with future impacts of alien acacia species 
in South Africa. However, risk maps like these of 
sites where impacting species could occur under cli-
mate change projections can be valuable in helping 
us prioritise sites for future protection from invasion 
impacts. Despite the potential shortcomings of the 
models presented here, our study contributes to our 
understanding of the impacts of climate change on the 
risk of alien acacia invasions, including their impacts. 
Furthermore, it can aid the prioritisation of clearing 
actions for alien acacia species in South Africa and 
feed into strategies for protected area management 
and expansion (e.g., Department of Environmental 
Affairs 2016). Understanding where some of the most 
damaging invaders might occur under climate change 
is important so our management is tackling not only 
current, but also potential future problems.
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