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Abstract

Flowering date in perennial fruit trees is an important trait for fruit production. Depending on the winter and spring temperatures,
flowering of olive may be advanced, delayed, or even suppressed. Deciphering the genetic control of flowering date is thus key to help
selecting cultivars better adapted to the current climate context. Here, we investigated the genetic determinism of full flowering date
stage in cultivated olive based on capture sequencing data of 318 genotypes from the worldwide olive germplasm bank of Marrakech,
Morocco. The genetic structure of this collection was organized in three clusters that were broadly attributed to eastern, central, and
western Mediterranean regions, based on the presumed origin of genotypes. Flowering dates, collected over 7 years, were used to
estimate the genotypic best linear unbiased predictors, which were then analyzed in a genome-wide association study. Loci with small
effects were significantly associated with the studied trait, by either a single- or a multi-locus approach. The three most robust loci
were located on chromosomes 01 and 04, and on a scaffold, and explained 7.1%, 6.2%, and 6.5% of the trait variance, respectively. A
significantly higher accuracy in the best linear unbiased predictors of flowering date prediction was reported with Ridge- compared
to LASSO-based genomic prediction model. Along with genomic association results, this suggests a complex polygenic determinism of
flowering date, as seen in many other fruit perennials. These results and the screening of associated regions for candidate genes open
perspectives for further studies and breeding programs targeting flowering date.

Introduction
Flowering date in fruit perennial trees is known to be influenced
by temperature, specifically during periods of accumulation of
chill and heat requirements [1]. Increasing temperatures during
winter can result in difficulties in chilling requirements fulfill-
ment and may delay flowering date [2]. In contrast, the increase
in temperatures during spring advances the flowering date [3].
This can increase frost damage risk [4] and result in several
morphological disorders, such as bud burst delay, low burst rate,
irregular floral or leaf budbreak, and poor fruit set [5]. In alloga-
mous species with a self-incompatibility reproductive system, it
can also cause asynchrony between compatible varieties [5]. This
may disturb pollination and consequently, fruit production [2].

Flowering date has been shown to be quantitatively inherited
in fruit trees, several Quantitative Trait Loci (QTL) have been
detected in bi- or multi-parental populations of apple tree [6],
peach [7], and apricot [8]. More recently, Genome-Wide Associ-
ation Study (GWAS) have been conducted on several fruit tree
species (e.g. [9]). However, no similar study has been conducted

so far on the cultivated olive tree, an emblematic species of the
Mediterranean Basin (MB), despite the region being known to be
particularly affected by the current global warming [10].

GWAS is one of the methods used to discover genetic variations
affecting complex traits [11]. Unlike QTL mapping studies, GWAS
can investigate associations within populations where related-
ness among individuals is variable, and even when the relatedness
is unknown [12]. To handle spurious associations, several factors
have to be considered, including population structure and linkage
disequilibrium (LD), which could associate non-causal variants in
LD with the causal variants to the trait [13].

The olive tree (Olea europaea L.) is often considered as an iconic
species of MB. It is believed that olive has been domesticated
∼6000 years ago, with a main domestication event in the east-
ern MB supported by several studies [14]. It remains unclear
whether subsequent diversification followed the first domestica-
tion [14], or if a second independent domestication event occurred
in the central Mediterranean area [15]. The cultivated olive tree
is diploid, and 23 chromosomes have been assembled [16]. Four
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Figure 1. Admixture coefficients as inferred by sNMF analysis [27] for the 318 genotypes of WOGBM using 235 825 SNPs. Bars are ordered by
assignment to genetic clusters K1, K2, or K3. Groups of genotypes were named C1 for those assigned to the genetic cluster K1, C2 for those assigned to
the genetic cluster K2, C3 for those assigned to the genetic cluster K3, and M for genotypes non-assigned to a genetic cluster.

assembled genomes are currently available for the species O.
europaea var. europaea: two versions of cv. Farga: Oe6 version [17]
and Oe9 version [16], cv. Picual [18], and cv. Arbequina [19]. The
last version of Farga estimated the length of the olive genome
to be ∼1.3 Gb, with 7.3 Mb corresponding to scaffolds and 54 Kb
to contigs [16]. This genome was the last one available when we
started the present study. A more recent assembly of the Arbequina
cultivar was published afterwards that has estimated a similar
genome length with 1.25 Gb on chromosomes [19].

Several germplasm collections of olive trees have been
constituted, the two most extensive being the Worldwide Olive
Germplasm Bank of Marrakech, Morocco (WOGBM) and Cordoba,
Spain (WOGBC) [20]. The genetic structure of the WOGBM has
been investigated using Simple Sequence Repeat (SSR) markers
[20], while that of the WOGBC relies on SSR [15] and Expressed
Sequence Tag Single Nucleotide Polymorphism (EST-SNP) markers
[21]. These analyses resulted in the detection of three distinct
genetic clusters, corresponding to the assumed geographical
areas of origin of cultivars, with a large proportion of non-assigned
individuals.

Those collections have been phenotyped for several traits, in
particular, flowering date. A large variation in this trait between
years has been observed in the WOGBM [22]. As other fruit tree
species, this variability is assumed to rely on temperature sensing
during winter and spring [1]. In addition, the olive tree presents
the particularity to require low temperature for floral induction
[23]. Therefore, in olive trees, winter temperatures not only impact
the flowering dates but also its occurrence [24]. Under the cur-
rent climate change situation that deeply modifies temperature
regimes, the major risk for olive trees concerns the synchrony
between compatible varieties, which may disturb their cross-
pollination. Indeed, the sexual reproductive system of olives is
allogamous due to a self-incompatibility system [25]. Since suc-
cessful pollination is a main factor in fruit development, flowering
date is a key trait for the success of the olive tree reproductive
cycle, upon which the uniformity and quality of fruit production
depend [26].

The main purpose of our study was to explore the genetic
determinism of flowering date in cultivated olive, based on a
specific phenological stage, the full flowering date (FFD). For this
intent, the large panel of genetic diversity from the WOGBM
and a new high-quality SNP data that we developed through
capture sequencing were used in a GWAS. This new genotypic data
was first validated through a genetic structure analysis before
considering it for the GWAS.

Results
Characterization and distribution of SNPs in the
cultivated olive genome
We initially sequenced 335 genomic libraries. The raw sequencing
data ranges from 1590 read pairs for the Atounsi Setif (MAR00516)

genotype to 39 801 319 read pairs for the Aggezi Shami (MAR00480)
genotype, with a mean of 8 603 434 read pairs (Fig. S1). The Aharoun
(MAR00447) genotype was filtered out (quality reads <30). After
cleaning, the read pairs count ranged from 1514 to 39 231 314, with
a mean of 8 488 947 (Fig. S1).

We mapped our reads to the latest version of the Farga Oe9
reference genome assembly [16]. A mean of 98.82% of the reads
was mapped on the Farga genome and tagged as properly paired.
The mapping rate ranged from 84.68% (Atounsi Setif ) to 99.59%
(Sayali (MAR00287)). The genotype Azeradj Tamokra (MAR00448)
was removed (mapping rate of 0%). The mean enrichment rate
in targeted sequences was 39 times (Table S1).

A total of 64 835 479 variants were initially identified among
333 samples (Azeradj Tamokra and Aharoun were filtered out). After
removing experimental duplicates, biological replicates, and indi-
viduals whose genomic libraries were not captured, 325 unique
genotypes remained (Table S2). After handling filtration steps to
ensure retrieving SNP of high quality, we retained 235 825 SNPs
across 318 genotypes (Table S2). These SNPs were then used
for genetic structure and principal component analyses (PCAs).
Additional filters (retaining only nuclear markers, filtering on
Minor Allele Frequency (MAF), and imputation of missing data)
resulted in 118 948 SNPs across 318 genotypes, which were used
for GWAS and genomic prediction analyses (Table S2). Of these
SNPs, 49.2% were in the targeted region by the baits, while the
remaining were in the non-target region. Approximately 50% of
the filtered SNPs were located on chromosomal regions, while the
rest of SNPs were found on scaffolds.

Three genetic clusters are identified in the
WOGBM collection
The sNMF approach [27] was used to analyze population structure
using 235 825 high-quality SNPs from 318 genotypes. The sNMF
approach estimated individual ancestry coefficients and helped
determine the number of ancestral populations (Table S3). We
set the number of clusters to three based on the cross-entropy
criterion (Fig. S2).

A genotype was assigned to a genetic cluster if it had a mini-
mum of 70% ancestry estimation within that cluster. Genotypes
not reaching a 70% assignment to any of the three genetic clusters
were classified as non-assigned. Out of the 318 genotypes, 79
were assigned to the ancestry cluster K1 (from 71% to 100%). This
group of genotypes was denoted C1 in the following. 33 genotypes
were assigned to the ancestry cluster K2 (from 71% to 100%). This
group of genotypes was denoted C2. A total of 71 genotypes were
assigned to the ancestry cluster K3 (from 72% to 100%). This group
of genotypes was denoted C3. The remaining 135 genotypes were
non-assigned and their group was denoted as the M group (Fig. 1).
A PCA performed using the same genotypic dataset highlighted
that the genotypes from the three genetic groups, C1, C2, and C3,
were clearly separated on the plot of the first two components
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Figure 2. Projection of the 318 genotypes from WOGBM on the first two principal components (PC) of a PC analysis based on 235 825 SNPs. Colors blue,
green, and orange indicate the group to which each genotype was assigned (C1, C2, C3), and gray indicates the non-assigned genotypes (M). Circles,
squares, and triangles indicate genotypes that are assumed to originate from the western, central, and eastern regions of the MB, respectively. The east
corresponds to Cyprus, Egypt, Greece, Lebanon, and Syria; the center corresponds to Algeria, Croatia, France, Italy, Slovenia, and Tunisia; and the west
corresponds to Algeria, Croatia, France, Italy, Slovenia, and Tunisia.

Figure 3. Admixture coefficients as inferred by sNMF analysis [27] of the 318 genotypes of WOGBM using 235 825 SNPs. Bars indicate the proportion of
assignment to genetic clusters K1, K2, or K3 and are sorted by the assumed geographic origin of genotypes, from western to eastern Mediterranean
regions.

(Fig. 2). The first principal component accounted for 9.5% of the
genetic variability and separated C2 from C1 and C3. The second
principal component accounted for 5% of the genetic variability
and separated C1 from C2 (Fig. S3, Fig. 2). PC3 explained 2.6% of
the genetic variability (Fig. S3). The genotypes in the C3 group
appeared to be more closely related compared to those assigned
to the other two groups, C1 and C2, whether on the PC1–PC2 plot
(Fig. 2) or the PC2–PC3 plot (Fig. S4). Non-assigned individuals were
widely spread in the region between the three groups on PC1 and
PC2 (Fig. 2).

The information regarding the assumed origin of genotypes in
the WOGBM [20] was crossed with the genetic structure analysis
results. We ordered the barplot displaying individually estimated
ancestries of genotypes based on the assumed geographical ori-
gin. We started ordering from the western Mediterranean on the
left and progressing toward the eastern Mediterranean on the
right according to the country of origin indicated in their passport
data (Fig. 3). This representation suggests a geographical basis for
the genetic structure. To further explore this geographically based
genetic structure hypothesis, we confronted information about
the genotype’s genetic cluster assignment, following the criteria
presented above (i.e. an individual is assigned to a cluster if they
have a minimum of 70% ancestry estimation within that cluster),
with information about the supposed country of origin (Table S4).
Seventy percent of genotypes of the C1 group had a supposed ori-
gin from Cyprus, Egypt, Greece, Lebanon, and Syria (eastern MB).
Seventy-nine percent of the C2 group genotypes were indicated
in their passport data as originating from Algeria, Croatia, France,
Italy, Slovenia, and Tunisia (central MB). Ninety-three percent of

the C3 group genotypes were supposed to originate from Morocco,
Spain, and Portugal (western MB). The non-assigned group of
genotypes consists of 70% of genotypes supposed to originate
from the central MB (Table S4).

Flowering date is different among genetic groups
The Best Linear Unbiased Predictor (BLUP) of the genotype effect
was estimated using a mixed model that included genotype, year,
and the interaction between genotype and year effects based on
data of 7 years. The collection contained at least three trees for
each genotype. The variance of the phenotypes, based on raw
data, was 98.77 calendar days. After the mixed model estimation,
the variance attributed to the genotypic effect was 4.12 days,
the variance of the interaction between genotypes and years was
4.61 days, whereas the residual variance was 5.53 days. Based
on the variance components issued from the model, the broad-
sense heritability was estimated at 0.84, indicating a relatively
high value. The genetic BLUP of flowering date in the whole
collection (331 genotypes) follows a normal distribution (Shapiro–
Wilk, P-value = .97), with a mean value of 116.37 calendar days.
The range spans 10.4 days, with minimum and maximum val-
ues of 110.8 days for the genotype Borriolenca and 121.1 days
for the genotype Ogliarola del Bradano respectively (Fig. S5). The
distribution of the genetic BLUP of flowering dates was compared
across the different genetic groups C1, C2, and C3 (Fig. 4). A
significant difference in the distribution of genotypic BLUP of FFD
was observed among genetic clusters based on a Mann–Whitney
pairwise comparison test (Table S5). C1 genotypes exhibited the
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Figure 4. Distribution of the genetic BLUP of FFD depending on the
genetic groups (C1 in blue, C2 in green, and C3 in orange) with pairwise
significance of their difference according to the
Wilcoxon–Mann–Whitney test [28]. Levels of significance: ns (not
significant); ∗ (P < 0.05); ∗∗ (P < 0.01); ∗∗∗ (P < 0.001). Black circles indicate
the mean value, the horizontal bar the median value, and the box plot
the first and third quartile of each distribution, respectively.

earliest FFD values, with a mean of 115.47 calendar days, includ-
ing genotypes such as Karme and Minekiri. C2 genotypes flowered
the latest, with a mean value of 117.55 days, including genotypes
such as Ogliarola del Bradano and Olivastra di Populonia. C3 exhibits
an intermediate flowering date compared to C1 and C2, with a
mean value of 116.53 days, including genotypes such as Negrillo de
Iznalloz and Manzanilla de Agua. C1 genotypes were highly distinct
from both C2 and C3 ones, according to the P-values of the Mann–
Whitney test (Table S5).

Three genomic regions are associated with FFD
using single-locus and multi-locus association
analyses
Before performing the association study, we tested three linear
mixed models that account for structure and/or kinship effects.
The structure was considered as a fixed effect (as assessed by the
ancestry matrix obtained from the sNMF run that exhibited the
lowest cross-entropy value at the considered K, Q model) while
the kinship was considered as the covariance matrix of a random
effect separately (u model) or jointly (u + Q model). We tested
two kinship matrices: Weir & Goudet [29], recommended for
populations with related individuals [30], and VanRaden Kinship
[31], widely used in association studies. We found that the best
model was the one considering kinship only, regardless of the
considered kinship matrix (Table S6). This model (u model) was
thus retained to investigate the genetic determinism of the FFD
trait using a GWAS approach. We firstly used a single-locus mixed-
model approach, implemented in the R package MM4LMM [32],
and complemented it with a multi-locus method, MLMM [33].
The two distinct kinship matrices (Weir & Goudet and VanRaden)
previously described were tested for each of the two approaches,
resulting in four analyses.

Associations were tested between the genotypic BLUP of FFD
(Table S7) and 118 948 high-quality SNP datasets obtained after
applying all filtering criteria (Table S2) from 318 genotypes in
the WOGBM collection. The empirical significance threshold for
MM4LMM was set at a 5% False Discovery Rate (FDR), a commonly
used criterion [34]. For MLMM, the significance threshold was set
at 9.6E-6, which corresponds to the P-value of the least significant
SNP in the initial run analysis of MM4LMM using the Weir &
Goudet kinship [29].

The single-locus approach resulted in 23 significantly asso-
ciated SNPs when using the Weir & Goudet kinship (Fig. 5 A,
Fig. 5 B, Table S8), while no SNP was detected when using the
VanRaden kinship (Table S8). P-values of the significant SNPs
ranged from 1.5E-07 for the ‘Oe9_LG01_9 017 771’ SNP to 9.6E-06
for the ‘Oe9_LG05_12679503’ SNP (Table S8).

The multi-locus approach yielded six significant SNPs,
depending on the kinship matrix considered. Four of them
were detected using Weir & Goudet kinship, having P-values
ranging from 3.74E-08 for ‘Oe9_LG04_16 512 411’ SNP to 9.11E-
06 for ‘Oe9_s06150_161951’ SNP (Fig. 5 C, Fig. 5 D, Table S8). Three
SNPs were detected using VanRaden, with P-values ranging from
4.81E-08 for the ‘Oe9_s07747_163567’ SNP to 6.41E-06 for the
‘Oe9_LG04_16 512 411’ SNP (Table S8).

A total of 26 SNPs were significantly associated with the
FFD BLUPs in at least one of the four association analyses.
Two SNPs, ‘Oe9_LG01_9 017 771’ and ‘Oe9_s04305_16 459’, were
detected by two of the four analyses, while only one SNP,
‘Oe9_LG04_16 512 411’, was detected by three analyses (Table S8,
Fig. S6 A, B, and C). These three SNPs were considered as strong
candidates, with ‘Oe9_LG04_16 512 411’ being the most robust.
However, non-continuous peaks of significant SNPs were present,
especially on chromosome 1, chromosome 5, scaffold s02016, and
scaffold s05787 (Fig. 5A, Table S8). To gain more insight into the
genomic regions including these SNPs, an interval of 1000 bp
upstream and downstream of the significant SNPs was analyzed
(Table S8). In the studied region near the ‘Oe9_LG01_9 017 771’
SNP, considered as one of the robust SNPs, only one other SNP,
‘Oe9_LG01_9017729’ was present. The non-continuous peak
in this region was thus likely due to the chosen genotyping
strategy. The three other non-continuous peaks corresponded
to associations that were not considered robust enough to
be further analyzed. The three SNPs: ‘Oe9_LG01_9 017 771’,
‘Oe9_s04305_16 459’, and ‘Oe9_LG04_16 512 411’, considered as
robust, explained 7.1%, 6.5%, and 6.2% of the trait’s variance,
respectively (Table 1).

FFD can be predicted with high accuracy using
genomic prediction approach
A limited portion of the variance in the genotypic BLUP of the FFD
trait was explained by the associated SNPs from the GWAS study
(6.2%–7.1% for the 3 SNPs retained as most robust). We aimed to
investigate whether genomic prediction using a larger set of SNPs
could account for a larger proportion of the trait’s variance.

For this purpose, we complemented the association analyses
with a modeling approach based on a genome-wide analysis,
using all SNPs simultaneously. We made use of genomic predic-
tion models with two complementary approaches: (i) parametric
regression models, namely the Least Absolute Shrinkage and
Selection Operator (LASSO) and the Ridge regression (RR), [22]
a semi-parametric model widely used, namely the Reproducing
Kernel Hilbert Space (RKHS). LASSO estimation relies on the
assumption of a limited number of major effects, whereas
RR assumes many minor effects, like rr-BLUP [35]. The RKHS
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Figure 5. Manhattan plot of the GWAS study of genotypic BLUP of FFD using Weir & Goudet kinship (only chromosomal regions are shown in the plot).
A. Manhattan plot based on the single-locus approach MM4LMM. B. Q–Q plot corresponding to the MM4LMM model. C. Manhattan plot based on the
multi-locus approach MLMM. D. Q–Q plot corresponding to the MLMM model. The horizontal red line in the Manhattan plots A and C indicates the
-log10(P-value) that corresponds to a threshold of 5% FDR in the MM4LMM model using the Weir & Goudet kinship.

Table 1. Characterization of the three robust SNPs significantly associated with genotypic BLUP of FFD: SNP name, chromosome (Chr)
or scaffold number, position in base pair, allelic composition (Ref indicates the allele of reference and ALT the alternative allele), MAF,
Model (MM4LMM or MLMM), Kinship matrix (Weir & Goudet or VanRaden), P-value, and portion of variance explained (R2) by each SNP

SNP_name Linkage group Position (bp) Alleles (Ref/ALT) MAF Model Kinship P-value R2

Oe9_LG01_9 017 771 Chr 01 9 017 771 T/C 0.17 MM4LMM Weir & Goudet 1.50E-07 0.071
MLMM Weir & Goudet 1.78E-06

Oe9_s04305_16 459 s04305 16 459 T/C 0.10 MM4LMM Weir & Goudet 5.77E-07 0.065
MLMM VanRaden 1.51E-06

Oe9_LG04_16 512 411 Chr 04 16 512 411 G/C 0.06 MM4LMM Weir & Goudet 1.01E-06 0.062
MLMM Weir & Goudet 3.74E-08
MLMM VanRaden 6.41E-06

model captures complex, non-linear relationships between
SNPs and phenotypes, allowing for more flexible genomic
predictions [36].

The prediction accuracy was measured by calculating Pearson’s
correlation between predicted and observed values on a cross-
validation setting with five folds. This procedure was repeated
100 times to build the distribution of accuracies for each model
(Fig. 6). Overall, the prediction of the FFD trait demonstrated
relatively high accuracy, whether by LASSO, RR, or RKHS (Fig. 6).
The accuracy values for the RR model ranged from 0.47 to 0.79,
whereas those from the LASSO model ranged from 0.31 to 0.70
and those from the RKHS model ranged from 0.42 to 0.79. The RR
and RKHS models achieved significantly higher mean accuracies
of 0.64 and 0.63, respectively, than the LASSO-based model (0.55)
in predicting the trait (according to a Wilcoxon–Mann–Whitney
test, P-value = 6.1e-11 and 3.3e-11, respectively; Fig. 6). The RR and
RKHS models had similar distributions of accuracies (Wilcoxon–
Mann–Whitney, P-value = .67).

Identification of candidate genes in the genomic
regions putatively associated with flowering date
We specifically examined the genomic regions neighboring the
three SNPs previously identified as the most robust by single and
multi-locus approaches. To ensure the inclusion of all neighboring
SNPs in LD in the genomic region of interest, we first analyzed
the LD decay within our SNP dataset. A relatively rapid decay of
LD was observed, where the average r2 values dropped within
100 bp from 0.35, which corresponds to the maximum value
of 0.2 (Fig. S7). Considering such a rapid LD decay, we used
genomic windows of 1500 bases upstream and downstream of
the associated SNP positions to retrieve candidate genes (Table 2).
Based on the annotation of the reference genome [16], three genes
were identified: OE9A117378 and OE9A084268 on Scaffold s04305
and OE9A057547 gene on chromosome 01 (Table 2). No gene was
identified within the associated genomic region on Chromosome
04 (Table 2, Table S9). We blasted the transcripts of the three
genes against the UniProt database [37]. A high degree of sequence
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Figure 6. Distribution of Pearson’s correlation between predicted and
observed values (accuracy) according to LASSO-, Ridge-based, and RKHS
models obtained after 100 iterations. In each iteration, a random sample
of four-fifths of the genotypes was used to train the model, while the
remaining one-fifth was used for validation. White circles indicate the
mean value, and the boxplot the first and third quartile of each
distribution, respectively. P is the P-value of the
Wilcoxon–Mann–Whitney test of comparison of the two distributions.
Levels of significance: ns (not significant); ∗ (P < 0.05); ∗∗ (P < 0.01);
∗∗∗ (P < 0.001).

similarity was identified with the XCT gene for the olive genes
OE9A117378 and OE9A084268.

The olive gene OE9A117378 exhibited 80.1% identity with the
Oryza sativa XCT gene, while the olive gene OE9A084268 shared
94.8% identity with the Arabidopsis thaliana XCT gene. The XCT
gene encodes for the protein XAP5 circadian timekeeper. The
olive gene OE9A057547 shares 80.2% identity with A. thaliana gene
At5g27430, which encodes a protein signal peptidase complex
subunit 3B. We also reported a total of 18 candidate genes found
in the different genomic regions corresponding to all significant
SNPs found in one of the four GWAS analyses (Table S9). Their
annotation and putative similarities correspond to 11 genes
known in plant models and possibly to several transcripts
(Table S9, Table S10). It is noticeable that the gene OE9A037893
located on chromosome 15 encodes for a calcium-dependent
protein kinase 4 (CPK4) whose putative function in potato is to
regulate the production of Reactive Oxygen Species (ROS). These
findings will provide a baseline for future candidate gene studies
of FFD in olive.

Discussion
Identification of three genetic clusters with
varying flowering date in WOGBM
Consistently with previous studies [15, 20, 21], three genetic clus-
ters were identified within the cultivated olive, based on the
WOGBM. These clusters broadly correspond to the presumed
geographical origins of the genotypes. The C1 group involved
genotypes assumed to originate from the eastern Mediterranean,
including Cyprus, Egypt, Greece, Lebanon, and Syria. Group C2
consisted mainly of genotypes presumably originating from the
central Mediterranean, encompassing Algeria, Croatia, France,

Italy, Slovenia, and Tunisia. The C3 group comprised genotypes
putatively from the western Mediterranean, including Morocco,
Spain, and Portugal.

The comparison of genetic groups we obtained with the ones
found in the same collection, WOGBM, but using SSR markers
and another methodological approach [20], and with the ones
described in the WOGBC using either SSR [15] or EST-SNP markers
[21] revealed a general agreement in the composition of the groups
(S1 File, Table S11, Table S12, Table S13). The concordance in
terms of individuals assigned to each genetic group ranges from
66% to 85% for each respective group. The majority of individuals
who were not assigned in our study were predominantly included
in the non-assigned group from El Bakkali et al. [20]. The few
discrepancies detected are assumed to result from differences in
the approaches and markers employed. The STRUCTURE method
[38] used by El Bakkali et al. [20], Diez et al. [15], and Belaj et al. [21]
relies on the assumptions of the absence of genetic drift, Hardy–
Weinberg equilibrium, and linkage equilibrium between markers
in ancestral populations [38], while the sNMF approach we used
is not based on a genetic population model [27]. Moreover, the
threshold of assignment to genetic clusters differs between the
two methods. Even though these two methods usually converge
[27], it is not surprising that results may slightly differ.

Also, the markers used are possibly in different positions along
the genome: SSR markers could be found in either coding or non-
coding regions, while SNP markers in this study were selected to
be located in coding regions or near them as we targeted anno-
tated genes. Coding and non-coding regions are known to undergo
different selection pressures [39]. The two types of markers may
have different evolution histories, with a higher mutation rate of
SSRs compared to SNP markers [40], that can result in different
genetic structure signals. Moreover, our SNP data were not filtered
for rare variants. Doing the analysis after applying a 5% MAF filter
did not alter general structure, with more than 96% of similarities
between the reported analysis and the one made after MAF filtra-
tion. Discordance was only due to some genotypes moving from a
genetic cluster to the non-assigned group or vice versa (no shifts
between genetic groups were observed) (Table S14, S1 File). This
indicates that filtering for rare variants did not result in difficulty
for classifying genotypes within one of the three genetic clusters.

Overall, in line with previous studies, we confirmed the exis-
tence of three distinct genetic clusters within cultivated olive.
However, the boundaries between assigned and non-assigned
genotypes are not fixed, as some genotypes assigned to a genetic
cluster by a study could be found within the non-assigned in
another one. Incorporating precise GPS coordinates of parent trees
into our study could enrich our understanding of the genetic
structure. Genotypes of the C3 group were closely related com-
pared to C1 and C2 in the PCA plots. This finding aligns with
the high level of genetic relatedness found between genotypes
assigned to the Q1 cluster from Diez et al. [15], representing
western genotypes of MB.

A higher rate of non-assigned genotypes was observed in cen-
tral MB compared to western MB and eastern MB. This suggests
that admixture events may have occurred between genotypes
from central MB and those from the western and eastern Mediter-
ranean. Consistently with Diez et al. [15], the non-assigned indi-
viduals were mainly from central and western MB.

Marker-trait associations and potential candidate
genes for flowering date
Distinct associated loci were detected in each of the four GWAS.
Only three associated SNPs were consistent between at least two
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analyses. One of them, located on chromosome 1, was part of a
non-continuous peak. This SNP was isolated, with only one other
SNP present in the region. This could be attributed to the capture
sequencing approach, which does not provide complete nor con-
tinuous coverage of the genome. While a high value of heritability
was estimated, these SNPs exhibited minor effects and accounted
for a low proportion of the phenotypic variance. However, we
must notice that the broad-sense heritability value was calculated
based on a relatively small portion of the total variance of the
trait, i.e. the part of variance explained by the genotypic effect
only, as extracted from a mixed model, while the year and the
interaction of genotype and year had high and significant effects.
The combination of high heritability with few detected SNPs with
low effects suggests that several other additional genomic regions
could be involved in the genetic control of this trait.

Several factors may have prevented the detection of additional
genomic regions. First, the genetic architecture of the studied
trait is a key factor. A genetic architecture consisting of many
loci with minor effects and/or rare variants with large effects
can limit the power of GWAS to detect significant associations
[41]. In our case, high accuracy values of genomic prediction were
found with both RR- and LASSO-based models, even though the
RR-based model performed significantly better than the LASSO-
based model. The use of a more complex genomic prediction
model, RKHS, did not improve the prediction accuracy of the
studied trait compared to the RR-based model, which assumes
many minor and additive SNP effects. This finding supports a
polygenic genetic determinism underlying the flowering date trait
in olive tree.

Second, the genomic data used can influence the detection
power. Here, we used a capture sequencing approach, which
targeted annotated genes rather than the Genotyping-by-
Sequencing (GBS) method or whole-genome sequencing (WGS),
which would have covered more exhaustively the genome, coding
or non-coding. Given the high cost associated with WGS, the GBS
method has been widely used as an alternative. While GBS offers
a broader overview of the genome than capture sequencing, it
often results in a high rate of missing data [42]. This is due to
the random digestion of the genome by restriction enzymes in
GBS, leading to heterogeneous depth across genomic regions and
variability in the coverage of loci between individuals [43]. In
contrast, the capture sequencing approach used in the present
work allowed us to target identical genomic regions among
individuals with high sequencing depth and limited missing data.
Furthermore, capture sequencing of annotated genes enabled the
identification of candidate genes after the GWAS, utilizing the
annotation of associated loci. In contrast, our genotyping strategy
certainly results in loci that were not tested for association due
to their absence in our targeted sequencing. This loss probably
represents a high proportion of non-coding DNA or repetitive
DNA of the whole olive genome. Even though WGS might be
considered the best and most complete approach for GWAS
studies, the capture sequencing chosen in this study appears
to be an adequate compromise.

Third, the population size matters for the association detection
power. A population size of <100 genotypes is usually considered
too low to obtain a sufficient power of association detection
[44], even though the recommended population size depends on
several factors, such as the genetic architecture of the trait with
possible dominance and the extent of LD [44]. The first association
study in olive was performed using 96 olive genotypes sourced
from the Turkish Olive GenBank Resources in Izmir, Turkey [45].
This study used a combination of SNP, AFLP, and SSR markers,

totaling 1070 polymorphic loci, and focused on five traits related
to yield. Subsequent GWAS studies, employing SNP data, have
investigated the genetic determinism of various agronomic and
morphological traits, making use of 183 genotypes [46] or a large
number of SNPs (428 320 SNPs) but 89 genotypes only [47]. As
our analysis benefited from a large dataset of 318 individuals
genotyped with 118 948 SNPs, we can thus consider that those
conditions are adequate to perform GWAS analysis.

Fourth, the power of detection depends on the frequency of
SNP alleles within the studied population [44]. In WOGBM, the
representation across Mediterranean regions of genotypes was
unequal, with 25% of genotypes assumed to originate from Spain,
28% from Italy, and 18% from eastern MB only. This imbalance
might result in a low frequency of alleles fixed in the eastern
region in the whole population, even though they could be associ-
ated with the trait. It is noticeable that other types of populations,
such as bi- or multi-parental populations, although including less
genetic diversity than collections, usually allow a better balance
among allelic classes. Several studies based on bi-parental popu-
lations of apple tree have revealed a major QTL associated with
flowering time that remained stable across populations [48] and
was subsequently detected by GWAS [9]. Therefore, combining
investigations on bi-parental or multi-parental populations could
complement the present study on WOGBM in the future. In this
perspective, crosses between Olivière and Arbequina [49], have been
created and could be used for such studies.

The analysis of LD in the olive genome using SNP data from
capture sequencing revealed a relatively rapid decay of LD. The
average r2 value was relatively low (0.35), compared to the one
reported using 57 olive cultivars sequenced via genotyping by
sequencing technology (GBS) [50]. The LD decay distance observed
in our study (∼100 bp) aligns closely with the one reported by [50]
(∼85 bp) and is higher than that reported by [51] (∼25 pb), both
studies using data from GBS. The LD decay of olive was relatively
shorter than that found in pear (211 bp; [52]) and apple (161 bp;
[53]). Considering the LD decay value in our study, the regions
explored around the associated loci were extended. Three puta-
tive genes were localized in the explored regions. However, none of
these genes has a known function related to flowering date, even
though the XCT gene encodes functions related to the circadian
clock and photomorphogenesis. Moreover, the gene found on
chromosome 15 for a less robust association points toward a gene
whose putative function is to regulate the production of ROS,
known to be involved in dormancy release [9]. These findings
provide a baseline for future candidate gene studies of FFD in
olive. To validate these candidate genes, molecular experiments
will be necessary in the future, even though we can anticipate the
potential complexity of gaining insights into gene functions, as
commonly observed in perennial trees. Another perspective of the
present work would be to deepen the comprehension of the year
effects and their interaction with genotypic effects on the FFD.
Indeed, as previously found, flowering date is a highly heritable
trait but also strongly depends on environmental conditions [54].
Winter temperatures are particularly known to influence chilling
fulfillment, which impacts FFD [2]. Deciphering the genotype by
year effects may lead to detect associations specific to a given
year or environmental conditions, as previously demonstrated
[6, 54]. As the WOGBM genotypes were phenotyped over 7 years
at the same experimental station (Tassaout, Morocco), testing
associations for FFD per year will be interesting to assess
environmental-specific associations. Additionally, phenotyping
the same genotypes in various locations could be a longer-
term perspective that would enhance differentiation between
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environments and facilitate the detection of environmental-
specific associations and the exploration of FFD trait plasticity
in response to environmental variations.

In conclusion, the BLUPs for the flowering date were associated
with three loci only with minor effects, i.e. they accounted for a
low proportion of the phenotypic variance. Considering the low
effect and variance explained by the associated loci, these under-
lying genes should be approached with caution in the future.
Altogether, our results suggest the implication of other genomic
regions not being detected so far. The significantly higher accu-
racy of the RR-based model compared to the LASSO-based model
in genomic prediction supports the hypothesis of a polygenicity
of the trait. This knowledge could be further considered in olive
breeding programs that will have to create new material combin-
ing optimal yield and flowering date adapted to future climatic
conditions.

Materials and methods
Plant materials
We used a panel of olive tree genotypes from the WOGBM. This
collection is located at 31◦49′10”N; 7◦25’58” W (CRS: WGS84-
EPSG:4326) in the Tassaout experimental station (Marrakech,
Morocco), at an altitude of 465 m above sea level [22]. The
collection is initially composed of 554 accessions originating from
14 countries around the Mediterranean area. Characterization
analyses using 20 SSR markers and 11 endocarp traits identified
331 unique cultivars within the collection [20]. The phenotyping
was conducted on the 331 genotypes of the WOGBM collection,
while genotypic data remained for 318 genotypes only after all
data processing (see below).

DNA extraction and genotyping
DNA was extracted from leaves using MATAB protocol and
NucleoMag Plant Kit [55]. Libraries were constructed with
NEBNext® Ultra™ II FS DNA Library Prep Kit (New England Biolabs,
Ipswich, MA).

We constructed 333 individual genomic libraries from 330
accessions, thus including some experimental duplicates. Of
the total sequenced samples three were duplicated from the
same extraction and preparation, to assess the reproducibility
of the experiment (S2 File, Table S15): Leccino (MAR0016), Picual
(MAR00267), and Picholine Marocaine (MAR00540). These libraries
were subject to capture experiments. We targeted the first 640 bp
of each of the 55 595 annotated genes available by placing 1–
4 probes (depending on gene length) of 80 bp each, with 0.5×
tilling. The filtered set captured 16.8 Mb, including 210 367 baits
representing 55 452 unique loci [56]. The Mybaits custom kits
were designed and synthesized by Daicel Arbor Biosciences (Ann
Arbor, Michigan, USA). Additionally, two genomic libraries, derived
from the initial preparation of libraries but not subjected to
the capture experiment, were sequenced: Picholine (MAR00196)
and Picholine Marocaine (MAR00540), and were used as a control
to estimate capture efficiency. All captured and non-captured
libraries were pooled together in equimolar conditions. MGX-
Montpellier GenomiX has performed the sequencing on an
Illumina® NovaseqTM 1 816 000 (Illumina Inc., San Diego, CA,
USA). The detailed protocol was described by Zunino et al. [56].

SNP calling and filtering
We trimmed raw sequencing reads using FastP version 0.20.1 [57],
where genotype Aharoun (MAR00447) was filtered out (quality
reads <30). The remaining reads were aligned to the reference

genome of olive, Farga V2 [16], using the bwa-mem2 version 2.0
software [58]. Duplicate reads were removed from sorted reads
using picard-tools version 2.24.0. Alignments were then cleaned to
keep only primary alignment, properly paired, and unique reads.
The genotype Azeradj Tamokra (MAR00448) was removed due to
its mapping rate of 0%. Finally, variants were called using the
Genome Analysis Toolkit version 4.2.0.0 [59] following GATK best
practices. The final dataset comprises 64 835 479 variants across
333 samples. Data from the two non-captured libraries of Picholine
(MAR00196) and Picholine Marocaine (MAR00540), were used to cal-
culate the enrichment rate (the mean depth of targeted sequenc-
ing divided by the mean depth of non-captured sequencing). All
the steps, from read cleaning to variant calling, were performed
using the following Snakemake workflow: https://forgemia.inra.
fr/gautier.sarah/ClimOlivMedCapture.

We removed the three biological replicates: Unknown-VS2–545
(MAR00546 and MAR00547) and Dhokar (MAR00417), the three
experimental duplicates: Leccino (MAR0016), Picual (MAR00267),
and Picholine Marocaine (MAR00540), and the two non-enriched
samples: Picholine (MAR00196) and Picholine Marocaine (MAR00540).
This filter resulted in 325 genotypes being filtered to ensure data
quality. We filtered out low-quality SNPs below a threshold of 200
and indels. We allowed a maximum of three SNPs within a 10-
bp region and set the minimum mean depth per site at 8, with
a maximum of 400. Additionally, the minimum mean depth per
genotype was restricted to 8. We retained only biallelic SNPs. SNPs
with a heterozygosity rate >75% were removed. Loci with >10%
missing data and samples with >25% missing data were also
excluded. Singleton SNPs were filtered out. The outcome dataset
comprises 235 825 SNPs across 318 individuals. This set was used
for genetic structure and PCA analyses. An additional filtration
step consisting of setting an MAF filter of 0.05 was applied before
the GWAS analysis, resulting in a set of 119 614 SNPs for the
318 individuals. The nuclear SNPs set comprises 119 600 variants
(Table S2). This SNP set was used for the GWAS analysis, including
a missing data imputation step followed by an MAF filter of 0.05
(see below).

Phenotypic data and statistical analyses
FFDs [Stage 65 according to the BBCH scale of olive tree [60]] have
been recorded for the 331 genotypes of the WOGBM for 7 years.
Data from 2014 to 2019 were previously reported by [22]. Addi-
tional data were collected in 2021 using the same methodology
[22]. The collection exhibited varying numbers of repetitions per
genotype, with each genotype being represented by a minimum
of three trees. Some genotypes were represented by multiple
trees because of synonymy and redundancy cases. For example,
Picholine Marocaine was represented by 88 trees.

To account for the effect of years and possible interaction
between years and genotypes on phenotypic data, three mixed
models were tested and compared [see also [22]]: (i) the model
with the genotype as a random effect only; (ii) the model with
the genotype as a random effect and the year as a fixed effect,
and (iii) the model with interaction ‘genotype × year’ as a second
random effect. The last model was the best model regarding the
Akaike Information Criterion (AIC) [61] and Bayesian Information
Criterion (BIC) (Schwarz,1978) (Table S16, Table S17).

The equation of the best model is:

Yijk = μ+ Gi + Aj + (GA)ij + εijk [11].

where Yijk represents the FFD value of tree k from genotype i
in year j, μ denotes the overall mean of the population, Gi is
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the random effect of genotype i, Aj is the fixed effect of year
j, (GA)ij represents the random interaction between genotype i
and year j, and εijk represents the random residual error. The
broad-sense heritability (H2) [62] was estimated based on variance
components:

H2 = σ2
G

σ2
G + σ2

GxA
J + ε2

n

where σ2
G is the variance of genotype effect; σ2

GxA is the variance of
interaction between genotype and year effect; ε2 is the variance
of the residual term; J is the number of years and n is the mean
number of observations per genotype and year.

The BLUP of the genotypic values of FFD for the 331 cultivars
was extracted from the mixed model [11]. The normality of BLUP
of FFD genotypic values was tested using the Shapiro–Wilk test in
R [63].

Population structure
To investigate the genetic structure of the cultivated olive collec-
tion under study, we used the dataset consisting of 235 825 SNPs
from 318 genotypes. The genetic structure analysis was conducted
using the sNMF approach [27] implemented in the LEA R package
[64]. This allowed us to estimate individual ancestry coefficients
and determine the number of ancestral populations (K) within
the dataset. We performed sNMF with K values ranging from 2
to 10. The smallest K value at which the cross-entropy did not
significantly differ from that of K + 1 was considered the most
likely value of K.

Genotypes were assigned to genetic clusters based on their
ancestry coefficients. If a genotype exhibited a minimum of 70%
ancestry coefficient to a genetic cluster, it was assigned to that
genetic cluster. Genotypes not reaching a 70% assignment to
any of the genetic clusters are classified as non-assigned. To
further investigate the genetic relationships among individuals,
we performed PCA to visualize their distribution within the popu-
lation. The distribution of the genetic BLUP of FFD was compared
between genetic groups using the Wilcoxon–Mann–Whitney
test [28].

Genome-wide association analyses
The association test was conducted between the BLUP of FFD
genotypic values and the genomic data from the 318 genotypes
of the WOGBM collection. The initial genomic dataset contained
119 600 filtered SNPs (Table S2), with 2.4% missing data. The miss-
ing data were imputed based on the genetic structure inferred
by sNMF, using the LEA R package v3.11.3 [64]. The resulting
imputed dataset was filtered for an MAF of 5%, resulting in
118 948 SNPs.

Three mixed models were tested and compared using the
MM4LMM package [32] to evaluate the inclusion of a random
polygenic term and/or a fixed population structure effect in the
model: i) the model with only polygenic effect (u), ii) the model
with only genetic structure effect (Q), and iii) the model with
both polygenic and genetic structure effects (u + Q). Two kinship
matrices were tested for the covariance of the polygenic effect: the
Weir and Goudet method (2017), implemented in the HIERFSTAT
package in R [65], and the VanRaden method (2008), implemented
in the statgenGWAS package in R [66]. VanRaden’s method is
widely used in association studies, while Weir & Goudet is better
suited to the structure of our dataset, especially considering the
relatedness among certain genotypes [30].

The most complete model equation was as follows:

Yi = μ+ Qik + ui + εi.

Where Yi is the BLUP value for genotype i, Qik the fixed effect of
the assignment of genotype i in structure group k, ui the random
polygenic effect for genotype i, and εi the random residual error.
ui ∼ N(0, σ2

uK), K being the genomic relationship (kinship). The best
model was selected based on the AIC [61] and BIC (Schwarz,1978)
(Table S6). The model that only included the random polygenic
term was the best, regardless of the kinship matrix used to model
its covariance, as it had the lowest values for both AIC and BIC. For
further GWAS analysis, we thus used a model with the polygenic
term only, but considering both the VanRaden or Weir and Goudet
methods for modeling the covariance of this polygenic effect.

The GWAS analysis was carried out using both single-locus
and multi-locus models. For the single-locus model, we employed
the MM4LMM package [32], while for the multi-locus model, we
utilized the MLMM approach, as proposed by Segura et al. [33]. For
MM4LMM, we used the FDR approach, as described by Benjamini
and Hochberg [67], to assess the significance of the candidate
peaks. This approach involves first sorting the P-values of each
SNP in ascending order. Next, q-values are calculated using the
Benjamini–Hochberg formula, which adjusts the P-values based
on their rank in the sorted list. The significance threshold, set to
5% FDR for the MM4LMM analysis, is applied to the q-values. This
means that SNPs with q-values <0.05, a commonly used threshold
[34], are considered significant. To implement this approach, we
used the function p.adjust of R [68].

MLMM is based on a forward and backward stepwise linear
mixed model approach. In the forward steps, the most significant
SNP detected in a step is incorporated into the model as a new
cofactor before running again the GWAS until reaching a defined
threshold. This threshold was established at 9.6 E-6, correspond-
ing to the P-value of the least significant SNP in the initial run
analysis of MM4LMM using the Weir & Goudet kinship matrix.
Conversely, in the stepwise backward process, the least significant
SNP from the list of candidates identified in the forward steps
is removed from the cofactors at each step until only a single
selected marker remains. The selected model was the one with
the largest number of SNPs, which all have a P-value below the
multiple-testing significance threshold as previously determined
[33]. The combination of models (MM4LMM and MLMM) and
kinships (VanRaden and Weir & Goudet) resulted in four distinct
analyses. When non-continuous peaks were revealed, further
analyses of the genomic regions up and downstream of the sig-
nificant SNPs were conducted, especially for the SNPs identified
by the MM4LMM approach. Regions extending 1000 bp upstream
and downstream of these SNPs were examined for the presence
of other SNPs in potential linkage disequilibrium.

To calculate the variance explained by significant SNPs,
likelihood-ratio-based R2

LR [69] was calculated for retained SNPs
associated with the FFD trait.

Looking for candidate genes
To include all SNPs in LD in the region investigated for candidate
genes, we estimated LD between SNPs using PopLDdecay V3.40
[70] on a total of 235 825 SNPs from 318 genotypes (the same
dataset used to study the genetic structure). The LD decayed
at ∼100 bp (r2 = 0.2). To encompass a larger genomic region, we
extended the windows around the significantly associated SNPs
by 1500 bases upstream and downstream of the SNP positions.
We retrieved the list of genes within these defined intervals,
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along with their annotations and associated Gene Ontology (GO)
terms reported by Julca et al. [16], using the bedtools program
v2.30.0 [71]. Protein sequences of the genes found in these asso-
ciated regions were further analyzed using BLAST against the
UniProt database [37]. Descriptions of these genes are provided
in Table S10.

Assessing accuracies of different genomic
prediction models
We tested the accuracy of the genomic prediction of FFD BLUPs.
For that, we used the same set of 118 948 SNPs of imputed data,
previously used in the GWAS analysis, involving 318 individuals.
Two genomic prediction models based on different regression
algorithms to describe genetic architecture were tested. The RR-
based model [72], designed for scenarios with many minor effects,
shrinks all marker effects toward 0 (but never truly 0) and the
LASSO-based model [73], designed for scenarios with a limited
number of major effects, enforces other effects to be exactly 0.
The relative performance of RR or LASSO-based models could
provide valuable information on the genetic architecture of the
trait. Both models were implemented using the R/glmnet package
[74]. Cross-validation to calibrate the shrinkage parameter λ was
performed using a 5-fold cross-validation. In addition to the two
parametric models used to assess the polygenic determinism of
the studied trait, RR and LASSO, we tested a more complex model,
the RKHS [36] which allows to capture complex and non-linear
relationships between genomic data and phenotype. It combines
features of non-parametric kernel regression with mixed-effects
linear models [36, 75]. This analysis was performed with the R
package BGLR [76]. Model accuracies were assessed by calculating
the Pearson’s correlation between the observed values of the
validation set (representing one-fifth of the total data) and the
estimated values. One hundred iterations were conducted to esti-
mate the distribution of model accuracy. The distribution of the
accuracy values was compared between RKHS, RR, and LASSO-
based models using the Wilcoxon–Mann–Whitney test [28].
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