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Post print of the article “Facilitating dynamic life cycle assessment for climate change mitigation” 1 
https://doi.org/10.1016/j.spc.2024.09.017 2 

Abstract:  3 

Dynamic life cycle assessment (LCA) explicitly takes into account the dynamics of carbon storage and 4 
release in the impact assessment of biomass use on climate change, although such approach requires 5 
more data and increases the complexity of the calculation. The aim of this work is therefore to assess how 6 
the application of dynamic LCA can be facilitated based on: the modelling tool Temporalis, the time 7 
dimension of the functional unit, and the contribution of the time dimension to the accuracy of results. 8 
Firstly, Temporalis was tested and improved, proving to be an efficient tool for performing dynamic LCA. 9 
Secondly, two functional units were compared: ‘total number of units produced over the whole lifespan 10 
of the plant’ (FU1) and ‘1 unit produced at 𝑡!’ (FU2); the results are equivalent when the lifespan of the 11 
plant is short compared to the studied time horizon. FU1 should be used for assessing the potential 12 
impact of the entire system on climate change relative to climate goals on a calendar-based timeline. 13 
Conversely, FU2 should be used for comparing systems that do not share the same temporal distribution 14 
of production and for generating inventory data that can be reused as background inventory data in other 15 
life cycles. Thirdly, the variation in results induced by the dynamic characterisation of the impact was 16 
compared with the variations induced by the uncertainties in the inventory data, which are not always 17 
significant. The mathematical properties of the absolute global warming potential were investigated for a 18 
time horizon that tends towards infinity, thus generalising previous observations and predicting some of 19 
these results derived from simplified temporal information. Further investigation would allow for the 20 
development of a method for selecting flows to be distributed over a timescale prior to a full dynamic 21 
LCA, using only simplified temporal information. 22 
   23 
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1 INTRODUCTION 26 

The 28th Conference of the Parties held in Dubai reiterated the urgent need for action to limit global 27 
warming to 1.5°C (European Council 2023). According to the Intergovernmental Panel on Climate 28 
Change (IPCC 2018), limiting global warming to 1.5°C requires the deployment of bioenergy with 29 
carbon capture and storage (BECCS) at an average rate ranging from 3 to 7 GtCO2 per year by 2050. 30 
BECCS refer to systems that convert biomass into energy and capture the released CO2 in order to 31 
store it permanently outside of the atmosphere. BECCS generate a flow of CO2 from the atmosphere 32 
(capture by photosynthesis during biomass growth) towards a permanent storage outside the 33 
atmosphere (CCS). BECCS system generates negative emissions onlyif the beneficial impact of 34 
capturing CO2 from the atmosphere is not offset by greenhouse gas emissions over the entire life 35 
cycle of the BECCS system (e.g. including the transport of captured CO2 and its conversion step etc.). 36 
The mitigation potential of BECCS needs to be assessed. This is addressed using Life Cycle 37 
Assessment (LCA) (14040, 2006; 14044, 2006) in order to take into account all emissions resulting 38 
from the consumption of energy (e.g. heat for carbon capture) and chemicals (e.g. solvent for carbon 39 
capture). There is ongoing research on how the impact of biomass use on climate change can be 40 
taken into account, and on the assessment of negative emissions. Brandão et al. (2019; 2024) 41 
compared existing metrics for quantifying the impact on climate change of bioenergy systems. 42 
Brander et al. (2021) and Goglio et al. (2020) reviewed the methodological challenges related to the 43 
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assessment of negative emissions. They identified a key issue in the way the differences in carbon 44 
storage and release dynamics are handled. 45 

Dynamic Life Cycle Impact Assessment (LCIA) presents an answer to this question (Brandão et al. 46 
2024; Brander et al. 2021). Dynamic LCIA is defined as “characterisation models of environmental 47 
mechanisms that account for the dynamic of ecosphere systems and can therefore use temporal 48 
information of dynamic Life Cycle Inventories (LCI)” (Beloin-Saint-Pierre et al. 2020). The original 49 
dynamic LCIA method was developed by Levasseur et al. (2010) to characterise the impact on climate 50 
change. For an emission of a greenhouse gas at time t and an impact assessed over a time horizon 51 
𝑇𝐻, corresponding to the time between 𝑡! and 𝑡"#$, Levasseur et al. (2010) proposed to calculate 52 
the Absolute Global Warming Potential (AGWP) at 𝑡"#$ 	as the integral of the radiative forcing 53 
between 𝑡 and 𝑡"#$. The time horizon is the “relative temporal scope over which environmental 54 
impacts are summed up to provide LCA results” (Beloin-Saint-Pierre et al. 2020). Dynamic LCIA on 55 
climate change is an active area of research, with new characterization methods (based on GWP 56 
(Ventura 2022)) and decision-support indicators (based on Global Temperature Change, GTP (Tiruta-57 
Barna 2021)) that are still being developed. However, Beloin-Saint-Pierre et al. (2020) point out that 58 
the execution of a dynamic LCIA requires significant additional effort, with increasing data 59 
requirements and the complexity in calculating the LCI. Su et al. (2021) noted a lack of tested tools 60 
for calculating both LCI and LCIA. Brandão et al. (2024) rated the ease of application of dynamic LCIA 61 
as rather poor (3/5, 1 being really easy to use). Within this context, this work aims at exploring the 62 
potential for dynamic LCA (both LCI and LCIA) to be made easier to use.  63 
 64 

2 LITERATURE REVIEW 65 

Firstly, temporal differentiation of the LCI, i.e. the distribution of the consumption and production of 66 
each process included in a life cycle, on a given time scale, is complex. It is not possible to use 67 
conventional LCA software such as Simapro® or Gabi®. The open-source python library Temporalis 68 
(Cardellini et al. 2018) is the only currently available tool that can be used for calculating a dynamic 69 
LCI and then performing a dynamic LCIA. In the present article, dynamic LCI refers to “LCI that is 70 
calculated from supply and value chains where […] temporal differentiation is considered resulting in 71 
temporal distributions to describe elementary flows” (Beloin-Saint-Pierre et al. 2020). However, as 72 
pointed out by Su et al. (2021) and Beloin-Saint-Pierre et al. (2020), Temporalis still needs to be 73 
tested to validate its operability and efficiency. Another challenge lies in the availability of generic 74 
dynamic LCIs. Several studies (e.g. (Jury et al. 2022; Zieger et al. 2020)) provide inventory data over 75 
the entire lifespan of the system, i.e. for the production of several units of the product or service 76 
each year over the entire lifespan of the system. To reuse the data in a different life cycle, it is easier 77 
to use an average dynamic LCI, i.e. for the production of one unit of the product or service at time 78 
t0,process. The definition of a process-relative “time 0” (t0,process) enables the creation of a process-79 
relative temporal distribution. The first objective of this study is thus to test Temporalis and propose 80 
an algorithm for averaging a dynamic LCI. 81 
 82 
Secondly, Su et al. (2021) pointed out that many dynamic LCA studies compare their results to results 83 
obtained using static LCA. Static LCA refers to the usual way of performing LCA. Two types of 84 
functional units are observed: i) the production of several units of the product or service each year 85 
over the entire lifespan of the system (e.g. ‘100 years of continuous hemp cultivation starting in 86 
2022’ in Shen et al. (2022)) and ii) the production of one unit of the product or service at 𝑡! (e.g. ‘1 87 
m3 plywood’ in Wang et al. 2022)). Using static LCA, the results obtained using the two types of 88 
functional units are equal if the total quantity produced is equal. Would the same observation be 89 
made when using the dynamic LCA method? Furthermore, in static LCIA, the potential impact of the 90 
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system studied on climate change is generally provided for a single time horizon (usually 100 years) 91 
which is not calendar based. Using the dynamic LCIA approach, the impact of an emission at time 𝑡" 92 
is the product of the mass emitted and a dynamic characterisation factor for a time horizon of 93 
𝑇𝐻 − 𝑡".  𝑇𝐻 and 𝑡" are both defined relatively to the same instant noted 𝑡!. 𝑡! is the link between 94 
the inventory timeline and the impact characterisation timeline. 𝑡! can be equal to 0 (e.g. (Zieger et 95 
al. 2020)) or based on a calendar (e.g. (Shen et al. 2022)). There is currently no consensus on how to 96 
position the temporal distribution describing the inventory relative to 𝑡!. In the work of Negishi et al. 97 
(2019), the first year of production is chosen as equal to 𝑡!. For Zieger et al. (2020), it is rather the 98 
year during which the infrastructure was built that is chosen as 𝑡!. Ventura (2022) suggested yet 99 
another perspective by defining a total observation duration corresponding to the sum of the 100 
duration of the inventory and the time horizon, which is equivalent to choosing the last year of the 101 
inventory as 𝑡!. In the present article, the recommendation of Beloin-Saint-Pierre et al. (2020) was 102 
followed, i.e. 𝑡! is equal to the time when the product, service or system is ready to be used. The 103 
choice of which event of the life cycle takes place at 𝑡! is arbitrary. Choosing 𝑡! as the time at which 104 
the functional unit is provided makes it easier to compare results of LCA studies, because the 105 
functional unit is the common point between the systems being compared. For example, depending 106 
on the system, the temporal scope for the construction of an infrastructure or for biomass growth 107 
may differ. Choosing a 𝑡! other than when the functional unit is provided can lead to a bias in the 108 
comparison, simply because the inventory timeline of each compared system is not positioned in the 109 
same way in relation to the impact characterisation timeline. However, ambiguity remains when the 110 
production occurs over several years. Therefore, the second objective of this paper is to explore, 111 
using a case study, the influence of the definition of the functional unit, in order to propose 112 
recommendations for facilitating future interpretation and comparison of dynamic LCA studies. 113 

Thirdly, dynamic LCA results are compared to static LCA results for evaluating whether a dynamic LCA 114 
is worth performing. For example, in the specific case of a biofuel from perennial crops, Almeida et 115 
al. (2015) concluded that dynamic LCA only increased the complexity of the calculations without 116 
providing any added value in terms of interpreting the results compared to static LCA. Pigné et al. 117 
(2020) added temporal information to a whole background database and only observed significant 118 
differences when the datasets included high upstream emissions (due to infrastructure construction). 119 
The balance between the complexity of the approach and the addition of precision to the results is 120 
thus central for dynamic LCA. Collet et al. (2014) suggested temporal information should only be 121 
added to the main contributors of the impact, on condition that their temporal scope is equal to or 122 
greater than the temporal resolution of the impact, i.e. one year for climate change. Following this 123 
recommendation, the third objective of this work is to explore whether the variation in results 124 
induced by dynamic characterisation of the impact on climate change is significant when compared 125 
with the variations induced by uncertainties in inventory data. 126 

The final purpose of this article is to investigate the value and feasibility of explicitly including time in 127 
environmental assessments of climate mitigation solutions. An illustrative case study (i.e. a shopping 128 
bag) is used for fulfilling the three underlying objectives described above, i.e. to test Temporalis, to 129 
determine the time dimension of the functional unit and to assess the contribution of the time 130 
dimension to the accuracy of results. 131 

3 METHODS 132 

The inventory data used for modelling the case study, the method applied for averaging a dynamic 133 
LCI and the method to perform a dynamic LCIA in the impact category ‘climate change’ are presented 134 
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in section 3.1. Changes made to Temporalis are described in section 3.2. The sensitivity analysis 135 
performed on the definition of the functional unit and time horizon is presented in section 3.3. The 136 
sensitivity analysis performed to compare dynamic and static LCA is presented in section 3.4. 137 

3.1 CASE STUDY, INVENTORY MODELLING AND DYNAMIC LCIA 138 
The production, from biogenic CO2, of a reusable shopping bag was chosen as a case study for its 139 
temporal parameters (duration of biomass growth, lifespan of the plant producing the shopping bag, 140 
lifespan of the shopping bag), the availability of inventory data in the literature and the fact that 141 
more than 99.9% of the impact on climate change calculated with static LCA is explained by 142 
emissions of CO2, CH4 and N2O. The case study is illustrated in Figure 1. Two biomass productions 143 
were investigated: miscanthus, a fast dedicated production system and wood residue, a long-term 144 
sub-product production system. The biomass was then transformed by alcoholic fermentation into 145 
ethanol, electricity and CO2. The CO2 is combined with hydrogen to be converted to methanol, then 146 
to propylene, and finally produced a polypropylene shopping bag (CO2 valorisation plant on Figure 1). 147 
At the end of life, the shopping bag was incinerated with CCS to allow for the possible generation of 148 
negative emissions. The ethanol is burnt to produce energy. Such system boundaries mean that all 149 
the carbon can be tracked, from its capture by photosynthesis during biomass growth to its re-150 
emission into the atmosphere or permanent storage. For 1 bag produced, the system also produces 151 
around 3 MJ of ethanol and 0.2 MJ of electricity. These three products are produced in the same 152 
year. To simplify the expression of the functional units and focus on the dynamics of the system, we 153 
will only refer to the quantity of bag produced in the remainder of the article, the production of 154 
ethanol and electricity being implicit. All the inventory data were taken from the literature and are 155 
provided in the supplementary information (SI) excel file.  156 

A full evaluation of biogenic CO2 is performed (+1/-1 approach). Flows of biogenic CO2 captured 157 
during the growth of miscanthus or wood residues were included in the inventory with a negative 158 
value. The amount of captured CO2 (𝐴%&',)*+,-."$  in kgCO2) is linked to the carbon content of the 159 
biomass by the following formula:  160 

	𝐴%&',)*+,-."$ = 𝑚𝑥%
𝑀%&'

𝑀%
	 (1) 161 

With: 162 

• 𝑚, (kg): mass of biomass 163 
• 𝑥)  (kgC/kg): carbon content of biomass 164 
• 𝑀%&' (kgCO2/mol): molar mass of carbon dioxide 165 
• 𝑀%  (kgC/mol): molar mass of carbon 166 

However, the harvested biomass is only one carbon pool of the biomass production system. Carbon 167 
is also stored in the roots and in the soil: from 5 to 15% of global fossil fuel emissions could be offset 168 
by soil organic carbon (SOC) sequestration (Goglio et al. 2015). The changes in soil organic carbon 169 
(SOC) due to miscanthus production was modelled with the AMG model (Clivot et al. 2019) over the 170 
entire lifespan of the plot (15 years), see section 1 of SI_1 for more details. AMG is parametrised for 171 
French arable soil and cannot be applied to forest soil. Due to data availability, no SOC variation was 172 
included in wood residue production. For wood residue production, the growth of trees was 173 
modelled using the Chapman-Richards equation and the parameters from Albers (2019) for the 174 
sessile oak (Quercus petraea). Sessile oak was chosen in order to achieve the most contrasting result 175 
compared to miscanthus. The frequency and amount of thinning were also taken from Albers (2019) 176 
(22 thinnings over 200 years). Consumption of energy and materials, such as fertilisers, during 177 
miscanthus production was obtained from the work of Jury et al. (2022). Only a diesel consumption 178 
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for wood residues harvesting is added to the inventory for wood residues production. Calculation 179 
details can be found in the SI ‘LCI_from_excel_dyn.ipynb’ (also supplied as an html file that can be 180 
opened in a web browser).  181 

Emission and consumption associated with the production of biomass collected in the literature are 182 
representative of a production over the entire lifespan of a miscanthus or tree plot. The inventory of 183 
miscanthus production described an almost constant production over 15 years. The inventory of 184 
wood residues described a production every 5 to 10 years over 190 years, with decreasing amounts. 185 
For both miscanthus and wood residues, the temporal distribution of the biomass production was 186 
not equal to the temporal distribution of the biomass consumption in the fermentation step. 187 
Moreover, the complete details of the system are not fully known. For example, it is not determined 188 
whether the biomass originates from the first, second, or subsequent harvest of the studied plot, or 189 
even whether the fermentation plant is supplied by a single or multiple plots of biomass. Therefore, 190 
the inventory of both miscanthus and wood residues could not be used directly as input in the 191 
fermentation step. To overcome this problem, the dynamic LCI for the production of biomass over 192 
the entire lifespan of a plot was averaged in order to represent the mean production of one unit of 193 
biomass at t0,process according to the algorithm illustrated in Figure 2. Such averaging retains temporal 194 
information in the LCI. 195 

 196 

Figure 1: Life cycle steps of the case study 197 
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 198 

Figure 2: Illustration of the algorithm used for averaging a dynamic LCI by using a fictional system. (a) Dynamic LCI 199 
representing the production (P, e.g. in unit, mass, MJ…) over the entire lifespan of the system in chronological order and the 200 
associated emissions (E, in mass or volume) of a given pollutant. (b) The inventory is divided into one inventory per year of 201 
production. Each year of production is identified by a colour and a pattern. The same colour/pattern code is used to identify 202 
the emissions allocated to a given year of production. The emission/capture pulses such as land use change or infrastructure 203 
construction are equally divided between the productions cycles. The year of production becomes the t0, process of each new 204 
inventory. (c) The final averaged inventory representing the mean production at t0, process is then the average of the inventory 205 
per year of production weighted by the respective production volumes.  206 

The impact on climate change (I) induced by the system is calculated using the following formula, 207 
inspired from Levasseur et al. (2010): 208 

𝐼(𝑇𝐻) =//𝑚/(𝑡")𝐴𝐺𝑊𝑃/(𝑇𝐻 − 𝑡")
,!/

	 (2) 209 

 210 

𝐼(𝑇𝐻) =//𝑚/(𝑡")4 𝑎/𝐶/(𝑡 − 𝑡")𝑑𝑡
,!"#

,!0,$
	

,!/

=//𝑚/(𝑡")4 𝑎/𝐶/(𝑡)𝑑𝑡
,!"#1,!

,$
	

,!/

(3) 211 

With: 212 

• 𝑖: greenhouse gas (CO2, CH4 or N2O only) 213 
• 𝑡"#$ − 𝑡! = 𝑇𝐻: time horizon of the impact assessment (year). If not calendar based, 𝑡! = 0. 214 
• 𝑡": time of emission or capture of a greenhouse gas (year). 𝑡" values range between −∞ and 215 

𝑡"#$. When 𝑡" 	< 		 𝑡!, the emission or capture occurs before the time frame of the assessment. 216 
The integration time is then greater than 𝑇𝐻. Beyond 𝑡"#$ , the emissions or captures are cut-217 
off. They do not contribute to the radiative forcing.  218 

• 𝑚/(𝑡"): mass of greenhouse gas 𝑖 emitted at time 𝑡". 219 
• 𝑎/: radiative efficiency of the greenhouse gas 𝑖, based on AR5 values (IPCC 2013)(W.m-2.kg-1). 220 
• 𝐶/(𝑡): decay function of the greenhouse gas 𝑖 (yr-1).   221 

In the present article, dynamic modelling refers to the calculation of a dynamic LCI and its dynamic 222 
LCIA on climate change using Temporalis. Static modelling refers to the use of a LCI without temporal 223 
differentiation, i.e. all emissions and consumptions occur at the same time 𝑡!, and to the application 224 
of LCIA on climate change for multiple time horizons using Temporalis.  225 
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3.2 MOTIVATION FOR THE CHANGES INTRODUCED IN TEMPORALIS 226 
The calculation of the dynamic inventory from unit processes and the dynamic characterisation on 227 
climate change was performed using the version of Temporalis created by Cardellini et al. (2018).  228 

A few changes were made to the original source code. Firstly, as a graph traversal algorithm is used 229 
for calculating the dynamic LCI, and as an inventory in LCA can involve thousands of unit processes, a 230 
cut-off is applied to halt the graph traversal algorithm and limit the computing time. The balance 231 
between accuracy and computation time was well described by Pigné et al. (2020). To help the LCA 232 
practitioner to be aware of the magnitude of the impact that is unaccounted for in the calculation, an 233 
attribute was added to the dynamic LCA object in Temporalis to store the cumulative impact of all 234 
the disregarded processes calculated with AGWP100. Secondly, calculation of the dynamic inventory 235 
can take up to several hours, depending on the complexity of the system and the performance of the 236 
computer. The code was modified to allow for the storage of the calculated dynamic inventory into 237 
an excel file in order to perform the characterisation of the inventory at a later date. Lastly, the code 238 
used to perform the characterisation of the dynamic inventory was simplified in order to limit 239 
numerical integration errors and so future users can more easily understand the calculation process. 240 
The analytical formula of the AGWP is directly used, instead of numerical integration, for calculating 241 
the radiative forcing induced by an emission (cf. section 5 of SI_1, and the python script 242 
‘metrics_SDD’ also supplied as an html file that can be opened in a web browser). The emission and 243 
capture of atmospheric CO2 is characterised with the same function as fossil CO2. The sign provided 244 
in the inventory indicates whether it is an emission (positive) or a capture (negative). With this 245 
approach, there was also no need to differentiate atmospheric and fossil methane in the 246 
characterisation step. The modified source code is available in the SI 247 
‘Modified_version_temporalis.zip’. 248 

3.3 SENSITIVITY ANALYSIS ON THE DEFINITION OF THE FUNCTIONAL UNIT  249 
The production amount of the CO2 valorisation plant was arbitrarily chosen, i.e. 1000 units per year 250 
for 20 years or 400 units per year for 50 years. As explained in the introduction, two functional units 251 
could be defined: ‘Production of 20000 bags over the entire lifespan of the plant (𝐿𝑃)’ (FU1) or 252 
‘Production of 20000 bags at 𝑡!’ (FU2). The dynamic LCI used for modelling FU1 represented the 253 
entire system chronologically, for instance from infrastructure construction to infrastructure 254 
demolition of a production plant, as illustrated in Figure 2a. FU1 could also be written as ‘Production 255 
of 1000 (or respectively 400) bags each year during 20 (or respectively 50) years”. The dynamic LCI 256 
used to model FU2 was averaged as illustrated in Figure 2c. In static LCA, strictly the same results 257 
were obtained with both functional units. In a dynamic LCA approach, 𝑡! was defined as the time 258 
when the product, service or system was ready to be used as proposed by Beloin-Saint-Pierre et al. 259 
(2020). This definition involved several possibilities for the positioning of the dynamic LCI relative to 260 
𝑡! in the case of the ‘Production of 20000 bags over 𝐿𝑃’. 𝑡! could correspond to any year between 261 
the first year of production (noted  𝑃!) and the last year of production (noted 𝑃"#$). To explore the 262 
impact of the definition of the functional unit and the position of the dynamic LCI relative to 𝑡!, 263 
results were calculated for the two functional units. Furthermore, for the ‘Production of 20000 bags 264 
over 𝐿𝑃’ functional unit, the results were calculated for a lifespan of 20 or 50 years and for the two 265 
extreme temporal positions of the inventory, i.e. 𝑃! 	= 	 𝑡! or 𝑃"#$ 	= 	 𝑡!. The lifespan of the plant did 266 
not affect the results calculated with the ‘Production of 20000 bags at 𝑡!’ functional unit because, 267 
due to lack of inventory data, the infrastructure construction and decommissioning were not 268 
included in the inventory. 269 
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3.4 SENSITIVITY ANALYSIS: VARIATIONS INDUCED BY DYNAMIC MODELLING VERSUS 270 

UNCERTAINTIES IN STATIC ASSESSMENT 271 
To limit the number of varying parameters, the functional unit chosen for performing this sensitivity 272 
analysis was the ‘Production of 1 bag at 𝑡!’. The only temporal parameter was the lifespan of the 273 
bag: either 0 or 20 years. A preliminary sensitivity analysis was performed in static LCA in order to 274 
select the key parameters that cause variations in results within the “climate change” impact 275 
category. 276 

To identify the main contributors to variations in static results, a parameterized model was built 277 
using lca-algebraic. Lca-algebraic (https://github.com/oie-mines-paristech/lca_algebraic) is a 278 
Brightway2 package, specific for uncertainty analysis. A few parameters were selected according to 279 
the variability observed during data collection and presented in Table 1, except for the range of 280 
values for the carbon content of biomass defined as +/-10 % of the default value. Every distribution 281 
was assumed to be uniform due to lack of information. ‘Energy production’ is a Boolean parameter 282 
representing the production of heat and hydrogen. Heat and hydrogen are used to produce 283 
methanol from CO2. Heat is also used for capturing CO2 at the bag EoL. The first alternative of the 284 
parameter ‘Energy production’ corresponds to conventional energy production (EPconv), with heat 285 
and hydrogen production modelled by Ecoinvent datasets (Ecoinvent) (‘market for heat, from steam, 286 
in chemical industry’ and ‘market for hydrogen, liquid’). For the second alternative, the amount of 287 
heat and hydrogen was set to zero to simulate a perfectly decarbonised production (EPzero).  Sobol 288 
indices were calculated to evaluate the contribution of each parameter uncertainty to the total 289 
model variance (Sobol 2001).  First-order Sobol indices determined the individual contribution of 290 
parameters to the total model variance. Higher-order Sobol indices determined the contribution of 291 
the interaction of multiple parameters to the total model variance. The sum of all Sobol indices is 1. 292 
The closer the Sobol index to 1, the greater the contribution of the parameter uncertainty to the 293 
total variance of the model. 294 

Table 1: Parameters selected to perform a sensitivity analysis in static LCA. SOC: Soil Organic Carbon. 295 

Parameter name Default Minimum Maximum Unit 
Energy 
production 

EPconv or EPzero unitless 

Carbon content 
miscanthus 

0.48 0.43 0.52 kgC/kgbiomass, dry matter 

Carbon content 
wood residues 

0.50 0.45 0.54 kgC/kgbiomass, dry matter 

SOC miscanthus 0.21 -0.09 0.5 kgCO2/kgmiscanthus, dry matter 
Stoichiometry 
fermentation 

0.04 0.03 0.04 kgCO2 /MJethanol 

Yield 
fermentation 

6 6 10 MJethanol/kgbiomass, dry matter 

CO2 to methanol 1.45 1.37 1.84 kgCO2/kgmethanol 
Methanol to 
propylene 

2.89 2.8 3.02 kgmethanol/kgpropylene 

Heat efficiency 
CO2 capture 

3.7 2.95 7.52 GJ/tCO2, captured 

Yield CO2 capture 0.9 0.9 1 kgCO2, captured/kgCO2, treated 

https://github.com/oie-mines-paristech/lca_algebraic
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4 RESULTS 296 

For the sake of conciseness, the system producing a bag from CO2 captured from miscanthus 297 
fermentation, ethanol and electricity was referred to as “system producing a bag from miscanthus”. 298 
Similarly, the system producing a bag from CO2 from the fermentation of wood residues, ethanol and 299 
electricity was referred to as “system producing a bag from wood residues”. The impacts presented 300 
in Figure 3 to 8 are total impacts of the systems, including all the life cycle steps presented in Figure 301 
1. 302 

The resources created to facilitate the use of Temporalis are presented in subsection 4.1. In 303 
subsections 4.2 and 4.3, the results of the sensitivity analyses are presented for the production of 304 
bags from miscanthus, for their production from wood residues, and finally for the comparison of 305 
both systems (miscanthus minus wood residues).  306 

4.1 RESOURCES TO FACILITATE THE USE OF TEMPORALIS 307 
The modified version of Temporalis can be used to carry out a dynamic LCA, as illustrated by the 308 
results in the following subsections. All the documents created to carry out this dynamic LCA (jupyter 309 
notebooks, excel) are provided in SI. These documents can be used as inspiration to facilitate future 310 
dynamic LCA with Temporalis. The script for averaging a dynamic LCI (cf. Figure 2) is available in the 311 
SI ‘LCI_from_excel_dyn.ipynb’. This SI also offers an example of the construction of unit processes 312 
containing temporal information. The SI ‘Calculation_inventory.ipynb’ shows how to calculate the 313 
dynamic inventory and store it in an excel file for future characterisation. The SI ‘SA_dynVSstat.ipynb’ 314 
contains examples of how to visualise contributions by groups of activities and by substances over 315 
time. It also contains an example to search for information in the calculated inventory. 316 

4.2 SENSITIVITY ANALYSIS ON THE DEFINITION OF THE FUNCTIONAL UNIT  317 
Beyond a 𝑇𝐻 value of 50 years, the results of the comparison using FU1 (miscanthus minus wood 318 
residues) lie within a narrow uncertainty range of +/- 5%, when compared with the averaged 319 
approach (FU2) (Figure 3). This comparison is dominated by the cumulative radiative forcing induced 320 
by production from wood residues. In particular, the main contributor to its impact is the CO2 321 
captured by photosynthesis during tree growth. The temporal scope of such capture is at least three 322 
times longer (190 years) than the temporal scope of bag production (less than 50 years), as 323 
illustrated in Figure 4. This reduces the influence of the definition of the functional unit on the 324 
results. According to Figure 5, the dynamic cumulative radiative forcing induced by the production of 325 
bags from miscanthus (FU1) only lies within an uncertainty range of +/- 10 % from the results 326 
obtained with the averaged approach (FU2) for a 𝑇𝐻 greater than 100 years. Due to the shorter 327 
temporal scope of biomass production, this system is more dependent on the definition of the 328 
functional unit. 329 

 330 
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 331 

 332 

Figure 3: Evolution of the difference between the radiative forcing caused by the production of bags from miscanthus and 333 
the production of bags from wood residues (miscanthus minus wood residues). FU1: ‘Production of 20000 bags over LP’. The 334 
dynamic inventory is positioned relative to t0 either with the first year of production equal to t0 (P0=t0) or the last year of 335 
production equal to t0 (Pend=t0). LP: lifespan of the plant. FU2: ’Production of 20000 bags at t0’. The +/- 5% of uncertainty is 336 
calculated on the results obtained with FU2. 337 

 338 

 339 

Figure 4: Evolution of the radiative forcing caused by the production of bags from wood residues. FU1: ‘Production of 20000 340 
bags over LP’. The dynamic inventory is positioned relative to t0 either with the first year of production equal to t0 (P0=t0) or 341 
the last year of production equal to t0 (Pend=t0). LP: lifespan of the plant. FU2: ’Production of 20000 bags at t0’. The +/- 5% of 342 
uncertainty is calculated on the results obtained with FU2. 343 

 344 
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 345 

Figure 5: Evolution of the radiative forcing caused by the production of bags from miscanthus. FU1: ‘Production of 20000 346 
bags over LP’. The dynamic inventory is positioned relative to t0 either with the first year of production equal to t0 (P0=t0) or 347 
the last year of production equal to t0 (Pend=t0). LP: lifespan of the plant. FU2: ’Production of 20000 bags at t0’. The +/- 5% of 348 
uncertainty is calculated on the results obtained with FU2. 349 

Figure 3, Figure 4 and Figure 5 share the following aspects: 350 

• For the same time horizon 𝑇𝐻, by denoting 𝐼23 the impact of the corresponding 351 
functional unit: 352 

 353 

𝑙𝑖𝑚
45→	08

9%&'()$,+,)09%&'.)!"#,+,/
'

= 𝑙𝑖𝑚
45→	08

𝐼23'(45) 	 (4)354 

when 𝑇𝐻 tends towards infinity, the impact calculated using FU2 (‘Production of 20000 bags 355 
at 𝑡!’) is equal to the average of the calculated impact using FU1 (’Production of 20000 bags 356 
over 𝐿𝑃’) with 𝑃! 	= 	 𝑡! and 𝑃"#$ 	= 	 𝑡!.  357 

• By defining three different time horizons 𝑇𝐻<, 𝑇𝐻' and 𝑇𝐻=,  358 
•  359 

𝐼23<(>$,45') = 𝐼23<(>!"#,450) = 𝐼23'(451) 45→	08BCCCCD 	𝑇𝐻' = 𝑇𝐻< −
?>
'
= 𝑇𝐻= +

?>
'
	 (5)360 

when 𝑇𝐻 tends to infinity, the impact calculated using FU2 (‘Production of 20000 bags at 𝑡!’) 361 
is equivalent to the impact calculated using FU1 (’Production of 20000 bags over 𝐿𝑃’) with 𝑡! 362 
positioned at the middle of the production time (?>

'
). 363 

These results derive from the fact that CO2 emissions were the main contributor to the total impact, 364 
and from the choice of two models. Firstly, the production of 1 unit of product was modelled with 365 
the same temporal distribution of emissions for both types of functional unit. Secondly, the total 366 
production of 20000 units was uniformly distributed over the lifespan of the plant. The graphical 367 
observations were mathematically verified using a simple system emitting a total mass of CO2 368 
uniformly over the lifespan of the system, see SI named ‘SI_1.docx’.  369 

4.3 SENSITIVITY ANALYSIS: VARIATIONS INDUCED BY DYNAMIC MODELLING VERSUS 370 

UNCERTAINTIES IN STATIC LCA 371 
In subsection 4.3.1, the results of the sensitivity analysis on static results are presented to select key 372 
parameters influencing the calculation of the climate change impact. In subsection 4.3.2, the results 373 
of the sensitivity analysis between dynamic and static modelling are presented.   374 
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4.3.1 Selection of key parameters contributing to the static impact variation on climate change 375 
The first-order Sobol indices of each parameter are summarized in Table 2. More than 94% of the 376 
variance is explained with first-order Sobol indices, so higher-order Sobol indices were not 377 
calculated. Table 2 reveals that the variation of ‘energy production’ explains most of the variation in 378 
results for the system producing a bag from wood residues and half of the variation in results for the 379 
system producing a bag from miscanthus. The other half is explained by the variation in soil organic 380 
carbon change.  381 

Table 2: First-order Sobol indices for each parameter selected to perform an uncertainty analysis. SOC: Soil Organic Carbon. 382 

Parameter name Miscanthus Wood residues 
Energy production 0.48 0.94 
Carbon content miscanthus 0.01 - 
Carbon content wood residues - 0 
SOC miscanthus 0.46 - 
Stoichiometry fermentation 0 0 
Yield fermentation 0.01 0 
CO2 to methanol 0.01 0 
Methanol to propylene 0 0 
Heat efficiency CO2 capture 0.02 0.02 
Yield CO2 capture 0 0 
Sum of the first-order Sobol indices 0.99 0.94 

 383 

To summarize, in the following subsection, to compare the variation induced by dynamic LCA and the 384 
variations induced by uncertainties on inventory data, the impact on climate change was calculated 385 
for every combination of parameter values: 386 

• LCI modelling and impact characterisation: static or dynamic, 387 
• LB (lifespan of the bag): 0 or 20 years, 388 
• EP (Energy production): EPconv or EPzero, 389 
• SOC changes: high or low. 390 

4.3.2 Sensitivity analysis of dynamic versus static results 391 
The results for wood residues are depicted in Figure 6 and for miscanthus in Figure 7. Figure 8 392 
illustrates the comparison between the two biomass sources.  393 

Two sets of curves stand out in Figure 6. The first set has an impact of 0 W/m² for 𝑇𝐻 equal to zero. 394 
It regroups the results calculated without temporal differentiation in the LCI. The second set has an 395 
impact of about 5´10-14 W/m² for 𝑇𝐻 equal to zero. It regroups the results calculated according to a 396 
dynamic LCI. At a 𝑇𝐻 of 100 years, the variation due to the choice between static and dynamic 397 
modelling lies around 4´10-14 W/m². At 𝑇𝐻	 = 	100	𝑦𝑒𝑎𝑟𝑠, the variation due to uncertainties in the 398 
static inventory data (EPconv versus EPzero) is of the same order of magnitude, about 5´10-14 W/m². 399 
The variation due to the uncertainties in the static inventory data increases with time due to the 400 
cumulative nature of the AGWP. However, the variation due to the choice between static and 401 
dynamic modelling remains relatively stable with time. Since CO2 is the main contributor to the 402 
impact, the difference between static and dynamic modelling tends to 𝑎%&'𝑎!∑ 𝑚"𝑡","  when 𝑇𝐻 403 
tends towards infinity, with 𝑎%&' the radiative efficiency of CO2, 𝑎!	the first coefficient of the decay 404 
function of CO2, and 𝑚" the mass of CO2 emitted at time te (demonstration included in the SI named 405 
‘SI_1.docx’). Using a simplified emission profile (uniform CO2 capture over 190 years) the calculated 406 
difference between static and dynamic modelling for the system using wood residues is 3´10-407 



 

13 
 

14 W/m². This is of the same order of magnitude as the asymptotic difference observed in Figure 6 408 
when 𝑇𝐻 tends towards infinity (static (EPconv) minus dynamic (EPconv) or static (EPzero) minus dynamic 409 
(EPzero)). The difference between static and dynamic modelling, related to the lifespan of the bag 410 
when 𝑇𝐻 tends towards infinity, is negligible, with values of approximately 5´10-16 W/m². 411 

 412 

Figure 6: Evolution of the radiative forcing caused by the production at t0 of one bag from wood residues. EP: energy 413 
production, LB: lifespan of the bag.  414 

Four sets of curves stand out in Figure 7. They are directly related to the values of the static 415 
parameters: energy production (EP) and SOC changes. The curves calculated with static and dynamic 416 
LCIs tend to overlap. The temporal distribution of the mean SOC changes for miscanthus production 417 
is symmetrical around 𝑡!. Subsequently, the term ∑ 𝑚"𝑡","  related to SOC changes is equal to zero. 418 
When 𝑇𝐻 tends towards infinity, there is no variation due to the choice between static and dynamic 419 
modelling. 420 

 421 

Figure 7: Evolution of the radiative forcing caused by the production of one bag at t0 from miscanthus. EP: energy 422 
production, LB: lifespan of the bag, SOChigh: scenario where miscanthus production leads to a decrease in soil organic 423 
carbon stock. SOClow: scenario where miscanthus production leads to an increase in soil organic carbon stock. 424 

The parameter LB, lifespan of the bag, had no influence on the results illustrated in Figure 8. The 425 
parameter LB was related to the end of life of the bag, which was identical in both systems, thus 426 
causing the same impact variation. The energy production parameter EP was used in the calculation 427 
of the LCI of several identical life cycle steps between the compared system (CO2 transformation into 428 
a bag, CO2 capture after bag incineration), and also in the LCI of the fermentation step. The carbon 429 
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content of wood residues was different from that of miscanthus, leading to a different yield in CO2 430 
production during the fermentation step. This explains the small variation due to the parameter EP 431 
when comparing both systems. As illustrated in Figure 6 and Figure 7, the variation due to dynamic 432 
modelling was strongly dominated by the impact variations in the wood residue system. 433 

 434 

Figure 8: Evolution of the difference between the radiative forcing caused by the production of bags at t0 from miscanthus 435 
and the production of bags at t0 from wood residues. EP: energy production, LB: lifespan of the bag. The miscanthus 436 
production leads to a decrease in SOC stock (SOChigh). 437 

5 DISCUSSION 438 

In section 5.1, the usefulness of Temporalis and prospects for its improvement are discussed. In 439 
section 5.2, the results of the sensitivity analyses on the definition of the functional units lead to 440 
recommendations for harmonizing their definition, facilitating future interpretation and comparison 441 
of dynamic LCA results and studies. In section 5.3, sensitivity analyses on dynamic modelling versus 442 
uncertainties on static parameters are discussed according to the method proposed by Collet et al. 443 
(2014) for selecting flows where the addition of temporal information is crucial.  444 

5.1 TEMPORALIS – FEEDBACK AND OUTLOOK 445 
It is noteworthy that a promising project to update Temporalis is currently ongoing 446 
(https://github.com/brightway-lca/bw_temporalis). Meanwhile, the modified version of Temporalis 447 
provided in the SI of this article remains the working tool for dynamic LCA. Nevertheless, there is still 448 
room for improvement. Firstly, the modified script could be perfected by allowing for the possibility 449 
to take into account in a static way the unit processes that were cut-off. Such an approach is based 450 
on the fact that the emissions due to the entire life cycle of the process (calculated with the usual 451 
matrix calculation) are emitted the same year as the year of consumption of the process. This would 452 
reduce the error in calculation due to the stopping condition of the graph traversal algorithm. 453 
Secondly, only AGWP and AGTP using AR5 parameters for CO2, CH4 and N2O without climate-carbon 454 
feedback are currently included as characterisation methods in the modified version of Temporalis. 455 
The inclusion of additional characterisation formulas would be relevant for performing sensitivity 456 
analyses on a given metric. Indeed, the background concentration of CO2, CH4, N2O is steadily rising. 457 
The background concentration of CO2 reached 410 ppm in 2019, leading to an update of the radiative 458 
efficiency of CO2 in the latest IPCC report (IPCC 2021). The decay function of CO2 has been updated to 459 
include climate-carbon feedback effects but remains based on the impulse response function 460 

https://github.com/brightway-lca/bw_temporalis
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proposed by Joos et al. (2013). Reisinger et al. (2011) and Caldeira and Kasting (1993) demonstrated 461 
that an increase in the CO2 background concentration led to a decrease in the radiative efficiency and 462 
an increase in climate-carbon cycle feedback, both effects partially cancelling each other out. The 463 
decay function should therefore also be updated so as to avoid underestimating the impact of an 464 
emission of CO2 on climate change.  465 

In dynamic LCIA, the implementation of characterization factors that depend on the evolution of the 466 
background concentration of CO2 would imply the use of a different AGWP formula for each time of 467 
emission. The AGWP formula would depend on the initial background concentration of CO2 and its 468 
subsequent prospective evolution. This seems too complex relative to the gain in precision. A more 469 
general examination of how to account for the uncertainties of the characterisation factors in LCA 470 
seems more useful to address this issue. Thus, for Temporalis, AGWP and AGTP could be proposed 471 
with or without climate-carbon feedback, and using AR5 or AR6 parameters in order to perform a 472 
sensitivity analysis on the metric used. Lastly, certain indicators can be inferred from metrics such as 473 
AGTP. AGTP could be used for calculating indicators such as the amplitude of the temperature 474 
change or years of temperature peaks, i.e. as developed by Tiruta-Barna (2021). Script could also be 475 
written for computing such indicators from the characterised inventory.  476 

5.2 SENSITIVITY ANALYSIS ON THE DEFINITION OF THE FUNCTIONAL UNIT 477 
The results obtained from the case study allowed for more general recommendations to be 478 
formulated. The particularity of the case study is that the same dynamic LCI was used for modelling 479 
the production of one unit for both functional units (FU1 and FU2). This corresponds to a dynamic LCI 480 
that does not involve pulse emissions, such as large infrastructure construction or land use change 481 
(cf. the algorithm to create an average dynamic LCI, see Figure 2). For systems sharing this 482 
particularity, the results of the comparison obtained with the two functional units are almost 483 
equivalent (less than 5% of the difference for 𝑇𝐻 superior to the lifespan of the plant), as observed in 484 
section 4.2.  485 

The following considerations are applicable to all types of systems. The potential impact on climate 486 
change of a given system as a whole is evaluated by using the following functional unit: ‘production 487 
of several units of the product or service each year over the entire lifespan of the system’. Such a 488 
functional unit is relevant for evaluating a system relative to specific climate goals. Climate goals are 489 
defined for calendar-based time horizons. This resolves the ambiguity identified in the position of the 490 
dynamic LCI relative to 𝑡!. For instance, climate neutrality needs to be reached by 2050 in order to 491 
limit global warming at 1.5°C (IPCC 2018).  492 

However, the position of the dynamic LCI relative to 𝑡! (𝑃! 	= 	 𝑡! or 𝑃"#$ 	= 	 𝑡!) might have an 493 
influence when comparing with static results. This depends on the distribution of emissions 494 
contributing to the impact. If the majority of emissions occur periodically over the lifespan of the 495 
plant (𝐿𝑃), 𝐿𝑃 is the longest temporal scope included in the LCI. The longer it is, the greater the 496 
difference in results depending on the position of the dynamic LCI relative to 𝑡!  (𝑃! 	= 	 𝑡! or 𝑃"#$ 	=497 
	𝑡!).  This is illustrated by the case study with miscanthus (Figure 5). For LP=20 years, the results are 498 
within the +/-5% window after a time horizon of around 100 years. With LP=50 years, this period 499 
increases to about 250 years. However, if 𝐿𝑃 is not the longest temporal scope, its influence is 500 
reduced. This is illustrated by the case study with wood residues: the CO2 is captured over a much 501 
longer temporal scope than 𝐿𝑃 (190 years as opposed to 20 years or 50 years). Results are within the 502 
+/-5% window after a time horizon equal to 𝐿𝑃, see Figure 4. In conclusion, if the time horizon were 503 
much longer than 𝐿𝑃, the chosen position of the dynamic LCI relative to 𝑡!  (𝑃! 	= 	 𝑡! or 𝑃"#$ 	= 	 𝑡!) 504 
would not influence the comparison to static results. If the time horizon were not much longer than 505 
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𝐿𝑃 and 𝐿𝑃 were the longest temporal scope included in the LCI, then the position of the dynamic LCI 506 
relative to 𝑡! would influence the comparison to static results and should be clearly stated when 507 
communicating the results. 𝑃"#$ 	= 	 𝑡! is more coherent with the static interpretation of the time 508 
horizon. In static LCA, the results represent the potential impact at a given time horizon of delivering 509 
the functional unit. The functional unit is entirely delivered only after the last year of production in 510 
dynamic LCA.  511 

The ‘production of several units of the product or service at 𝑡!’ functional unit is relevant to compare 512 
systems that do not share the same temporal distribution of production. For example, as explained in 513 
section 3.1, the production of miscanthus does not share the same temporal distribution of 514 
production as for the production of wood residues. However an LCA practitioner might choose to 515 
compare the impact of producing 1 kg of miscanthus with the impact of producing 1 kg of wood 516 
residues. Moreover, the inventory data could be reused as background inventory data in another LCA 517 
study.  518 

5.3 SENSITIVITY ANALYSIS: VARIATIONS INDUCED BY DYNAMIC MODELLING VERSUS 519 

UNCERTAINTIES IN STATIC LCA 520 
The results indicate that the variations induced by dynamic modelling were significant for wood 521 
residue production compared to the variations induced by uncertainties in energy production 522 
modelling. However, for miscanthus production, the dynamic modelling variations were not 523 
significant when compared with the uncertainty variations in energy production and SOC changes. 524 
Based on the Collet et al. (2014) method, the variation in SOC stock was relevant for two reasons. 525 
Firstly, the results are sensitive to a variation of the initial value of SOC stock, as demonstrated in 526 
Figure 7. Secondly, the variations in SOC stock during miscanthus production were distributed over 527 
30 years, which is more than the identified one year temporal resolution of climate change. Collet et 528 
al. (2014) proposed a method applicable to every impact category. The examination of the 529 
mathematical formula of each characterisation factor in depth was out of the scope of their study. As 530 
demonstrated in section 3.2, information on the magnitude of variations induced by dynamic 531 
modelling could be calculated using simplified formulas constructed from the study of the AGWP 532 
when 𝑇𝐻 tends towards infinity. Further investigation on the mathematical properties of AGWP 533 
could contribute to improve the method with a focus on climate change. 534 

If the goal of dynamic LCA is to compare systems, it is unnecessary to add temporal information to 535 
identical steps for both systems, since this would not change the conclusion of the comparison. With 536 
our case study, two productions routes of a reusable shopping bag were compared: from miscanthus 537 
or from wood residues. In order not to bias the comparison, the reusable bag utilisation and end-of-538 
life is kept identical between the two systems, i.e. same value of the LB parameter. Another goal 539 
could be to determine an optimal lifetime for the reusable bag and thus compare systems with 540 
different values of the LB parameter. In this case, to maintain the functional equivalence, additional 541 
bag production should be considered, i.e. 1 bag with LB=20 is equivalent to 1 bag with LB=0 produced 542 
each year for 20 years. 543 

6 CONCLUSIONS 544 

Temporalis proved to be an efficient tool for performing dynamic LCA. Two areas for improvement 545 
were identified: to deal with the loss of information due to the cut-off included in the graph-traversal 546 
algorithm and to propose more characterisation methods in order to perform a sensitivity analysis.  547 
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The ‘production of several units of the product or service each year over the entire lifespan of the 548 
system’ functional unit should be employed for evaluating the potential impact on climate change of 549 
the entire system relative to climate goals over a calendar-based timeline. To compare the obtained 550 
results to static LCA results, the 𝑇𝐻 should be defined, beginning with the last year of production. 551 
The temporally averaged functional unit (‘1 unit produced at 𝑡!’) should be employed for comparing 552 
systems that do not share the same temporal distribution of production and for building inventory 553 
data that could be reused as background inventory data in another LCA study.  554 

It is crucial for an LCA practitioner to be capable of pinpointing the flow which would benefit from 555 
being distributed over a timescale, so as to save time for improving a static inventory and performing 556 
sensitivity analyses. Further research on the mathematical properties of AGWP would help improve 557 
the method proposed by Collet et al. (2014) in order to construct a method for selecting the 558 
appropriate flow to be distributed over a timescale prior to a full dynamic LCIA, using only simplified 559 
temporal information from a given system.  560 
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