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J.A. Martínez-Casasnovas a 

a Research Group in AgroICT Precision Agriculture (GRAP), Universitat de Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, Catalonia E25198, Spain 
b ITAP, Univ. Montpellier, INRAE, Institut Agro, 2 Place Pierre Viala, Montpellier 34060, France 
c Serra Húnter Fellowship, Universitat de Lleida, Av. Alcalde Rovira Roure, 191, Catalonia E25198, Spain 
d Department of Horticulture, Botany and Gardening, Universitat de Lleida, Av. Alcalde Rovira Roure, 191, Catalonia E25198, Spain   

A R T I C L E  I N F O   

Keywords: 
Perennial crop 
Summer pruning 
Canopy monitoring 
Orchard management 
LAI 
Leafiness-LiDAR index 
Sentinel-2 
NDVI time series 
ECa 
Google Earth Engine (GEE) 
Spearman’s rank correlation 
S2cloudless 
Model-based clustering 
Mclust 
Potential management zones (PMZs) 
Precision horticulture 

A B S T R A C T   

The use of super-intensive orchards is a growing trend in fruit production. The present study aims to improve 
management of these cropping systems by focusing on how agronomic decisions impact orchard dynamics in the 
short to medium term and by providing a decision-support approach based on stable temporal patterns from 
previous seasons. A multitemporal study using remote sensing and LiDAR was conducted in a commercial 
almond orchard over four growing seasons (2019–2022) to determine the optimal timing of image acquisition for 
variable pre-harvest treatments. A model-based clustering (mclust) was applied to optimal Sentinel-2 NDVI maps 
and apparent soil electrical conductivity (ECa) data, interpolated to the pixel centroids of Sentinel-2 image grids, 
to delineate potential management zones (PMZs). The leafiness-LiDAR index (LLI), a leaf area index (LAI) esti
mator, was obtained as ground truth after summer pruning and before harvesting, showing a significant influence 
of fertigation and pruning on the LAI, with summer pruning particularly influencing orchard dynamics. The 
optimal time for NDVI mapping was found to be two months after summer pruning in productive years and two 
weeks after in unproductive years. The delineated PMZs were consistent across seasons and corresponded to 
significant LAI differences. This method could contribute to improving resource management and sustainability 
in super-intensive commercial orchards.   

1. Introduction 

The global fruit industry is moving towards new, more efficient and 
profitable high-density cropping systems (Maldera et al., 2021). 
Super-intensive systems, with over 1500–2500 trees ha− 1 or more, offer 
economic advantages such as increased mechanisation, improved har
vesting efficiency and early production compared to traditional rainfed 
orchards (Arquero and Jarvis-Shean., 2017). For this reason, the almond 
sector in Mediterranean countries has undergone a significant trans
formation in the last decade, displacing other crops with lower profit
ability (Casanova-Gascón et al., 2019). In Spain alone, irrigated almond 
orchards almost tripled between 2015 and 2020, from 52,990 ha in 
2015–139,399 ha in 2020, with exponential growth expected in the 

coming years (Mirás-Avalos et al., 2023). 
However, super-intensive systems present challenges such as 

planting and management costs, higher susceptibility to diseases and 
pests, and a potentially shorter orchard life (Arquero and Jarvis-Shean., 
2017). In addition, almond trees are highly sensitive to temperature 
variations (Rodríguez et al., 2018). The increased frequency of extreme 
climatic events in the Mediterranean region in recent years, such as hail 
or frost during late winter and early spring (Serrano-Notivoli et al., 
2022), can cause significant damage, leading to the loss of buds, flowers, 
nuts and, consequently, yield (Rodríguez et al., 2018). Given the recent 
emergence of these cropping systems, growers face uncertainties 
because of a number of unexplored factors. This poses a challenge to the 
economic sustainability of orchards, requiring adaptive management 
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strategies and a better understanding of the impact of agronomic de
cisions in the short and medium term (Casanova-Gascón et al., 2019). 

To address these uncertainties, canopy monitoring of super-intensive 
orchards is becoming increasingly important to ensure consistent quality 
and meet short- and medium-term production and sustainability targets 
(Arquero, Jarvis-Shean., 2017). The scientific literature has demon
strated the suitability of emerging technologies that rely heavily on 
sensors for orchard canopy monitoring (Zude-Sasse et al., 2021). Remote 
sensing, complementing ground-based sensors, has been widely used to 
monitor crop growth and estimate quality and yield from local to global 
scales (Sun et al., 2017; Barajas et al., 2020; Kasimati et al., 2021). 
High-resolution imagery acquired by unmanned aerial vehicles (UAVs) 
has proven effective in estimating biophysical and geometric parameters 
(Johansen et al., 2018; Torres-Sánchez et al., 2018; Caruso et al., 2019). 
LiDAR (Light Detection and Ranging) technology, particularly mobile 
terrestrial laser scanning (MTLS), has been used for diverse applications 
ranging from estimating the leaf area index (LAI, leaf area per unit 
ground area) to precision spraying and pruning (Zhang et al., 2020; Gu 
et al., 2021; Mahmud et al., 2021). 

However, most studies have focused on full canopy development 
stages rather than continuous canopy monitoring during and between 
seasons, which may be more appropriate to adapt management tasks to 
crop dynamics and characterise spatiotemporal variability in orchards 
(Vélez et al., 2022). The continuous estimation of LAI is crucial for 
super-intensive systems (Westling et al., 2021), and authors such as Fang 
et al. (2019) have highlighted the increasing demand for LAI validation 
studies and the need for continuous seasonal LAI measurements and 
time series validation. Traditionally, photosynthetically active radiation 
(PAR) measurements using ceptometers have been used in horticulture 
to estimate LAI. However, ceptometer-based measurements require 
direct sunlight and have limitations in diffuse light conditions (Pokovai 
and Fodor, 2019). For this reason, it is difficult to obtain PAR mea
surements in a continuous way, which compromises their use in a pre
cision horticulture context. 

Novel studies for continuous LAI estimation in orchards have 
emerged in recent years. These include the study by Gu et al. (2022), 
who used an MTLS to scan the canopy of an apple orchard and developed 
a leaf area detection model, achieving a prediction accuracy of 73.6 % 
compared to manual measurements of canopy leaf area. A new index for 
LAI estimation has also recently been introduced by Sandonís-Pozo et al. 
(2023) called the leafiness-LiDAR index (LLI), which combines 
LiDAR-derived 3D point cloud parameters such as tree row cross-section 
and canopy leafiness and can be used for multi-temporal monitoring of 
orchard canopies. In almonds, LAI information is also useful to avoid 
imbalances between leaf and fruit N pools, especially at the beginning of 
production, a period when canopy vegetation can reach very high 
growth rates (Zarate-Valdez et al., 2015). Previous research has shown 
that the LAI has strong correlations with satellite-based vegetation 
indices such as the normalized difference vegetation index (NDVI), 
which serves as a comprehensive data source summarising the effects of 
environmental factors and management practices on the canopy 
(Johnson et al., 2003; Zarate-Valdez et al., 2012; Sun et al., 2017). 

In recent years, the emergence of satellite missions such as Sentinel- 
2, which provide free imagery characterised by high spatial, temporal 
and spectral resolution, and of platforms such as Google Earth Engine for 
the processing of large image time series has encouraged the develop
ment of a large number of scientific studies on crop dynamics, spatio- 
temporal monitoring and responses to irrigation and soil management 
practices (Calera et al., 2017; Bellvert et al., 2021; González-Gómez 
et al., 2022). The use of time series of NDVI maps together with other 
data sources such as soil surveys, agronomic management information, 
yield maps, topography and apparent soil electrical conductivity (ECa) 
has been highlighted in the scientific literature as a requirement for 
identifying stable crop patterns and defining management zones in 
precision agriculture (Vélez et al., 2022; Ouazaa et al., 2022). 

In the precision agriculture literature, unsupervised clustering 

techniques such as fuzzy c-means and k-means have been widely used 
for mapping management zones for yield prediction and variable rate 
irrigation (Martínez-Casasnovas et al., 2018; Serrano et al., 2020). 
However, the increasing heterogeneity and volume of data in precision 
agriculture is a challenge for these methods, especially when dealing 
with high-density data files with multiple variables (Saifuzzaman et al., 
2019). Research on finite Gaussian mixture models (GMMs) has shown 
promise for clustering multivariate continuous data in remote sensing 
image classification (Lagrange et al., 2017; Guan et al., 2023) as well as 
for automated management zone delineation for fertiliser optimization, 
yield prediction, and plant oil quality assessment (Lim et al., 2020; Jiwei 
et al., 2021). 

Despite the potential of these models for delineating PMZs, research 
on their application in super-intensive systems is limited. In perennial 
crops such as almonds, the identification of stable management zones 
over multiple seasons could provide valuable information as a decision- 
support tool for managing operations based on previous seasons. This 
study aims to fill this gap by investigating the impact of management 
practices on orchard dynamics and identifying temporal patterns using a 
model clustering approach to define stable PMZs. In addition, the study 
aims to determine the optimal timing of image acquisition for the 
planning of different management actions in the orchard. This timing is 
crucial from a practical point of view as it allows the maximum time 
before harvest for image analysis and for making and implementing 
management decisions. The study also aims to improve the under
standing of the relationship over time between the NDVI and other well- 
understood parameters such as the LAI. 

The methodology developed in this research is compatible with 
commercial orchard conditions and could lead to more effective 
resource management and improved sustainability in super-intensive 
almond orchards. 

2. Material and methods 

2.1. Study area 

The study was carried out in a commercial super-intensive almond 
orchard Prunus dulcis (Mill.) d.A. Webb, cv Lauranne®, located in 
Raimat (Catalonia, NE Spain, X = 288260 m, Y = 4616100 m, Z = 282 m 
UTM 31 T/ETRS89). The experiment covered an area of approximately 
0.75 ha and 24 tree rows. These 24 rows were selected to avoid the 
border effect. The orchard was established during the 2016/17 winter 
with a plantation pattern of 3.2 m x 1.5 m (2083 trees ha− 1). The climate 
is Mediterranean with continental characteristics, strong seasonal tem
perature variations and an annual rainfall frequently below 400 mm. 
Meteorological data was collected from an automatic station located 
1.8 km from the orchard (X = 287654.66 m, Y = 4617757.24 m, Z =
286.4 m UTM 31 T/ETRS89). The soil type was classified as a Petrocalcic 
Calcixerept (Soil Survey Staff, 2014). This type of soil is characterized by 
the presence of a petrocalcic horizon at variable depths that contains 
high concentrations of calcium carbonate (CaCO3). The depth of this 
horizon ranges from 50 cm to 80 cm. The soil exhibited good drainage 
and was not affected by salinity. 

2.2. Management tasks in the orchard 

The present study comprised four years: 2019, 2020, 2021 and 2022.  
Table 1 presents the orchard management tasks applied in the orchard 
during those years and the dates when certain tasks were carried out. 
The orchard was mechanically pruned with a cutting disk machine in 
winter to create a hedgerow with a central axis ensuring a fine and low 
visor branching and also in late spring to early summer to maintain an 
efficient and active exposed leaf area in order to have the maximum 
productive potential and to facilitate the work of harvesting machines. 
The number of pruning interventions was different across the years. 
2019 was the first productive year of the plantation and the period in 
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which more interventions were registered. Inter-row weeds were 
removed every season before the summer pruning through strimmer 
passes. Table 1 shows that 2021 and 2022 were unproductive seasons as 
they were affected by bloom-time frost, resulting in a complete loss of 
yield in both years. 

The orchard was drip irrigated receiving a variable volume of water 
depending on the year (Table 2). The application of nutrients was car
ried out using 3 electromagnetic injector pumps with an adjustable flow 
rate between 0.5 L h− 1 and 9.0 L h− 1 (Dositec MP, ITC Dosing Pumps, 
Barcelona, Spain). The dose rates applied in each season are shown in 
Table 2. Fertilizer was injected in each irrigation cycle, adjusting the 
injector pumps to the flow rate and proportion necessary to dose the 
fertilizer according to the requirements of the crop in each season based 
on foliar and soil analyses, yields obtained in previous years and field 
observations. 

2.3. Methodological approach 

Fig. 2 shows a summary of the methodological approach which is 
described in detail in the following sections. LiDAR data and Sentinel-2 
NDVI time series were acquired and analyzed over four consecutive 
seasons (2019–2022). Subsequently, the leafiness-LiDAR index (LLI), an 
estimator of the LAI obtained from LiDAR 3D point clouds was computed 
and interpolated after summer pruning and before harvest each season. 
Apparent soil electrical conductivity (ECa), a proxy for soil variability, 
was also considered as a data source. 

To identify the optimal NDVI date(s) for managing pre-harvest crop 
treatments, a series of Spearman’s rank correlation coefficients (rs), 
which measure the strength and direction of association between two 
maps, were calculated between each NDVI and the final LLI maps. The 

delineation of PMZs was performed using a model-based clustering 
approach. The clustering model combined the first Sentinel-2 NDVI 
maps identified within a stable threshold (Trs = 0.60) together with the 
ECa to find common vegetation distribution patterns and guide man
agement practices in subsequent years. The variables used in the model 
are represented in yellow in the flow chart (Fig. 2). The PMZs were 
validated with the LLI values measured a few days before harvest for 
each year using an ANOVA post hoc test (p-value ≤ 0.01). This valida
tion process is represented in green in Fig. 2. 

2.4. Data sources 

2.4.1. LiDAR data acquisition, point cloud generation and data extraction 
A total of 24 tree rows (84 m long) were scanned during four seasons 

using an MTLS equipped with VLP-16 LiDAR sensors (Velodyne Lidar 
Inc., Silicon Valley, USA), but using different platforms. For the first 
season, the VLP-16 sensor was mounted on a self-propelled mobile 
platform at a constant speed of 2 km h− 1. The 3D point clouds were 
georeferenced using a Leica GPS 1200 GNSS-RTK system (Leica, Wet
zlar, Germany) (Fig. 3, left). For the following seasons, 2020, 2021 and 
2022, the MTLS was a commercial bMS3D–4CAM backpack system 
(Viametris, Louverné, France), which incorporates two LiDAR VLP-16 
sensors (Velodyne, San Jose, CA, USA), a multi-constellation GNSS 
receiver, an inertial measurement unit and 4 RGB cameras. This MTLS 
was transported by a person traveling on an electric all-terrain vehicle 
(eATV) with a scanning speed of about 10 km h− 1 (Fig. 3, right). 

The scans were performed at two important stages for orchard 
management: after summer pruning (June) and before harvesting 
(September) (Table 1). Subsequently, eight 3D point clouds of the plot 
were created and processed by means of self-developed algorithms 

Table 1 
Orchard management tasks and LiDAR surveys in the super-intensive almond orchard along the study years. DOY = Day Of the Year, starting from 1st January. SP = for 
summer pruning.  

Productive seasons Unproductive seasons 

2019 2020 2021 2022 

Date DOY Management 
task 

Date DOY Management 
task 

Date DOY Management task Date DOY Management 
task 

09/02/ 
2019 

40 1st pruning 13/02/ 
2020 

44 1st pruning 10/02/ 
2021 

41 Weeding 11/02/ 
2022 

42 1st pruning 

06/03/ 
2019 

65 2nd pruning 09/04/ 
2020 

100 2nd pruning 06/04/ 
2021 

96 1st pruning 23/05/ 
2022 

143 2nd pruning 

02/05/ 
2019 

122 3rd pruning - - - - - - - - - 

17/06/ 
2019 

168 Weeding 05/05/ 
2020 

126 Weeding 15/05/ 
2021 

135 Weeding 29/06/ 
2022 

180 Weeding 

19/06/ 
2019 

170 SP(4th) 04/06/ 
2020 

156 SP (3rd) 07/06/ 
2021 

158 SP (2nd) 06/07/ 
2022 

187 SP (3rd) 

22/06/ 
2019 

173 LiDAR 06/06/ 
2020 

158 LiDAR 11/06/ 
2021 

162 LiDAR 07/07/ 
2022 

188 LiDAR 

23/07/ 
2019 

204 5th pruning - - -       

20/09/ 
2019 

263 LiDAR 04/09/ 
2020 

248 LiDAR 17/09/ 
2021 

260 LiDAR 23/09/ 
2022 

266 LiDAR 

27/09/ 
2019 

270 Yield 
(2467 kg ha− 1) 

28/09/ 
2020 

272 Yield 
(3019 kg ha− 1) 

- - - - - - 

09/12/ 
2019 

343 Winter pruning 
(6th) 

03/12/ 
2020 

338 Winter pruning 
(4th) 

09/11/ 
2021 

313 Winter pruning 
(3rd) 

- - -  

Table 2 
Nutrient (NPK) inputs and mean temperature (T), accumulated precipitation and evapotranspiration (Eto) during the mid-season period (15th February to 30th 
September).  

Year Mean T (ºC) Precipitation (mm) Eto (mm) Irrigation (m3 ha− 1) N (kg ha− 1) P (kg ha− 1) K (kg ha− 1)  

2019  17.8  165.4  940.5  427  104.8  47.0  168.0  
2020  18.2  271.7  900.7  462  178.0  35.5  266.0  
2021  17.7  203.6  879.5  448  127.9  32.7  96.5  
2022  19.0  206.5  928.6  435  101.0  34.2  87.3  
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described in Llorens et al. (2019). By applying this code, geometric and 
structural parameters of the canopy were summarized every 0.5 m along 
each row as described in Sandonís-Pozo et al. (2022). 

2.4.2. Leafiness-LiDAR index (LLI) 
The LLI refers to the ability of the hedgerow to intercept light, being 

a LAI estimator. The LLI was obtained according to Eq. 1, as the com
bination of two parameters derived from the LiDAR point clouds pro
cessing: a) the cross-section (CS) (m2), defined as the area occupied by 
biomass in a plane perpendicular to the longitudinal axis of the row. The 
CS was calculated by multiplying the maximum width measured each 
0.5 m along the orchard rows (ROI-A) and each 0.1 m on the vertical 

plane (ROI-B); and b) canopy leafiness (L), the opposite of canopy 
porosity (Porosity-avg), which is related to light penetration. Porosity 
was calculated as the ratio between the average (left and right scan sides 
of the row) number of laser beams traversing the canopy with respect to 
all beams emitted in ROI-A by the LiDAR sensor, expressed as a per
centage as described in Sandonis-Pozo et al. (2022). 

LLI = L ∗ CS (1)  

where LLI is the leafiness-LiDAR index (m2), CS is the tree row cross- 
sectional area (m2) and L is leafiness (dimensionless). 

Fig. 4 offers a graphical representation of the LAI estimation ob
tained with the LLI index. LLI values were calculated (Eq. 1) every 0.5 m 

Fig. 1. Location of the study area, almond orchard and tree rows where LiDAR data was acquired.  

Fig. 2. Flow chart of the methodological approach applied in the present research to identify the optimal NDVI date(s) for managing pre-harvest crop treatments and 
to delineate potential management zones (PMZs) based on multitemporal data, multispectral imagery and LiDAR data. 
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along the tree rows. In total, 4330 sampling points were distributed 
along the studied rows. These points were then krigged to the centroid 
Sentinel-2 grid to have the same spatial extent as the Sentinel-2 time 
series. For this study, only the LLI corresponding to September was 
mapped using the Precision Agricultural Tool plugin for QGIS 3.16 
(Ratcliff et al., 2020), following the methodology described in Sando
nís-Pozo et al. (2022). 

2.4.3. Time series of remote sensing data 
Sentinel-2 L2A images were selected and processed using Google 

Earth Engine (GEE). The images were used to build a full seasonal time 
series with a time step of 5 days. From the original Sentinel-2-pixel grid 
(TILE T31 TBG), a pixel selection was performed to select those con
taining a similar proportion of vegetation rows. All the multispectral 
images were clipped to this Sentinel-2 selected grid extension and the 

NDVI was computed as an average of all the pixels within the Sentinel-2 
selected grid boundaries. The period considered for the analysis was 
from 15th February to 30th September for the four seasons. Images 
containing clouds or shadows were removed from the database. For this 
purpose, the S2cloudless GEE algorithm was used. The S2cloudless is an 
automated cloud-detection algorithm for Sentinel-2 imagery (Skakun 
et al., 2022). Clouds were identified from the Sentinel-2 cloud proba
bility dataset (S2cloudless) and shadows were defined by cloud projec
tion intersection with low-reflectance near-infrared (NIR) pixels. 
Finally, for the considered period, 31, 25, 22 and 21 images corre
sponding to 2019, 2020, 2021 and 2022, were respectively selected and 
processed. 

2.4.4. Soil sampling and apparent electrical conductivity (ECa) 
An ECa survey was carried out on 23rd June 2019 with a Dualem 2 

Fig. 3. MTLS for LiDAR data acquisition: Left: system used in 2019. Right: system used in 2020, 2021 and 2022.  

Fig. 4. Graphical representation of the leafiness-LiDAR index. Left: photograph of hedgerow in a super-intensive almond orchard. Right: graphical representation of 
the LAI estimation obtained with the LLI index. ROI-A and ROI-B represent the different regions of interest used in the process of crop parameter extraction: along the 
horizontal plane of 0.5 m width along the rows (ROI-A) and along the vertical plane of 0.1 m (ROI-B). 
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sensor (Dualem Inc., Milton, ON, Canada) operated by Agrarium Tech
nologies (Monzón, Spain) and Greenfield Technologies (Badajoz, Spain). 
The Dualem sensor consists of a dual-geometry array that simulta
neously measures both electrical conductivity and magnetic suscepti
bility to two distinct and defined depths using electromagnetic 
induction. In the present case, the dual array was configured to work at 
0 cm to 30 cm (shallow ECa) and 0 cm to 90 cm (deep ECa) depths. Data 
was georeferenced using an AgGPS332 GPS receiver (Trimble, West
minster, CO, USA) with EGNOS (European Geostationary Navigation 
Overlay Service) augmentation to obtain differential global positioning 
system (DGPS) locations in geographic coordinates WGS84 (EPSG 
4326). ECa values were filtered, removing points with values outside the 
range average ± 2.5 standard deviations according to the criteria of 
Taylor et al. (2007). The final ECa dataset consisted of 1406 sampling 
locations with shallow and deep readings. The ECa dataset was krigged 
to the centroid Sentinel-2 grid to have the same spatial extent as the 
Sentinel-2 time series following the methodology explained in Section 
2.4.2. 

A soil texture map was also obtained on 5th July 2019. This texture 
map was developed after the shallow and deep ECa data acquisition. The 
ECa values were interpolated by kriging on a 1 m grid and the values 
were then divided into zones to identify potential areas for sampling. 
After this variability analysis, a simple soil sampling was carried out in 8 
different points within the plot. Samples were collected with the aid of a 
manual auger hole at two depths (0–30, 30–90) measuring pH, water 
retention and infiltration rate. The percentages of clay, silt and sand 
were also determined. Soil was classified as a categorical variable that 
describes the texture following the USDA classification (Soil Survey 
Staff, 2014). The predominant soil texture was silt loam and clay loam. 

2.5. Data analysis 

2.5.1. Intra- and inter-annual leafiness-LiDAR index (LLI) variability 
A comparison of the LLI values within and between years was per

formed using violin plots generated with the Seaborn and Matplotlib 
libraries in Python 3 (Waskom, 2021). Violin plots enable analysis of the 
variability of two datasets (Moon, 2016). These graphs combine the 
information obtained with kernel density plots (KDEs). The wider the 
plot section, the higher the variability, with the statistical information, 
such as the mean, median (Q2), and interquartile range (IQR), obtained 
from box plots. Two groups were considered for each year, with LLI 
summarizing the points obtained immediately after summer pruning (in 
June) and those acquired immediately before harvesting (in September). 

2.5.2. Sentinel-2 NDVI map selection (inter-annual stability): Spearman 
rank correlation coefficient 

To find the optimal image acquisition date(s) to compute the NDVI to 
be used as a reference to manage pre-harvest crop treatments, such as N 
treatments, precision pruning and/or spraying, a rank correlation 
analysis based on the Spearman rank method was applied between each 
LLI map computed a few days before harvest and the Sentinel-2 NDVI 
maps acquired during the mid-season along the four considered years. 

In the present study, the Spearman’s rank correlation coefficient (rs) 
measured the agreement in the correlation of pixels between the NDVI 
and the LLI pixel maps. This analysis is suitable for data that do not 
follow a specific distribution and assigns a coefficient to each pair of 
maps which ranges from − 1–1 (Rosenblad, 2011). A Spearman rank 
correlation coefficient close to ±1 indicates a strong monotonic rela
tionship, while 0 means there is no correlation between the variables. In 
this case, an arbitrary threshold for the Spearman rank (Trs = 0.6) was 
considered to define the date(s) from which the NDVI patterns could be 
considered stable and similar to that observed at harvest. This threshold 
value does not correspond to any agronomic indicator, but is considered 
here as a statistical threshold that corresponds to 80 % of the magnitude 
of variation of rs. 

2.5.3. Model-based clustering approach to delineate potential management 
zones (PMZs) 

A model-based clustering was applied to find representative distri
bution patterns over the years and guide management practices by 
delineating PMZs in the orchard. The model input data were: a) the first 
Sentinel-2 NDVI map per each year reaching a Trs = 0.6; b) the shallow 
ECa; and c) the deep ECa. All were considered important for field vari
ability. The clustering was conducted using the mclust package (version 
6.0.1.) implemented in Rstudio (Scrucca et al., 2023). This model-based 
approach is based on finite Gaussian mixture models (GMMs) and uses 
maximum likelihood to identify the optimal model fit. The best model is 
selected using the Bayesian information criterion (BIC). A higher BIC 
value indicates strong evidence in favour of the corresponding model. 
The contribution of the variables was determined using the clustvarsel 
package, employing a stepwise greedy search algorithm. To validate the 
delineated PMZs and assist in agronomic decision making, the LLI was 
used as ground truth. A post-hoc ANOVA test was applied to LLI to 
determine if this parameter was significantly different in the two 
delimited PMZs, meaning that differential management of the canopy 
could be applied to the orchard. 

3. Results 

3.1. Intra- and inter-year leafiness-LiDAR index (LLI) variability 

Fig. 5 shows a series of pictures of the almond orchard in June and 
September over the years of the experiment. The LLI values for each 
moment are presented, as well as their intra-annual variation. As 
explained in the previous section, LLI was considered as an LAI estimator 
(see 2.4.2). According to these results, the LAI estimated values were 
higher in September than in June in the first three seasons, with in
creases of 1.08 m2, 1.00 m2 and 0.40 m2 in 2019, 2020 and 2021, 
respectively, and a decrease of 0.37 m2 in 2022. 

Fig. 6 presents four violin plots that compare the LLI values within 
and between years (2019–2022). The plots on the left show the LLI 
values after summer pruning (June), while those on the right show the 
values before harvest (September). LLI values were higher for the first 
two years (2019 and 2020), with 2020 the year in which the highest LLI 
values were found. 

Differences were found when comparing the data distribution pat
terns across the four years. LLI values were more variable (wider KDE 
and higher IQR ranges) in 2019 and 2020 than in 2021 and 2022. 
Regarding intra-annual variability, except for 2022, LLI showed higher 
variability and higher values at the end of the season, before harvesting. 

3.2. Intra- and inter-annual stability of NDVI within-field patterns 

Fig. 7 shows the Sentinel-2 NDVI time series computed at plot level 
as an average of all the pixels within the study area boundaries. The 
evolution of the Spearman’s rank correlation coefficient (rs) is also 
presented. The rs values were calculated between each NDVI pixel value 
and the corresponding LLI value measured a few days before harvesting 
in each year. The management practices carried out in the orchard 
(Table 1) are represented with vertical lines, indicating the day 
(expressed as DOY) on which a particular operation was completed. 

These graphs show that the NDVI was stable over the season. NDVI 
values before summer pruning ranged from 0.4 to 0.8. However, both 
NDVI and rs values changed their trend before and after summer prun
ing. After summer pruning, NDVI values were more stable (around 0.6) 
and became less variable. The rs values were higher at the end of the 
season and tended to increase after each pruning. The selected Sentinel- 
2 NDVI maps are shown in Fig. 7 with a red asterisk and correspond to 
DOY 221, 211, 165 and 195 from 2019 to 2022, respectively. These 
images were the first to have Trs = 0.60 in the season, and so are 
considered to present similar spatial patterns to those of the LLI map 
prior to harvest. 
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These images correspond to 54 and 55 days (about two months) after 
summer pruning for the productive seasons (2019 and 2020, respec
tively) and up to two weeks for the unproductive seasons (2021 and 
2022, respectively). 2019 presented the highest number of pruning in
terventions and had the highest variability after summer pruning. It was 
observed that when NDVI increased, the rs tended to decrease. 

Weeding was carried out before summer pruning to facilitate sub
sequent management. In the case of 2019, it was not possible to discern 

the effect of pruning compared to weeding as both were carried out 
almost simultaneously. However, for the other years this effect could be 
seen both in the decrease of the NDVI values and in the increase of rs. 

3.3. Model-based clustering approach to delineate potential management 
zones (PMZs) 

After applying the model-based clustering (mclust), three models 
were found to be the best performing models. All of them indicated that 
two PMZs were optimal (Fig. 8, left). However, the model with the best 
performance was the EEV model (higher BIC: − 881.03). After the 
application of the clustvarsel algorithm, all variables, including Sentinel- 
2 NDVI maps and shallow and deep ECa, were included as significant. 
This model was built with the six variables that are shown in Fig. 8 (top). 
In the ECa maps, the soil texture map was also presented. Of the total 
variability, 60.2 % was explained by the EEV model, determining that 
the delimited clusters had an ellipsoidal distribution, equal volume and 
equal shape. The two clusters that defined the PMZs had an equal 
number of pixels (n= 27). The PMZ spatial distribution is shown in Fig. 8 
(right). The model PMZ delineation was validated using post hoc 
ANOVA tests with the LLI values obtained at the end of each season 
(Table 3). The EEV model found a consistent PMZ delineation that was 
significant for all years, regardless of whether the year was productive or 
unproductive. Furthermore, this PMZ delineation corresponded to sig
nificant differences in LLI values (Table 3). Cluster 1, associated with 
clay loam, exhibited the highest LLI, NDVI, and shallow ECa values, 
while Cluster 2, linked with silt loam, showed higher deep ECa values. 

4. Discussion 

The response of almond trees to different management practices has 
been analysed in the scientific literature by different authors using 
physiological and morphological determinations to estimate, among 
other parameters, the water status of trees and their vegetative growth 

Fig. 5. Photos and LLI values in the super-intensive almond orchard during the study years estimated in June (after pruning) and in September (before harvesting).  

Fig. 6. Leafiness LiDAR index (LLI) intra- and inter-annual variability observed 
across the analysed years. Left halves of the violin plots represent values after 
summer pruning (June) while the right halves represent the values before 
harvesting (September). The black dots indicate the mean value. The solid 
horizontal lines indicate the median value. Upper and lower dashed lines 
indicate the 75th and 25th quantiles, respectively. 
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(Egea et al., 2013; Bellvert et al., 2021). The present study aims to take a 
further step in the management of super-intensive orchards by assessing 
the effects of agronomic practices on orchard dynamics and by deter
mining the best moment in the growing season to delineate stable PMZs. 
To this end, a multitemporal decision-making approach using remote 
and proximal sensing was applied in a super-intensive almond orchard. 

In this research, the LLI, developed by Sandonis-Pozo et al. (2023), 
was computed at critical stages in orchard management: immediately 
after summer pruning and just before harvest across four consecutive 
growing seasons (2019–2022). Figs. 5 and 6 show that LLI values, and 
therefore, canopy LAI varied significantly between productive and un
productive years. More specifically, LLI values were higher and more 
variable in 2019 and 2020 compared to 2021 and 2022. These variations 
in LAI estimates can be attributed to different management practices 
shown in Tables 1 and 2. In response to commercial considerations and 
frost-related yield losses, reduced fertigation rates were implemented in 
the latter two seasons, particularly notable in 2022. This reduction in 
water and nutrient application led to stress conditions and increased leaf 
drop, resulting in lower LAI estimates observed in September 2022 
compared to June 2022, as shown in Fig. 5. 

The results of the study show that, except for 2022, LLI values were 

higher and more variable towards the end of the season. This trend was 
expected as early season LLI measurements were consistently taken 
immediately after summer pruning and inter-row weed removal. How
ever, variations in mean, median, and quantile values of LLI observed in 
June suggest inconsistencies in pruning practices. These variations could 
be due to differences in pruning intensity or timing which affect the 
geometric and structural parameters of the orchard hedgerows and 
subsequently LAI estimation. Such variability in pruning practices 
affecting orchard management outcomes is a well-documented issue. 
For example, Martín-Gorriz et al. (2021) studied lemon orchards and 
highlighted the challenges of quantifying wood removal in mechanical 
pruning. Similarly, Jiménez-Brenes et al. (2017) used UAV technology 
and advanced object-based image analysis (OBIA) to monitor olive trees 
and found that pruning type and severity significantly influenced leaf 
drop and annual canopy growth patterns. 

The study at hand also presents a methodology based on Sentinel-2 
NDVI time series to improve orchard management. This methodology 
was applied to find an optimal NDVI date(s) that could be used as a 
reference for possible pre-harvest crop treatments, such as N treatments, 
precision pruning and/or spraying. It can be concluded from Fig. 7 that 
the NDVI presented low intra-season variability. These findings agree 

Fig. 7. Evolution of Spearman’s rank correlation between LLI measured a few days before harvest and NDVI measured during the mid-season period over the four 
considered years (2019, 2020, 2021 and 2022). Letters P and W in the graph correspond to pruning and weeding, respectively. Trs = 0.60 is represented by the 
dashed red line. The selected Sentinel-2 images are indicated with a red asterisk. DOY is the continuous count of days from the 1st of January. 
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with the results published by Morell-Monzó et al. (2023), who estab
lished that perennial crops have low spectral variation during the year. 
Fig. 7 shows that, comparing the NDVI behaviour during the four years 
irrespective of whether the season was productive or unproductive, 
some orchard dynamics were similar, especially after and before sum
mer pruning. 

Before weeding and summer pruning, NDVI values typically peaked 
during the season, particularly around April-May. During this period, 
Spearman’s rank correlations (rs) showed greater variability and lower 
correlations between Sentinel-2 NDVI and end-of-season LLI maps. This 
variability can be attributed to higher vegetation growth rates in spring 
and the presence of inter-row weeds. Fig. 5 shows that the presence of 
inter-row weeds was significantly higher in 2020, coinciding with the 
year of highest recorded rainfall (Table 2), suggesting that the presence 
of weeds may have influenced the increased NDVI values. This may 
compromise the potential effective use of remote sensing imagery in 
almond orchards. These findings are consistent with the recommenda
tions of Arquero and Jarvis-Shean. (2017), who considered that having 
associated crops (or ‘inter-crops’) between tree rows, such as annual 
herbaceous crops, is not recommendable as they could delay the onset of 
production and complicate orchard management. Therefore, this study 

recommends that almond remote sensing should be carried out after row 
weeding removal is completed in order to mitigate these problems. 

After summer pruning, the NDVI became more homogeneous. The rs 
values were also higher and more stable in all seasons, reaching the Trs 
(0.60) about two months after summer pruning in productive years but 
only two weeks after summer pruning in unproductive years. The 
greater stability of the Spearman coefficient after summer pruning may 
be due to two factors. Firstly, weeding took place just before summer 
pruning, making the NDVI more homogeneous, and secondly, as a 
consequence of N competition between the functional pool of N allo
cated to vegetation development and that allocated to fruiting (Zar
ate-Valdez et al., 2015). Fig. 7 shows that a single image per season 
could be sufficient to indicate the canopy characteristics of an orchard 
until harvest and the resulting spatial patterns. However, this study 
highlights the importance of knowing the date of the beginning of the 
stabilization of rs values, as the timing differed when comparing pro
ductive and unproductive seasons. 

Although almonds are a perennial crop typically associated with 
stability over time (Kazmierski et al., 2011), this study revealed signif
icant inter-seasonal variability (Fig. 7). This variability can be attributed 
to several factors, including inherent factors such as soil and weather 
conditions as well as human-induced factors such as management 
practices. Previous research, such as that by Tombesi et al. (2011), has 
shown that critical processes in almond growth, such as flowering, fruit 
set and yield, are influenced by annual variations in canopy manage
ment and environmental conditions. In the first productive season 
(2019), canopy vegetation imbalances and natural growth were higher, 
leading to increased pruning interventions. However, despite more 
frequent pruning, it did not result in the highest production. These 

Fig. 8. Variable selection for the model. In the ECa maps, A and B correspond to clay loam and silt loam, respectively (top). mclust best models and optimal clusters 
(left). Spatial distribution of PMZs (right): Clusters 1 and 2. EEV: ellipsoidal, equal volume and equal shape; VEV: ellipsoidal, equal shape; EVV: ellipsoidal, equal 
volume. Projection and zone and datum (UTM 31 T/ETRS89). 

Table 3 
LLI values per zone and Student’s t-test for the EEV model.  

PMZ LLI 2019 LLI 2020 LLI 2021 LLI 2022 

1  3.39  3.38  2.39  1.92 
2  3.23  3.26  2.29  1.77 
p-value  0.0013  0.0028  0.0051  0.0001  
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findings are in line with those of Dias et al. (2022), who suggested that 
the intensity and frequency of pruning interventions could have a 
negative impact on yield if not appropriately spaced. 

Another question that this study sought to assess was whether, 
despite the inter-seasonal variability, there were some PMZs with stable 
patterns over time. Although cluster analysis is the most commonly used 
and recommended method for cluster delineation in precision agricul
ture (Taylor et al., 2007; Martínez-Casasnovas et al., 2018), to the best of 
the authors’ knowledge, there is still no accepted protocol or guidelines 
for establishing PMZs in orchards, and different methodologies are 
available. Most of the studies found in the scientific literature have 
established management zones by considering a single image or a time 
series (Rivera et al., 2022). The accumulated NDVI has also been shown 
to be a good predictor of yield in orchards (Martínez-Casasnovas et al., 
2018). However, in light of the results obtained in this research, there 
are several factors involved in orchard variability, such as soil charac
teristics or canopy management, which should be considered when 
delineating PMZs. 

The mclust algorithm used in this study has been recognized for its 
ability to handle high-density data files with multiple variables (Scrucca 
et al., 2023). Furthermore, it removes uncertainty in the determination 
of PMZ delineation, which is often subjective in precision agriculture, by 
providing a robust method for grouping data within a statistical 
modelling framework. This algorithm improves PMZ determination by 
providing an objective approach to spatially organising orchard vari
ability through data-driven clustering techniques. Recent studies have 
demonstrated the utility of this algorithm for clustering spatio-temporal 
data (Cheam et al., 2017; Mouret et al., 2021). In this study, the EEV 
model found a consistent PMZ delineation that was significant for all 
years, regardless of whether the year was productive or unproductive 
(Table 3). Furthermore, this PMZ delineation corresponded to signifi
cant differences in LLI values. Our findings are in line with those of 
Georgi et al. (2018), who used NDVI satellite data to delineate cropping 
patterns as relative yield expectation zones, emphasizing the influence 
of previous cropping conditions. 

Regarding the relationship between PMZs and soil properties, Cluster 
1 was associated with clay loam. This zone showed higher vegetative 
vigour and shallow ECa values, whereas Cluster 2, associated with silt 
loam, showed higher deep ECa values. These results are consistent with 
previous studies. Hubbard et al. (2021) observed a similar relationship 
between higher soil clay content and higher NDVI values in vineyards. 
The authors linked the benefits of finer textured soils to increased water 
retention capacity, resulting in increased vegetative vigour. Uribeetxe
barria et al. (2018) conducted a study in an area similar to that of the 
present study, characterised by the presence of a petrocalcic horizon at 
variable depths. They found that the abundant presence of carbonate 
content in the subsoil had a clear effect on increasing ECa at depth. 

5. Conclusions 

This paper presents a method that provides valuable decision- 
support information for orchard management based on orchard dy
namics and stable temporal patterns from previous seasons. 

Variability in LAI estimates across seasons was attributed to different 
management decisions, such as varying fertigation inputs and pruning 
practices. Orchard dynamics were notably influenced by the intensity 
and timing of management practices, particularly summer pruning and 
weeding. After the summer pruning and in the absence of inter-row 
weeds, NDVI was a good indicator of the spatial organization of LAI. 
The model-based clustering approach proved effective in delineating 
potential management zones (PMZs), that remained consistent across 
productive and unproductive seasons. These PMZs correlated with sig
nificant differences in LAI estimates, suggesting their utility as a 
framework for implementing effective site-specific management prac
tices in future seasons. 

This methodology can potentially be adapted for use in other 

orchards with similar training systems and 3D architecture, such as 
super-intensive olive trees, extending its applicability to various 
perennial crops. 
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González-Gómez, L., Intrigliolo, D.S., Rubio-Asensio, J.S., Buesa, I., Ramírez-Cuesta, J. 
M., 2022. Assessing almond response to irrigation and soil management practices 
using vegetation indexes time-series and plant water status measurements. Agric., 
Ecosyst. Environ. 339, 108124 https://doi.org/10.1016/j.agee.2022.108124. 

Gu, C., Zhai, C., Wang, X., Wang, S., 2021. CMPC: an innovative lidar-based method to 
estimate tree canopy meshing-profile volumes for orchard target-oriented spray. 
Sensors 21 (12), 4252. https://doi.org/10.3390/S21124252. 

Gu, C., Zhao, C., Zou, W., Yang, S., Dou, H., Zhai, C., 2022. Innovative leaf area detection 
models for orchard tree thick canopy based on LiDAR point cloud data. Agriculture 
12 (8). https://doi.org/10.3390/agriculture12081241. 

Guan, H., Huang, J., Li, L., Li, X., Miao, S., Su, W., Ma, Y., Niu, Q., Huang, H., 2023. 
Improved Gaussian mixture model to map the flooded crops of VV and VH 
polarization data. Remote Sens. Environ. 295 (6)) https://doi.org/10.1016/j. 
rse.2023.113714. 

Hubbard, S.S., Schmutz, M., Balde, A., Falco, N., Peruzzo, L., Dafflon, B., Léger, E., 
Wu, Y., 2021. Estimation of soil classes and their relationship to grapevine vigour in 
a Bordeaux vineyard: advancing the practical joint use of electromagnetic induction 
(EMI) and NDVI datasets for precision viticulture. Precis. Agric. 22 (4), 1353–1376. 
https://doi.org/10.1007/s11119-021-09788-w. 
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Martínez-Casasnovas, J.A., Escolà, A., Arnó, J., 2018. Use of farmer knowledge in the 
delineation of potential management zones in precision agriculture: a case study in 
maize (Zea mays L.). Agriculture 8 (6), 84. https://doi.org/10.3390/ 
agriculture8060084. 

Martín-Gorriz, B., Martinez-Barba, C., Torregrosa, A., 2021. Lemon trees response to 
different long-term mechanical and manual pruning practices. Sci. Hortic. 275, 1–8. 
https://doi.org/10.1016/j.scienta.2020.109700. 

Mirás-Avalos, J.M., Gonzalez-Dugo, V., García-Tejero, I.F., López-Urrea, R., 
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