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Rogério de S. Nóia-Júnior a,b, Pierre Martre b, Jean-Charles Deswarte c, Jean-Pierre Cohan d,
Marijn Van der Velde e, Heidi Webber f,g, Frank Ewert f,h, Alex C. Ruane i, Tamara Ben-Ari j,
Senthold Asseng a,*

a Technical University of Munich, School of Life Sciences, Department of Life Science Engineering, Chair of Digital Agriculture, HEF World Agricultural Systems Center,
Freising, Germany
b LEPSE, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
c ARVALIS, Villiers-le-Bâcle, France
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A B S T R A C T

Context or problem: In recent decades, compounding weather extremes and plant diseases have increased wheat
yield variability in France, the largest wheat producer in the European Union.
Objective or research question: How these extremes might affect future wheat production remains unclear.
Methods: Based on department level wheat yields, disease, and climate indices from 1980 to 2019 in France, we
combined an existing disease model with machine learning algorithms to estimate future grain yields.
Results: This approach explains about 59% of historical yield variability. Projections from five CMIP6 climate
models suggest that extreme low wheat yields, which used to occur once every 20 years, could occur every
decade by the end of this century, but elevated CO2 levels might lessen these events.
Conclusions: Heatwave-related yield losses are expected to double, while flooding-related yield losses will
potentially decline by one third, depending on the representative concentration pathway. Ear blight disease is
projected to contribute to 20% of the expected 400 kg ha-1 average yield losses by the end of the century,
compared with 12% in the historical baseline period. These projections depend on the timing of anthesis,
currently between late May and early June in most departments. Anthesis advancing to early May would shift
losses primarily to heavy rainfall and low solar radiation.
Implications or significance: French wheat production must adapt to these emerging threats, such as heat stress,
which until recently had little impact but may become the primary cause of future yield losses.

1. Introduction

In recent years, the world has witnessed increasing year-to-year
variability in wheat yields due to compounding factors such as climate
extremes and plant diseases (Bezner Kerr et al., 2022; Gaupp et al., 2020;
Liu et al., 2021; Schauberger et al., 2018). These factors pose a signifi-
cant challenge to global food security, as they can lead to more frequent
and severe wheat yield downturns worldwide (Nóia Júnior et al., 2021;
Trnka et al., 2014).

France, a major player in global wheat production, accounting for
10% of the world’s wheat exports (FAO stat, 2022), has also faced its
share of challenges. Historical climate events, such as the prolonged
heatwave in 2003 or the extremely wet and warm season of 2016, had
caused significant wheat production losses (Baruth et al., 2022; Ciais
et al., 2005; FAO stat, 2022; Nóia Júnior et al., 2023b).

Wheat yield variability in France is influenced by a multitude of
factors, including droughts, heatwaves, heavy rainfall, flooding, low
solar radiation, and plant diseases (van der Velde et al., 2020, 2012).
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These drivers impact wheat growth at various stages, but primarily
during anthesis and grain development and filling. While previous
studies have emphasized the significance of these factors, they are often
not fully integrated into climate change-related wheat yield projections
(Ben-Ari et al., 2018; Boote et al., 2013; Rötter et al., 2018).

While much research has focused on the impact of individual cli-
matic drivers like heatwaves and droughts on wheat production at Eu-
ropean scale or globally (Asseng et al., 2011; Battisti and Naylor, 2009;
Lobell et al., 2011; Webber et al., 2020, 2018). The role of crop diseases
in agricultural risk assessments has been comparatively overlooked. This
gap in research can lead to overly optimistic predictions, as it often
disregards the interactions between climate and disease risks (Nóia Jú-
nior et al., 2023a; Raymond et al., 2020).

Recent extreme weather events in France, such as in 2016, under-
score the importance of considering compound climate extremes and
crop diseases in agricultural risk assessments. In that year, France faced
an unprecedented sequence of events, including heavy rainfall, crop
diseases, low solar radiation, and anoxia, resulting in a 25% drop in
national wheat yield compared to the previous five-year average and
some departments within the breadbasket area experienced a dramatic
55% decline in wheat yields (Ben-Ari et al., 2018; Nóia Júnior et al.,
2023b). This extreme decline had severe economic consequences
(Simoes, 2022), underscoring the need for a more comprehensive un-
derstanding of the factors driving wheat yield variability.

This study aims to quantify the causes of historical wheat yield
failures in the breadbasket area of France, with a particular focus on the
combine effects of plant diseases and abiotic stresses, and analyze how
these drivers may impact future wheat production.

2. Material and methods

2.1. Sites, weather and wheat phenology and yield data

The breadbasket of France is a high wheat yielding area (average
wheat yield of 7.4 t ha− 1 from 2011 to 2020) with 2.8 million ha of
wheat, which extends over the northern part of the country and accounts
for around 70% of France’s total wheat production (Fig. 1a) (Ben-Ari
et al., 2018). This area is characterized by a temperate climate without
particularly dry and warm summers, classified as marine west coast
climate type Cfb, according to Köppen-Geiger climatic zone (Peel et al.,
2007).

We divided the breadbasket of France into five agroclimatic homo-
geneous areas based on year-to-year yield anomalies, following a

methodology previously employed by Nóia Júnior et al. (2021) (Fig. 1a).
Within each agroclimatic homogeneous area we chose specific weather
stations to represent the region. Some areas required two weather sta-
tions, while others only needed one, in accordance with the distribution
of research stations previously used by Nóia Júnior et al. (2023), which
aimed to represent the key agricultural regions in France. Supplemen-
tary Table S1 provides the geographic coordinates for these weather
stations. Long-term daily weather data (1980–2019) encompassing daily
maximum and minimum temperatures, solar radiation, and rainfall
were sourced from each weather station.

Wheat yield data from 1980 to 2019 at the departmental (Nomen-
clature of Territorial Units for Statistics [NUTS] level 3) spatial scale
were collected from official survey data provided by the French Ministry
of Agriculture (Agreste, 2022). Yields in the breadbasket were aggre-
gated considering the harvested area of each agroclimatic homogeneous
areas. All yield data were corrected at 15 %moisture content. This value
may vary with cultivar, cropping season, or location. However, as spe-
cific moisture data for each case were unavailable, we adopted a fixed
value of 15 %, which is commonly used for wheat harvests
(Abdollahpour et al., 2020).

To calculate climate and disease indices during key phenological
phases (see below), we simulated the dates of the growth stages GS31
(ear at 1 cm; Zadoks growth scale) and anthesis (GS61) at the location of
the height weather stations for the period 1980–2019 using the crop
growth model CHN for a single wheat cultivar (Laberdesque et al., 2017,
Le Bris et al., 2016). The CHN is a process-based crop model developed
by Arvalis that simulates the daily soil-plant-atmosphere flows of carbon
(C), water (H), and nitrogen (N), hence the name CHN. It includes a
complete wheat phenology sub-model. This model has demonstrated
satisfactory accuracy in simulating wheat phenology within France’s
breadbasket area (Supplementary Figure S3). Hereafter the period of
anthesis was defined as ± 15 days around GS61, and the grain filling
period as the period between GS61 plus 45 days (assuming a grain filling
period of 45 days). For the future, we assumed a range of fixed dates for
anthesis and maturity to consider possible changes in these (see sub-
section 2.7). The overlap between anthesis ( ± 15 days around GS61)
and grain filling (GS61 to GS61 +45 days) reflects the physiological
processes influencing grain yield. The period primarily determining
grain number setting begins before anthesis and extends slightly beyond
GS61, while grain filling, which influences grain size, starts at GS61 and
continues until physiological maturity (Calderini et al., 2021; Reynolds
et al., 2022). This overlap captures the interactive phase where grain
number and size are simultaneously set, recognizing that grain yield is

Fig. 1. Spatio-temporal pattern of trend-corrected wheat yield in the breadbasket of France. (a) Spatial distribution of the highest department level wheat yield
observed from 1980 to 2019. The breadbasket area of France is delineated with a bold black contour line. Yellow dots indicate the eight locations studied. Inset map
shows the agroclimatic homogeneous departments used for estimations of wheat yield losses. (b) Boxplot of the distribution of trend-corrected wheat yields in the
breadbasket of France from 1980 to 2019. Low yielding anomalies in 2003 and 2016 are highlighted in dark red, which are in the 10th percentile of the historical
observed wheat yield from 1980 to 2019.
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the product of grain number per unit area and average grain size.

2.2. Extreme low yield and weather conditions analysis

To better understand the causes and spatial distribution of extreme
declines in wheat yield during certain years, such as 2003 and 2016
(Fig. 1b), we analyzed the weather conditions in the wheat breadbasket
during these low-yield seasons. This analysis, shown in results subsec-
tion 3.1, involved the assessment of long-term daily weather data
(1980–2019) to calculate seasonal anomalies in maximum temperature
and rainfall from May 1st to June 30th, a critical period encompassing
wheat anthesis and grain filling. The data, with a global grid resolution
of ½◦ x 5/8◦, was sourced from the Prediction Of Worldwide Energy
Resources (NASA POWER) dataset (Team, 2021). Weather anomaly is
calculated as the difference between the weather conditions of the
analyzed year (2003 or 2016) and the long-term average spanning from
1980 to 2019.

In subsection 2.5, we detail the construction of our statistical models,
which were developed using climatic indices as predictors for wheat
yield anomalies. These indices were calculated based on data from the
eight weather stations, covering a 40-year period, resulting in a dataset
of 320 unique combinations of specific sites and individual years.

The climatic indices for these eight weather stations were correlated
with yield anomalies (see subsection 2.3) at the departmental spatial
scale from 1980 to 2019. This means that the climatic indices from each
weather station were correlated with the wheat yield anomaly of the
department to which the weather station belonged. In cases where an
agroclimatic homogeneous area was represented by two weather sta-
tions in two different departments, estimates of yield anomaly and the
causes of yield losses were calculated separately for each weather sta-
tion, and the results were then averaged to represent the region.

2.3. Yield detrending and wheat yields relative anomaly

We removed long-term yield trends in each department indepen-
dently, to remove possible effects of technological improvements
throughout the studied period, as described in Guarin et al. (2020). To
remove the long-term trend, we estimated a linear slope through the
historical yield series from 1980 to 2019 to identify the average yield
increase per year, as suggested by Ben-Ari et al. (2018). Yield of each
year from 1980 to 2019 was adjusted to 2019 yield levels by adding the

slope for each year difference from 1980 until 2019. Yield anomalies
(Yanm) at the department level were then computed as the percent dif-
ference between observed yields (Yobs) and average yields (Yavg, average
of the trend-corrected yields) divided by Yavg:

Yanm(i, t) =
Yobs(i, t) − Yavg(t)

Yavg(t)
× 100 (1)

where i indicates the department and t, the harvest calendar year.

2.4. Extreme climate and plant diseases indices

Indices that drive yield loss were identified from the literature
(Ben-Ari et al., 2018; Nóia Júnior et al., 2023b; Nóia Júnior et al., 2023).
We computed diseases indices for ear blight and foliar fungal and
climate indices for heavy rainfall at anthesis and extreme drought, heat,
flooding, and low solar radiation for the anthesis and grain filling

periods. In total, we calculated 11 indices, being nine indices for
weather and two for crop diseases, all used as predictors in the statistical
models.

Thresholds were defined for each climate index based on probability
distribution for the baseline period of 1980–2021, considering the
height weather stations within the breadbasket area. For climate change
assessment, a baseline of 1980–2021 was used, while model construc-
tion used 1980–2019 due to department-level yield data availability
only up to 2019 at the time of model development. To compute drought
and flooding indices, we calculated a water balance as the sum of daily
rainfall (Rain) minus cumulative reference evapotranspiration (Eto,
from Hargreaves and Samani 1985) during each period (anthesis and
grain filling). Based on this water balance, we considered drought as the
number of days during anthesis (GS61) and grain filling (from GS61 to
grain maturity – fixed period of 45 days, GS61 + 45 days) with daily
accumulated (Rain – ETo)< -168 mm (or 20th percentile), and flooding,
as the number of days during anthesis and grain filling in which daily
accumulated (ETo - Rain) > 30 mm (or 10th percentile). This is a
method similar to the one used by Nóia Júnior et al. (2023b). Typically,
plants require high soil water saturation to experience severe negative
effects on yield (Liu et al., 2021), whereas even mild to moderate water
deficits can impact yield. Taking this into account, we defined drought
as the 20th percentile of daily accumulated (Rain – ETo), while flooding
was determined as the 90th percentile of daily accumulated (Rain – ETo)
(Alifu et al., 2022). We defined a heat index as the number of days with
maximum temperature above 30 ◦C (90th percentile) (Nuttall et al.,
2018), a low solar radiation index as the number of days with solar
radiation below 7 MJ m− 2 d− 1 (1th percentile) (Nóia Júnior et al.,
2023b), and an heavy rainfall index as the number of days with rainfall
above 17 mm (99th percentile) (Seneviratne et al., 2021).

The ear blight model predicts disease incidence, while the fungal
foliar disease model predicts disease severity. Both models are described
below. Severity assesses damage and visible symptoms on individual
plants, while incidence quantifies the proportion of affected plant or
field areas. Severity measures impact, while incidence detects the
presence of disease.

Ear blight or fusarium ear blight (Fusarium graminearum, Fusarium
culmorum), usually infects wheat plants during anthesis under warm and
humid conditions, and high rainfalls during anthesis. We computed an
ear blight index based on the empirical model of Madgwick et al. (2011),
which predicts the disease incidence, and is given by:

where TmeanMay (◦C) is the mean temperature in May and Rain-
fall1week-June (mm) is the cumulative rainfall during the anthesis period.

The survival of fall infection of winter wheat by fungal foliar diseases
such as Septoria blotch (Zymoseptoria tritici) is favored by warm tem-
peratures during the winter (Ben-Ari et al., 2018; Chaloner et al., 2019;
te Beest et al., 2009). The development of these foliar fungal diseases
then depends on wet environments, especially on rain in March and
April (El Jarroudi et al., 2016). As such, we computed a fungal foliar
diseases index based on a model previously developed by te Beest et al.
(2009), which predicts the disease severity and is given by:

Fungal foliar index= 0.046 Rain(GS31− 140) → (GS31− 30)

+0.042 Tmin(GS31− 140) → (GS31− 30) − 6.69>0
(3)

where, Rain(Gs31− 140) → (Gs31− 30) is the accumulated rainfall (mm) and
Tmin(Gs31− 140) → (Gs31− 30) is the mean daily minimum temperature (◦C)

Ear blight index = 100
exp(− 15.3 + 0.941 TmeanMay + 0.069 Rainfall1weekaroundanthesis)

1+ exp(− 15.3 + 0.941 TmeanMay + 0.069 Rainfall1weekaroundanthesis)
(2)
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between 140 and 30 day of the year before GS31 (GS31 was simulated
by CHN to quantify past wheat yield losses and kept fixed for assessing
future yield losses).

2.5. Modeling yield anomalies with random forest machine learning

A statistical model was developed for yield anomalies using depart-
ment level yield observations from 1980 to 2019, together with seasonal
climate indices of drought, heat, flooding, and low solar indices calcu-
lated around anthesis and during grain filling, as well as heavy rainfall
around anthesis and ear blight and foliar fungal diseases indices (as
described in the subsection 2.4). Observed yield anomalies were
multiplied by trend-corrected average yield from 1980 to 2019 and
converted to trend-corrected yield (described in subsection 2.3), which
was used to build the statistical model.

A random forest machine learning approach was applied to identify
the best combination of explanatory variables using the function
random Forest of the R package ‘randomForest’ (R Core Team, 2017).
Random forest was set with 500 trees, with three variables tried at each
split. The set up of Random Forest followed the sensitivity analyzes
which indicated where the quality of the predictions plateaued
(Supplementary Figure S2). To evaluate the predictive performance of
the trend-corrected yield model (henceforth called yield model), a
leave-one-out cross validation (LOOCV) was performed using the
random forest with seven of the eight locations to select the best com-
bination of inputs each year, and it was then tested on the excluded
location (Sweet et al., 2023). This process was repeated for each location
for a total of eight interactions. The relative root mean squared error of
prediction (rRMSEp) (Wallach and Goffinet, 1987), the coefficient of
determination (r2) and the Nash-Sutcliffe model efficiency coefficient
(NSE) (McCuen et al., 2006) were then calculated based on the esti-
mated trend-corrected yield (henceforth called estimated yield) at the
tested location together with the corresponding observed yield.

To account for the effects of increase in atmospheric CO2 concen-
tration in future climate scenarios (Supplementary Figure S13), we
incorporated the CO2 growth stimulus effect on simulated trend-
corrected yield, as described in Tebaldi and Lobell (2018)
(Supplementary Table S2). As the interaction of CO2 with certain
yield-reducing factors such as heat, flooding, and plant diseases remains
uncertain, we did not account for these interactions when calculating
future yield losses causes due to climate change.

2.6. Quantifying the impacts of individual yield limiting factors

To quantify the impacts of individual yield limiting factors, we used
the random forest equation trained as described above. First the equa-
tion was applied using all climate and plant diseases indices to calculate
yield in a target year in the period 1980–2019 (Supplementary
Figure S1). The random forest equation was then applied again by
modifying one explanatory variable (a climate or plant diseases index)
value at a time by replacing the target year value with the corresponding
value for each of 1980–2019 (Supplementary Figure S1). This step was
repeated, replacing the value of each climatic or disease index in turn.
Thus, the contribution of each yield limiting factor in each year of the
period from 1980 to 2019 was calculated as the difference between the
estimated trend-corrected yield from the models with all variables for a
target year, and the estimates from the statistical models with all vari-
ables of the target year except one from the average of each year from
1980–2019 (excluding the target year), as schematically shown in the
Supplementary Figure S1. This is similar to the method proposed by
Asseng et al. (2011) and used by Nóia Júnior et al. (2023b) for sepa-
rating the impacts of temperature from other factors on yield.

2.7. Climate change scenarios and extreme low yield definition

Daily weather data for the 1985–2100 period were drawn from the

Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP; (Lange,
2019)), which provides trend-preserving, bias-adjusted and spatially
disaggregated climate model outputs from the Coupled Model Inter-
comparison Project phase 6 (CMIP6; (Eyring et al., 2016)). Before 2015,
these are produced by climate models forced by historical trends of main
natural and anthropogenic factors. After 2015, simulations follow the
Shared Socioeconomic Pathway (SSP) and Representative Concentration
Pathway (RCP) (O’Neill et al., 2016). In this study we considered the
scenarios SSP1–2.6 and SSP5–8.5. The IPCC describe SSP1–2.6 as a
“low” and SSP5–8.5 as a “very high” greenhouse gas emissions scenario
(IPCC, 2021; O’Neill et al., 2020). We considered five CMIP6 models
(GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1–2-HR, MRI-ESM2–0 and
UKESM1–0-LL) that include high, medium and low climate sensitivity
models similar to the full CMIP6 distribution (IPCC, 2021) (Jägermeyr
et al., 2021), which we use to illustrate the bottom and upper tail of
future risks. We used daily weather data from the ISIMIP (Heinicke et al.,
2022) downscaled projections for the five selected models to quantify
future frequency of drought, heat, flooding and low solar radiation
occurrence both during anthesis (fixed on 1 June ± 15 days) and grain
filling (from 1 June to 31 July), as well as heavy rainfall during anthesis.
These indices together with the indices for ear blight and foliar fungal
diseases previously described in subsection 2.1, allow us to estimate
yield and its losses.

Current wheat cultivars are expected to have early anthesis and
shorter grain filling period due to higher temperatures in future. Asseng
et al. (2015) suggested a combination of delayed anthesis with increased
grain filling rate as an adaptation for wheat to increased temperature.
These traits could boost global wheat production by 7 % (Asseng et al.,
2019). In consideration of the uncertainties surrounding phenology,
such as potential shortening of phenological stages due to rising tem-
peratures and consequent shifts in growing degree day accumulation, or
the possibility of breeders developing cultivars with delayed anthesis
and increased grain-filling rates to maintain current phenological
timing, in our analysis, we considered a fixed future scenario where
anthesis occurs on June 1st with grain filling from June 1st to July 31st
(operating on the assumption of delayed anthesis matching current
conditions in France). To reduce uncertainties regarding the fixed
anthesis date, additional projection with anthesis fixed on 1st May ± 15
days and grain filling from 1 May to 15 June was performed.

Projections for extremely low yield frequency and future causes of
yield losses are shown as 30 years running mean (i.e. value shown for
2015 is the average from 1986 to 2015, and for 2016 the average from
1987 to 2016). Extreme low yield for the breadbasket of France was
estimated for each GCM separately and defined as below the 5th
percentile (Nóia Júnior et al., 2021; Vogel et al., 2021) yield during
1850–2020, a period when all climate scenarios were similar.

3. Results

3.1. Extreme low yield and weather conditions in the breadbasket of
France

In the breadbasket of France, winter wheat typically experiences a
10-month growing season, spanning from early October to late July.
Anthesis is commonly observed from mid-May to early June
(Supplementary Figure S3), while grain filling occurs during the months
of June and early July. Taking this into account, we analyzed the spatial
distribution of maximum temperatures, accumulated rainfall anomalies
during anthesis-grain filling period (from May 1st to June 31st), as well
as the yield anomalies for both the 2003 and 2016 cropping seasons in
France (Fig. 2).

The average maximum temperature during May and June of 2003
was about 2◦C higher than the historical period of 1980–2019 in the
breadbasket of France. In the central part of France, located outside the
breadbasket area, the maximum temperature was even higher—up to
5◦C above the average (Fig. 2a). From May to June in 2003, there was
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less rainfall than usual, up to 80 mm below average, in the central-
eastern part of France (Fig. 2b). Within the breadbasket, rainfall dur-
ing this period was near the average, with approximately 20 mm less in
the southern breadbasket area and an increase of up to 10 mm in other
parts compared to the historical average (1980–2019). This rainfall
variation within the French breadbasket represents less than 10 % of the
expected 120 mm of accumulated rainfall for the area between May and
June. In 2003, wheat yield was mainly 5–10 % lower than expected
within the breadbasket, while some areas in the northern part came
close to the expected yield (Fig. 2c). The most significant decreases in
yield were seen in areas located further south of France (outside the
breadbasket), where higher temperatures and lower rainfall led to de-
clines of up to 20 % compared to the historical average.

In 2016, the maximum temperature closely approached the average
for the months of May and June, exhibiting a deviation of 0.5–1 ◦C lower
than expected (Fig. 2d). Cumulative rainfall during the same period
exceeded historical averages by up to 80 mm, signifying an elevation of
66 % (or two-thirds; Fig. 2e). In the central area of France’s breadbasket,
area with a significant surplus of rainfall in 2016 compared to historical
average, yield exhibited a considerable decline of up to 50 % below the
historical average (Fig. 2f). In contrast, in the south of France (outside
the breadbasket), where the accumulated rainfall was slightly below
historical averages, a modest surplus in yield was observed, with specific
departments even attaining yields surpassing the historical average by as
much as 20 %.

3.2. Modeling yield in the breadbasket of France

During the training phase, we achieved satisfactory results with a r2

of 0.98 and a RMSE of 0.09 t ha− 1, indicating an error of around 1 %
(Fig. 3). Additionally, the NSE was calculated to be 0.97. The cross-
validation of the model gave an rRMSEp equals 0.48 t ha− 1, corre-
sponding to a 5 % error. The r2 was 0.59, while NSE remained at 0.48.
This cross-validation exercise underscored the model’s commendable
precision (r2 > 0.6), efficiency (NSE > 0), and low average error
(rRMSEp < 5 %). Notably, the model effectively captured the

remarkably low yield experienced in 2016.

3.3. Quantified causes of yield losses

Building upon the capabilities of the random-forest machine learning
model in evaluating yield and anomalies, our study undertook a
comprehensive analysis of the factors contributing to yield losses within
the breadbasket area over the period 1980–2019 (Fig. 4). Our findings
elucidate that the notable drop in wheat yield during the 2016 cropping
season stems from the combination of distinct factors. This encompasses
flooding incidences during grain filling, as well as low solar radiation
during anthesis, culminating together in an estimated 80 % reduction in
wheat yield (Supplementary Figure S12). Adding to this effect, heavy

Fig. 2. Weather anomalies during two extreme low yielding wheat cropping seasons in France. Spatial pattern of the observed anomaly of (a, d) average maximum
daily temperature and (b, e) accumulated rainfall during anthesis-grain filling (1st May to 31st June), and observed yield loss (c, f) for the 2003 and 2016 wheat
harvest year. The breadbasket of France is delineated with a black contour line.

Fig. 3. Estimated and observed trend corrected wheat yields in the breadbasket
of France. Year-to-year variability from 1980 to 2019 of observed (black solid
lines) and simulated yield during the training (green dashed lines) and cross-
validation (orange line) of the random forest machine learning approach for
wheat trend corrected yield. Estimated results are from a leave-on-out cross
validation, leaving all years from a location out of the training set with a
random forest machine learning approach. The root mean squared error
(RMSE), coefficient of determination (r2) and Nash-Sutcliffe modeling effi-
ciency (NSE) are shown.
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rainfall during anthesis results in an extra 15 % decrease. Also, ear blight
contributes to a 7 % reduction, while fungal foliar diseases lead to a 2 %
reduction. Together, these factors significantly contribute to the decline
in wheat yield in 2016. Our analysis of the 2003 wheat yield reduction
indicates that heat, drought, and plant diseases collectively caused a
two-thirds decline in yields.

On average, our results indicate that 32 % of yield losses in France
can be attributed to plant diseases (19 % Fungal foliar disease and 13 %
Ear blight), with an additional 23 % attributed to flooding, 17 % to
constrained solar radiation, 11 % to drought, and 8 % to intense rainfall
events. Notably, these proportions exhibit nuanced variations across
distinct sub-department within the encompassing span of France’s
breadbasket (Fig. 4b).

3.4. Future frequency of extremely low yield years

The future frequency of extremely low yield years shows evidence of
a trend towards a subtle increase. This trend involves moving from a
current 5 % frequency to around 9 % by the end of the century (Fig. 5a),
regardless of the climatic scenario (SSP5 2.6 or SSP5 8.5), and without
considering the potentially positive impacts of CO2.

When we take into account the potential influence of CO2 (Fig. 5b),
which could result in increased crop growth (Tebaldi and Lobell, 2018)
(Supplementary Figure S5), the results show a steep decrease in the
occurrence of extremely low yield events in the future. This suggests that
these events could cease to exist by the end of the century, regardless of
the climate scenario.

These results are calculated considering a fixed anthesis on 1st June,
which is currently the case. However, a similar frequency of extreme low
yield years is expected to occur if the anthesis date is brought forward to
May 1st (Supplementary Figure S8).

3.5. Future causes of yield losses in France’s breadbasket

Because of our current lack of knowledge on the interactions of CO2
with the yield reducing factors considered in this study (see the Dis-
cussion section), we did not consider the effect of CO2 on yield loss
causing factors. The factors contributing to yield losses in France’s
breadbasket are expected to change by 2100 (Fig. 6). In the SSP5–2.6
climate scenario, the projected causes of yield losses show fluctuations
from 2015 to 2100 (Fig. 6a). Heat and ear blight are projected to in-
crease significantly, causing losses of up to 70 kg ha− 1 year− 1 by the end
of the century. This is a 40 % compared to the current 50 kg ha− 1 per
year losses due to heat and ear blight. Heavy rainfall is projected to
cause a slight increase in yield loss, rising from the current average of
5.5 t ha− 1 year− 1 to 7 t ha− 1 year− 1. The negative impact on yield of low
solar radiation and fungal foliar diseases are projected to decrease by the
end of the century. Projected yield losses from flooding and drought
under the SSP5–2.6 climate scenario show no discernible trend
(Supplementary Figure S6).

In the SSP5–8.5 climate scenario, there are more noticeable shifts in

Fig. 4. Breakdown of causes of wheat yield losses in France’s breadbasket. (a)
Year-to-year yield losses causes and (b) spatial distribution of average yield
losses in France’s breadbasket. The yield losses are relative to the average of
estimated trend-corrected yield for 40 cropping seasons from 1980 to 2019 in
the breadbasket of France. In (b) the estimations are shown for the locations of
Égreville, Chevry-Cossigny, Saint-Quentin, Saint-Florent-sur-Cher, Fagnières,
Issodun, Barbarey-Saint-Sulpice, and Rots.

Fig. 5. Projected frequency of extreme low wheat yield years in the breadbasket of France. Estimated 30 years running mean frequency of extreme low production
under SSP5–2.6 (black trace) and SSP5–8.5 (red trace) from 1865 to 2085 for the breadbasket of France. The projections are shown (a) to indicate the impact of
elevated CO2 on yield shown without elevated CO2 and (b) with the effects of elevated CO2. Lines are ensemble means based on five CMIP6 GCMs (lines) and shading
shows ± 1 s.e. These projections consider a fixed anthesis on 1 June.
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the causes of yield losses (Fig. 6b). The losses caused by flooding during
grain filling are projected to decrease by the end of the century.
Currently leading to an average loss of about 120 kg ha− 1 year− 1, this
could drop to 90 kg ha-1 year− 1 by the end of the century. Under the
SSP5–8.5 climate scenario, yield losses due to heat are projected to
almost double by the end of the century (Supplementary Figure S7). The
average yield losses from heat during grain filling could increase from
50 kg ha− 1 year− 1 in the period 1098–2019–90 kg ha− 1 year− 1 by 2100.
As heat increases, ear blight is projected become a major cause of yield
losses in French’s breadbasket, contributing to around 20 % of total
yield losses by 2100 (Fig. 6). By the end of the century, yield losses due
to low solar radiation and fungal foliar diseases are projected to be half
of current levels. On the other hand, projected yield losses due to
drought during anthesis show varied fluctuations without a clear pattern
between 2015 and 2100 (Fig. 6 and Supplementary Figure S6-S7).

To enhance the robustness of our analysis, we applied the same
methodology to quantify yield losses in the future under the influence of
climate change, assuming an earlier anthesis onset in the beginning of
May. In this scenario, we project that due to the reduced solar radiation
during this period and an increased number of heavy rainfall events,
these factors would lead to the most significant productivity losses. If
this were to occur, we project even greater magnitudes of productivity
loss assuming anthesis is brought forward one month in the future
(Supplementary Figure S9-S11).

4. Discussion

To separate the historical and future impact of single climatic events
on wheat yield in France’s breadbasket, we combined department level
yields, calculated disease damage and climate indices with a machine
learning algorithm for estimating grain yield losses. Our model presents
similar performance (rRMSEp of 5 % from LOOCV one location out or
8 % from LOOCV one year out; Supplementary Table S3) in estimating
yield in France compared to other recent studies (rRMSEp varying from
10 % to 18 % (Paudel et al., 2022)). Our results showcase the random
forest method’s ability to quantify factors influencing yield losses
(Fig. 4). This approach is consistent with earlier research that assessed
the impacts of different variables on yield using linear models (Nóia
Júnior et al., 2023b), which found a similar quantification of the causes
of yield loss in the breadbasket of France in 2016. While our model
yielded results comparable to those in the literature, further improve-
ment could be achieved with an expanded training dataset, additional
locations, or an ensemble of machine learning methods, as suggested in

previous research (von Bloh et al., 2023).
Projections with five CMIP6 climate models under low (SSP5–2.6)

and very high emissions (SSP5–8.5) scenarios suggest that current
extreme low yields historically occurring once every 20 years, could
become twice as frequent by the end of the century. Elevated atmo-
spheric CO2 concentration may help reduce the occurrence of such
events (Fig. 5b). Some studies, such as Schauberger et al. (2021) and Liu
et al. (2019), have found no historical or future evidence of increased
wheat yield volatility across most of France, except for a few areas like
the northwest, as highlighted by Pequeno et al. (2021), who also
considered the potential benefits of CO2. However, even with atmo-
spheric CO2 exceeding 400 ppm, extreme climate events in France can
still lead to significant yield losses, with some departments experiencing
yield reductions of over 50 % in certain years, as observed in 2016 (Nóia
Júnior et al., 2023b). Our findings suggest that after the mid-2000s,
extreme events due to CO2 levels exceeding 400 ppm are projected to
decrease, approaching zero by 2050. (Fig. 5b). However, it’s important
to acknowledge that the simplicity of accounting for CO2 effects, both in
our study and others (Tebaldi and Lobell, 2018), may not fully capture
the complex interactions between CO2 and other factors, such as
flooding (Nóia Júnior et al., 2023a), which are not yet well understood.

Climate change results from rising atmospheric CO2 levels, which
elevate global average temperatures (IPCC, 2021). Numerous studies
demonstrate the significant positive impact of elevated CO2 on C3 crop
yield. For example, with ample water and nutrient, it has been shown
that wheat yields increase can reach about 19 % with elevated CO2 in
FACE experiments (from a CO2 mixing ratio of 353–550 ppm) (Kimball,
2016). The same experiments showed that due to low stomatal
conductance, transpiration decreases by 15 % and canopy temperature
increased by 0.6 ◦C (Kimball, 2016). Decreased transpiration conserves
soil moisture, potentially mitigating the impacts of drought, although
increased canopy temperature may exacerbate heat stress. Further
research is needed to understand how elevated CO2 interacts with
stressors such as heat and other factors, including plant diseases,
flooding, heavy rainfall, and low solar radiation (Toreti et al., 2020). A
unique study in a controlled environment indicated that high CO2 may
further increase the impacts of ear blight and Septoria blotch on wheat
(Váry et al., 2015), but the implications of this study in the field are still
unclear. Although the average yields may increase in the future with
elevated CO2 provided that nitrogen and water availability are adequate
(Webber et al., 2018), there are uncertainties about the interactions with
yield reducing factors under extreme weather conditions. Due to these
uncertainties, we did not consider the potential impacts of elevated CO2

Fig. 6. Future causes of wheat yield losses in France’s breadbasket. Thirty-years running mean of the causes of yield losses in France’s breadbasket between 2015 and
2100. Bars are ensemble means based on five bias-adjusted CMIP6 global climate models (GCMs) for (a) SSP5–2.6 and (b) SSP5–8.5, with a fixed anthesis on 1 June
and grain filling from 1 June and 15 July. Climate projections for monthly maximum and minimum temperature, solar radiation, and rainfall at Égreville are shown
in Supplementary Fig. S4. The projected yield losses are relative to the average of estimated trend-corrected yield from 1980–2019 in France’s breadbasket.
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when quantifying past and future causes of yield losses, as shown in
Fig. 6.

Wheat production in France can be affected by excess water, causing
flooding, reduced solar radiation and plant diseases. Our results show
that these factors historically causedmore yield losses than droughts and
high temperatures (Fig. 2), as occurred in the 2016 cropping season
(Ben-Ari et al., 2018; Nóia Júnior et al., 2023b; van der Velde et al.,
2020). Excessive precipitation was found to be the main factor influ-
encing wheat yields in France since the first half of the 20th Century
(Ceglar et al., 2020), and drained areas account for 9 % of all arable soils
in France (Jeantet et al., 2021). However, due to the recent increased
heat and drought events in spring and summer (as in 2003, 2007, 2011,
2020 and 2022), excess rainfall has already shown a lower correlation
with wheat yield in the last two decades, compared to previous periods
(Ceglar et al., 2020). Our study suggests that, as a result of these
changes, by the end of the century, there might be less yield loss from
floodings occurring during grain filling. We emphasize that the water
balance used here does not consider possible accumulations of water on
the soil surface after heavy rains (due to the speed of infiltration of water
into the soil, sometimes being lower than the intensity of the rain). This
adds uncertainties to our projections. Despite this, we indicated that
yield losses due to heavy rainfall during anthesis may increase by the
end of the century (Supplementary Figure S7-S8), if higher temperatures
accelerate phenology, causing anthesis to occur in early May
(Supplementary Figure S10-S11). Heavy rainfall is also expected to
become more frequent during other seasons and phenological stages
throughout the year (Fischer and Knutti, 2015).

Heat and ear blight may become increasingly damaging to wheat
yield in France’s breadbasket (Fig. 6). This is mostly due to the projected
future increase of up to 3◦C in maximum monthly mean temperature
combined with a decrease in monthly precipitation during grain filling
(Supplementary Figure S4), further increasing heat stress. These results
are in agreement with previous climate change impact studies, which
have largely focused on heat, with national wheat yield losses of − 4.6 %
(varying from − 4.2–5.2 %) in France when not considering increased
atmospheric CO2 (Zhao et al., 2017). In addition, winter and spring are
expected to become warmer and wetter by the end of the century in the
breadbasket of France (Supplementary Figure S4) (Ben-Ari et al., 2018;
Ranasinghe et al., 2021), which contributes to ear blight infection
spread (Madgwick et al., 2011; West et al., 2012; Xu, 2003). Ear blight is
related to rainfall during anthesis and temperature during the preceding
weeks (Madgwick et al., 2011). We project that ear blight will cause
twice as much yield losses than currently (Fig. 6), but this is contingent
on the anthesis date not advancing to mid-May. (Supplementary
Figure S10-S11). The incidence of ear blight on wheat yield is also
projected to double by 2050 in southern England, an area with similar
edaphoclimatic conditions to the breadbasket in France (Madgwick
et al., 2011). Yet, the ear blight model used here does not consider the
initial inoculum but correlates it to higher spring temperatures as factors
contributing to its rise. Although the initial inoculum benefits from high
temperatures (Madgwick et al., 2011), factors such as the pre-crop in
rotation with wheat (which also affects the initial inoculum) are
neglected by the disease model, which adds uncertainty to the pro-
jections and could cause an overestimate of the disease’s impact in some
years. Estimated ear blight impacts on wheat yield are probably higher
than foliar fungal diseases because of its less efficient control (Zhang
et al., 2020).

Due to projected warmer and drier summers, studies suggest that
Europe could experience summer droughts 11–28 times more frequently
than it does now (Grillakis, 2019). Nonetheless, our results indicate that
in France’s breadbasket droughts during anthesis and grain filling may
vary widely throughout the century but do not show a clear trend of
increasing or decreasing frequency. The average amount of solar radi-
ation reaching wheat canopies in France will increase (Supplementary
Figure S4). Yet, it is expected that increased heavy rainfall will lead to
more future wheat yield losses (Supplementary Figure S6-S7), while the

influence of low solar radiation on yield is expected to diminish.
(Supplementary Figure S6-S7). Here, we define a low solar radiation
index as the number of days with solar radiation below 7 MJ m− 2 d− 1

during anthesis and grain filling, which is less than a third of the radi-
ation usually received fromMay to July (Artru et al., 2018; Asseng et al.,
2017). Chances of heavy rainfall occurrence in France may increase by
50–80 % if global average temperatures reach 3◦C above pre-industrial
conditions (Fischer and Knutti, 2015).

Our study is distinctive in its approach, isolating the effects of indi-
vidual climate and disease-based factors on yield losses. Recognizing
that different factors may necessitate distinct adaptation strategies, our
results suggest that while the overall yield in France may increase due to
elevated CO2 levels, it may also face a heightened risk of encountering
more frequent heat stress, a factor less prevalent in the past. Addition-
ally, our findings underscore the growing importance of understanding
and mitigating the increasing pressure from ear blight disease. This
highlights the need for enhanced wheat breeding programs to develop
new cultivars that are more resilient to heat and resistant to plant dis-
eases. The management of extreme wheat losses in France holds sig-
nificance not only for the country but also for other nations with similar
climate conditions and that rely on French wheat exports. For instance,
Algeria, a primary importer of French wheat, turned to increased wheat
purchases from Russia in response to excessive rainfall affecting the
quality of French wheat in 2021 (Muftuoglu, 2021).

While our model demonstrates a robust capability in quantifying
yield losses and identifying key stressors, some limitations and un-
certainties should be noted. Although the model integrates multiple
climate and disease factors, it does not account for potential shifts in
wheat phenology under future climate conditions, such as changes in the
timing of anthesis and grain filling (Rezaei et al., 2018). Additionally,
the historical data used to calibrate the model may limit its applicability
in capturing extreme and unprecedented conditions anticipated in
future climates (Nóia Júnior et al., 2023b). For instance, yield response
data under prolonged and simultaneous exposure to multiple stressors
(e.g., combined heat and drought stress) remain limited, potentially
reducing the model’s accuracy in such scenarios. Furthermore, our as-
sumptions about CO₂ effects are based on simplified growth responses,
without fully considering interactions with other yield-reducing factors
such as heat, flooding, or plant diseases, which are complex and not yet
fully understood. Future work should explore a more nuanced approach
to CO₂ interactions and incorporate adaptive phenological responses to
improve projections of climate impact on wheat yield.

In conclusion, our research highlights climate change’s intricate ef-
fects on French wheat production. Addressing these multifaceted chal-
lenges demands a holistic approach, encompassing adaptation strategies
and investigations into CO2 interactions with environmental stressors.
These efforts will be vital for wheat production resilience in a changing
climate.

5. Conclusions

This study reveals the complex impacts of climate change on wheat
yields in France’s breadbasket. Using historical yield data, disease and
climate indices with a random forest machine learning model, we
identified heat stress, flooding, reduced solar radiation, and ear blight as
the main contributors to yield losses over the past 40 years (1980–2019).
Projections suggest that extreme low-yield events, historically occurring
once every 20 years, could become twice as frequent by the end of the
century under both low and high emissions scenarios. Elevated atmo-
spheric CO₂ may reduce the occurrence of such events by enhancing
yields, but uncertainties remain regarding its interactions with stressors
like heat and disease. Our findings highlight the need for breeding
programs to develop new wheat varieties with increased resilience to
heat and disease pressures. Such efforts are crucial for maintaining
wheat production stability in France and other regions with similar
climatic conditions amid a changing climate.
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