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RECENT ADVANCES IN THE LONG-TIME ANALYSIS OF KILLED

DEGENERATE PROCESSES AND THEIR PARTICLE

APPROXIMATION

Bertrand Cloez1, Lucas Journel2, Pierre Monmarche3, Boris
Nectoux4 and Mouad Ramil5

Abstract. We review some recent results of quantitative long-time convergence for the
law of a killed Markov process conditioned to survival toward a quasi-stationary distri-
bution, and on the analogous question for the particle systems used in practice to sample
these distributions. With respect to the existing literature, one of the novelties of these
works is the degeneracy of the underlying process with respect to classical elliptic dif-
fusion, namely it can be a non-elliptic hypoelliptic diffusion, a piecewise deterministic
Markov process or an Euler numerical scheme.

Résumé. Nous présentons quelques résultats récents d’estimées quantitatives de con-
vergence en temps long pour la loi de processus de Markov tués, conditionnellement
à leur survie, vers une mesure quasi-stationnaire, et sur la question analogue pour les
systèmes de particules utilisés en pratique pour échantillonner ces mesures. Par rapport
à la littérature antérieure, l’une des nouveautés de ces travaux est le caractère dégénéré
du processus de Markov sous-jacent par rapport aux diffusions elliptiques classiques, au
sens où ce peut être une diffusion hypoelliptique non-elliptique, un processus déterministe
par morceaux, ou un schéma d’Euler.

1. Introduction

1.1. Killed Markov processes

A killed process on a space D is a Markov process (Xt)t⩾0 on D∪{∂} where ∂ /∈ D is an arbitrary
cemetery point which is an absorbing point, i.e. Xt = ∂ for all t ⩾ τ = inf{s ⩾ 0, Xs = ∂}. In
many cases of interest, it is obtained from a Markov process (Yt)t⩾0 on a state S by setting Xt = Yt
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for t < τ and Xt = ∂ for t ⩾ τ where τ is defined either by a so-called soft-killing mechanism,
namely, given E a standard exponential random variable independent from Y ,

τ = inf

{
t ⩾ 0, E ⩽

∫ t

0

λ(Ys)ds

}
,

with a death rate λ : S → R+, in which case D = S, or a so-called hard-killing mechanism, namely

τ = inf {t ⩾ 0, Yt /∈ D} , (1)

where D is a given domain of S. Since we are only interested in the process before absorption, in
these cases it is equivalent to work with either X or Y .

Some objects of interest are then, for all t ⩾ 0, pt = P(τ ≤ t) the extinction probability, ηt the
law of the killed process and µt the law of the process conditioned to survival, given by

ηt(A) = P(Xt ∈ A) , µt(A) = P(Xt ∈ A | τ > t) =
ηt(A)

1− pt
(2)

for all measurable sets A of D.
In most cases, extinction is almost sure, i.e. τ < +∞ almost surely. In that case, the only

invariant measure of X is the Dirac mass at ∂, which is not interesting. In fact, for killed processes,
the relevant analogous to invariant measures is given by the quasi-stationary distributions (QSD),
which by definitions are the probability measures ν on D such that

X0 ∼ ν ⇒ ∀t ⩾ 0, µt = ν .

Similarly, the classical question of convergence toward equilibrium for Markov processes is replaced,
for killed process, by the question of the limit of µt toward a QSD as t → +∞ when the initial
distribution is not a QSD.

An important property is that, starting from a QSD, the extinction time follows an exponential
distribution. In other words, if ν is a QSD, then there exists θ > 0 such that, if X0 ∼ ν, then
pt = 1 − e−θt for all t ⩾ 0. Equivalently, ηt = e−θtν for all t ⩾ 0, which means that ν is an
eigenvector of the killed semi-group. In fact, when D is a finite set, the existence of a QSD stems
from the Perron-Frobenius theorem.

For general and extensive references on QSD, we refer the interested reader to the book [22] or
the survey [55].

1.2. Some motivations

Among other things, the study of killed processes and quasi-stationary distributions is related
to metastability phenomena, i.e. cases where a Markov process stays for very long times in some
transient states before reaching stationarity. The convergence to a QSD within a transient state is
fast and observed before the slow transitions. This arises in particular in population models and
stochastic algorithms in molecular dynamics, as we describe in the following.

In population dynamics, a Markov process (Xt)t≥0 is generally used to model the number of indi-
viduals. This can for example be a diffusion process on a bounded set as in the case of the evolution
of gene populations in the continuous Wright-Fischer model [10, Page 368] or a continuous-time
Markov chain as for a Galton-Watson process [1, Chapter III]. An interesting example is given
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Figure 1. A sample path of the chemostat model. Here the blue curve corresponds
to the discrete component (Nt) and the green curve corresponds to the continuous
component (St).

by the chemostat model [17, 21] where Xt = (Nt, St) ∈ N × R+ is a couple of two components: a
discrete one Nt and a continuous one St. The discrete component represents the number of bacteria
in a vessel and evolves as a pure jump process with the addition or removal of an individual at ex-
ponential clocks. Parameters of the jump times depend on the continuous component which evolves
according an ordinary differential equation whose parameters depend on the discrete component.
See [17, 21] for details and Figure 1 for an example of trajectory. This process is not irreducible,
belongs to a non-compact space and is hybrid, in the sense that its transition kernel does not admit
a density with respect to a simple reference measure. Whatever the parameters, the population
of bacteria always hits 0 in finite time (as a consequence of a Borel-Cantelli type arguments since
resources are finite), however, when the vessel is large the dynamics is close to a deterministic
model having a non-trivial equilibrium. These two antagonistic behaviors, which are common for
population models, should be explained by a quasi-stationary behavior.

As we shall see here, the study of QSD can also be useful in molecular dynamics methods for the
sampling of the time-evolution of complex particle systems. This sampling is done using numerical
schemes which are used in a wide range of application fields (biology, chemistry, materials science
for instance). They allow us to compute dynamical quantities of interest for the system without
resorting to the actual experiment. For instance, one would like to sample the trajectories of a
system which goes from one state to another one, in order to compute the typical time to observe
such transitions. This question arises for instance when we want to sample the phase transitions
of a thermostated (fixed temperature) molecular system, whose evolution can be modeled by the
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Langevin dynamics: {
dxt =M−1vtdt,

dvt = F (xt)dt− γM−1vtdt+
√
2γβ−1dBt,

(3)

where (xt, vt) ∈ Rd × Rd denotes the positions and momenta of the particles at time t ≥ 0, M
is the mass matrix, F is the interaction force (often F is conservative, i.e. F = −∇V for some
potential function V ), γ > 0 is a friction parameter, β = (kBT )

−1 is proportional to the inverse
temperature and (Bt)t≥0 is a standard Brownian motion. When the friction coefficient γ goes to
infinity, it is known that its rescaled position coordinate (xγt)t≥0 converges to the solution (xt)t≥0

of the overdamped Langevin Dynamics (see for instance [48, Section 2.2.4]):

dxt = F (xt)dt+
√
2β−1dBt, (4)

Phase transitions are known to be often metastable, which means that the timestep used for the
sampling of the dynamics is much smaller than the timescale associated with the transition event.
As a practical consequence, the number of iterations needed to sample the transition event will be
far too large to be done through naive simulation. The metastability comes from the existence of
energetic barriers, namely the trajectory to leave the state requires to climb above a saddle point
of the potential energy V .

Several methods have been developed in order to circumvent this issue, among which the Par-
allel Replica method [62]. The idea behind Parallel Replica is that, as already mentioned, when
the system remains trapped inside a metastable state for a sufficiently long time, its distribution
becomes close to the QSD of the state. Furthermore, starting from the QSD, the first exit from
the state satisfies some well-known properties which allow for the sampling in parallel of the first
exit event, thus reducing the wall clock time simulation in Parallel Replica compared to standard
simulation.

The main ingredients for the mathematical justification of Parallel Replica are the existence of a
QSD in the state considered, as well as a long time convergence of the dynamics trapped inside the
state towards the QSD. Such proofs were carried out in the literature in the case of the overdamped
Langevin (4) dynamics in [45] but had yet to be extended to the Langevin dynamics (3).

1.3. Past results and limitations

As far as continuous-time processes in a continuous space are concerned, there is a wide literature
on quasi-stationary distributions for elliptic diffusions like the overdamped Langevin dynamics (4)
on smooth bounded domains. We refer for example to [8,9,11,15,35,45,57]. Let us state a theorem
to summarize the main results known for the overdamped Langevin.

The infinitesimal generator of the overdamped Langevin dynamics is given by:

L = F · ∇+ β−1∆, (5)

with formal adjoint L∗
in L2(dxdv) given by:

L∗
= −div(F ·) + β−1∆.

The following is based on [11,35,41,45].
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Theorem 1 (QSD of the overdamped Langevin process). Let β > 0. Assume that F ∈ C∞(Rd,Rd)
and let O be an open C2 bounded connected set of Rd. Then there exists a unique QSD µ on O for
the killed process in O, (Xt)t≥0, solving (4). Furthermore,

(1) there exists ψ ∈ C2(O)∩Cb(O) such that µ(dq) = ψ(q)dq, where dq is the Lebesgue measure
on Rd,

(2) Span(ψ) is the eigenspace associated with the smallest eigenvalue θ of the operator −L∗

with homogeneous Dirichlet boundary conditions on ∂O,
(3) there exist C > 0 and α > 0 such that for all probability measures ν on O, for all t ≥ 0,∥∥µt − µ

∥∥
TV
≤ Ce−αt,

where µt is the law of the process (Xt)t≥0 conditioned to survival, as defined in (2), satisfy-

ing X0 ∼ ν and ∥ · ∥TV is the total-variation norm on the space of bounded signed measures
on Rd.

Now, additional difficulties arise when the process is not an elliptic diffusion process, which is
the case of the processes mentioned in the previous section: the kinetic Langevin dynamics (3) is an
hypoelliptic non-elliptic diffusion, and the chemostat model of [17, 21] is a piecewise deterministic
Markov process, lacking the regularization properties of diffusions. Moreover, the study of hard-
killed process with an unbounded domain (which is the case for the Langevin process since the
velocity is unbounded) is also difficult. For instance even for the very simple Ornstein-Uhlenbeck
process killed at the origin, there is no uniqueness of the QSD [50].

Multiple approaches were used in the literature to obtain Theorem 1. To name just one, one can
apply the Krein-Rutman theorem to the semigroup of (4) killed outside of O, which is compact on
L2(O), to obtain the QSD. However, such compactness property is not clear once the infinitesimal
generator is not elliptic or the domain is unbounded as is the case for (3) on the domain D =
O × Rd. Two approaches are presented in Sections 3 and 4 to establish this property in cases
that cover the kinetic Langevin process (3). Section 2 presents an alternative method, based on a
Doeblin-type minorization condition rather than compactness, to get a result similar to the Krein-
Rutman theorem in non-compact space. As can be seen by comparing the general results stated
in Theorems 2 and 6, the two methods share some similarities (a Lyapunov function is required in
both cases) but each have their interest: the conditions of Theorem 6 are easier to check in practice,
but the process is required to be Feller, which is not the case for Theorem 2, while in the latter a
non-trivial minorization condition has to be established.

Finally, notice that, when it comes to sample the QSD (for instance as the first step of the
Parallel Replica algorithm), a naive Monte Carlo method, consisting of running N independent
copies of the process up to a long time t and taking the empirical distribution of the processes
which have not been killed, may suffer from a high variance since the size of the sample shrinks
with times (possibly, all the processes may have already died at time t). For this reason, systems of
interacting particle are used in practice: when a process dies, another process is chosen at random
uniformly and is duplicated, which maintains the size of the sample, at the cost of a small bias. The
particle system is then a non-killed Markov process, which converges in long time to an invariant
measure which is close, for large N , to the law of N independent realizations of the QSD. Although
many results are available in various frameworks for the convergence of the system of particles
toward the killed process as N → ∞, either at a fixed time t or at stationary (see [16, 23] and
references within) obtaining quantitative convergence as t→∞ uniformly in N is challenging and
cannot be obtained directly from the long-time convergence of the killed process. Such a result, in
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the case of an elliptic diffusion, is presented in Section 5. The effect of the time-discretization of
the continuous-time diffusion, which is a very classical topic for the invariant measure of Markov
processes but not for QSD, is also addressed, closing the gap between the theoretical results such
as Theorem 1 and the algorithms used in practice to sample the QSD.

2. Harris-type method for non-conservative processes

2.1. Harris theorem type assumption for Krein-Rutman theorem type conclu-
sion

To study (ηt) or (µt) defined in (2), it is usual to introduce the family of operators (Mt) defined
for all t ≥ 0 by

Mtf(x) = E [f(Xt)1τ>t | X0 = x] ,

where f is a bounded type function and x ∈ D. It is easy to show that (Mt) defines a positive
semigroup, but in contrast with Markov semigroup, it is not conservative in the sense that

Mt1D = 1− pt ̸= 1

in general, where 1 is the constant function equal to 1.
This particularity is a drawback because there is a rich base of tools to study conservative

semigroups as for instance Doeblin contraction or Lyapunov methods. More precisely, a Markov
semigroup (Pt) satisfies the Doeblin minorization condition if there exists t0, ϵ > 0 and a probability
measure such that for all x ∈ X

δxPt0 ≥ ϵν. (6)

This induces uniqueness of an invariant distribution and exponential convergence to it in total
variation distance. When the state is not compact Assumption (6) generally does not apply on
the whole space. Consequently, it is only supposed to hold on compact sets and an additional
assumption is required to prove that the process remains in a compact set for sufficiently long
times. This tightness condition is often verified through the existence of a so-called Lyapunov
function: there exists a positive function V , such that for a certain t > 0,

PtV ≤ CV +D,

for some constants C,D > 0 with C < 1. This is often verified by the drift condition:

LV ≤ −cV + d, (7)

where L is the generator of (Pt) and c, d > 0. With this assumption, Doeblin minorization only need
to hold on the sublevel set of V to obtain exponential convergence to a unique invariant measure.

For conservative semigroups, these aspects are well known; see for instance [28,38,53,54].
Several works aimed at generalizing these efficient techniques for non-conservative semi-groups.

Hilbert metric and Birkhoff contraction yield another powerful method for the analysis of semi-
groups, which has been well developed [7,56,59]. More recently, let us cite for instance [24,43,44] in
a general and continuous-time setting or works on discrete-time Feynman-Kac semigroups [23,26].
Some works associate Doeblin-Harris techniques with Krein-Rutmann theorem and then often need
strong Feller properties [31, 36, 46]; See Section 3 and 4. Unfortunately, these results do not apply
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or are difficult to apply for piecewise deterministic dynamics as e.g. the chemostat model described
in introduction.

In [2, 3, 18], some theoretical results were developed to generalize Doeblin-Harris methods for
non-conservative semi-groups mainly in case of branching dynamics (i.e. in case where Mt1 > 1).
These results are related to [12, 13, 20, 21, 25]. A generalization of Harris Theorem is for instance
described in [3, Theorem 2.1] and is given below.

Theorem 2 (Generalized Harris Theorem). (i) If there exist a couple of positive functions (V, ψ),
t0 > 0, β > α > 0, C > 0, (c, d) ∈ (0, 1]2, a subset K and ν a probability supported by K such that
supK V/ψ <∞ and

(A1) Mt0V ≤ αV + C1Kψ,

(A2) Mt0ψ ≥ βψ,

(A3) for all positive and measurable function f ,

inf
x∈K

Mt0(fψ)(x)

Mt0ψ(x)
≥ c ν(f)

(A4) for all positive integers n

ν

(
Mnt0ψ

ψ

)
≥ d sup

x∈K

Mnt0ψ(x)

ψ(x)
,

then, there exists a unique triplet (γ, h, θ) of eigenelements of M with γ(h) = 1, i.e. satisfying for
all t ≥ 0

γMt = e−θtγ and Mth = e−θth. (8)

Moreover, there exist C,ω > 0 such that for all t ≥ 0 and measure µ,

sup
|f/V≤1|≤1

∣∣eθtµMtf − µ(h)γ(f)
∣∣ ≤ Cµ(V )e−ωt. (9)

(ii) Assume that there exist a positive measurable function V, a triplet (γ, h, θ) and constants C,ω >
0 such that (8) and (9) hold. Then, the couple (V, h) satisfies Assumptions (A1),(A2),(A3), and
(A4).

By differentiating (8), the triplet (γ, h, θ) is a triplet of eigenelements for the infinitesimal gener-
ator A of (Mt)t≥0, that is γA = −θγ and Ah = −θh where the (unbounded) operator A is defined
by A = limt→0

1
t (Mt − I).

The assumptions of Theorem 2 hold on compact space when (Mt) admits a (upper and lower)
bounded density with respect to a fixed measure ν. It is known since the 60’s, by Birkhoff [7] for
instance, that this type of regularity hypothesis implies the existence of eigen-elements and the
convergence. Unfortunately, assuming bounded density does not include simple examples such as
the chemostat model.

Assumption (A4) overcomes this problem and allows to treat such an example. This type of
condition seems to appear for the first time in [25] without the Lyapunov condition. Article [25]
only states a contraction inequality, but this is the main step of the proof for such results. In [12],
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Figure 2. A sample path of the process described in Equation 11.

Champagnat and Villemonais highlight these conditions and prove that they are in fact equivalent
to the exponential convergence (9). They deduce the existence of eigenelements in the context
of absorbed Markov processes (sub-conservative semigroups). In [2], this theorem is extended for
general inhomogeneous-time and non-conservative semi-groups. It includes for instance periodic
and asymptotically homogeneous ones.

As explained before, requiring a Doeblin type minorization assumption on the whole space is
often too strong when the state space is not compact, Assumptions (A1) and (A2) then relax this
constraint. This Lyapunov assumption seems to appear for the first time in [20, Theorem 4.2]
and in the proof of [21, Theorem 4.1]. However, combining this assumption with the assumptions
(A3) and (A4) to obtain uniqueness of eigenelements and exponential convergence comes from [13].
This significant result has been demonstrated in the framework of sub-conservative semigroups.
Result [3, Theorem 2.1] generalizes this result for non-conservative semi-groups, and non-bounded
functions ψ, and prove that these assumptions are in fact necessary. Let us also point out the
follow-up paper [14] of [3, 13] on these aspects. However, Assumption (A4) of Theorem 2 seems
simpler to verify that the analogous of [14] and the proof of [3] leads some quantitative estimates.
More precisely, we have that γ(V ) < +∞, γ ≫ ν (in the Radon-Nikodym sense),

β ≤ e−θt0 ≤ α+ C,

and

c1

(
ψ

V

)q

ψ ≤ h ≤ c2V

where c1, c2 > 0, q ∈ (0, 1) and the others constants come from Theorem 2.
To conclude this section let us mention that from [18], Condition (A4) is verified when there

exist t0, ϵ > 0 such that

inf
x,y∈K

P (∃s ≤ t0, Xs = y | X0 = x) ≥ ϵ. (10)

This condition will be verified in almost all examples of Subsection 2.2

2.2. Some (very) simple examples

In this section, we detail several examples where one of the assumptions does not hold in order
to highlight their role.

Note however that all assumptions are naturally connected and that one can postpone the diffi-
culty of an assumption by changing the compact K or the Lyapunov functions for instance.
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Figure 3. A sample path of the process generated by (12).

2.2.1. Aperiodicity and Assumption (A3)

In addition to the irreducibly assumption, Assumption (A3) hides an aperiodicity assumption.
Indeed the (unabsorbed) Markov process (Xt)t≥0 on [0, 1) defined, for all t ≥ 0, by

Xt = X0 + t mod 1 (11)

verifies all the assumptions except (A3). Even if the trajectories pass into all the points of [0, 1), it
does not pass at the same time t0 uniformly over its stating point. See Figure 2.

A less simple and more interesting example is given by the growth-fragmentation process studied
in [6, 34] (in a different formalism). This process grows exponentially at a certain rate α and has
multiplicative jumps from x to rx, where r ∈ (0, 1) is a fixed deterministic value, at a rate B(x)
depending on its state. We can kill the process at some rate λ as defined in Equation 1. Its
generator reads

Af(x) = αxf ′(x) +B(x)(f(rx)− f(x)) + λ(x)f(x), (12)

for smooth functions f and x > 0. See Figure 3
In contrast with the previous trivial deterministic process, this growth-fragmentation has a ran-

dom dynamics but its law is concentrated in fixed time in a discrete space (when the starting
distribution is a Dirac mass). It then can not converge to its unique QSD, which has a Lebesgue
density.

2.2.2. Probability of survival and Assumption (A4)

Let us consider the Markov process which is maybe the simplest one. That is, we consider that
D = {1, 2} and Xt jumps from 2 to 1 at rate a and cannot jump from 1 to 2. Similarly, it dies from
1 at rate b and cannot die from 1. It is a pure death process whose transition are represented in
Figure 4. Its study is trivial and based on the spectral property of a 2× 2 matrix. We have three
cases :

• b < a : We have exponential convergence to the unique QSD δ2.
• b = a : We have a slow convergence to the unique QSD δ2.
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2 1 ∂
a b

Figure 4. The transition diagram of the Markov chain described in Subsection 2.2.2

• b > a : We have two QSD:

a

b
δ1 +

b− a
b

δ2, δ2,

and, furthermore, the convergence depends on the initial condition : if µ0({2}) = η({2}) > 0
then the conditional law µt converges to

a
b δ1 +

b−a
b δ2.

We see in the third case that δ2Mt1 ∼ e−at and δ1Mt1 ∼ e−bt are not of the same order and
consequently (A4) fails and then the conclusion of Theorem 2 doesn’t hold (which is what we
naturally and simply observe here).

This process is trivial to study but it is an interesting example to understand the algorithms which
approximate the quasi-stationary distribution. For instance the limit in large number of particles
and in time of the well used Fleming-Viot algorithm do not commute for this example. Some
question on its approximation remains open see [5]. Commutation of limits for QSD approximation,
as detailed in Section 5 below is then of prime importance.

A less simple and more interesting example is given by the house-of-card model studied in [19]
and references therein. This process belongs to [0, 1] and is redrawn uniformly at random over this
interval at rate 1. It is soft-killed at rate x 7→ cxq, for some c, q ≥ 0. We can show the following :

• If q > 1 − 1/c then we have exponential convergence to a unique explicit QSD (which has
a bounded Lebesgue density). This in particular always verified when q ≥ 1 or c < 1. The
convergence can be established in various distances with explicit rates.

• If c = q+1 then we have two QSD : one, denoted by ν, has a Lebesgue density proportional to
x 7→ x−q and the second is δ0. When µ0({0}) = 0, then we have a (explicit) slow convergence
of the conditional laws µt to the QSD ν (which has a Lebesgue density proportional to
x 7→ x−q). When µ0({0}) > 0 then µt → δ0. Moreover, if q < 1/2 then ηte

θt → c0ν, for
some c0 > 0 although if q ≥ 1/2 then ηte

θt → 0.
• If c < q + 1 then the conditional law converges, in mean, to the unique degenerate QSD:

ν(dx) =

(
1− c

q + 1

)
δ0(dx) +

x−q

c
dx

For details, additional results and references, see [19]. Note that, in this example, Assump-
tion (10) fails.

2.2.3. Lyapunov function and Assumption (A1) and (A2)

The Lyapunov assumptions require to find a kind of sub-solution and super-solution to the
eigenvalue problem where the associated sub-eigenvalue β is strictly larger than the super-eigenvalue
α. Let us show here a well-studied example of Markov processes where we easily find two Lyapunov
functions in such a way that the condition α = β becomes a critical situation.
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Let us consider the birth and death process on N∗ generated by

Af(n) = b(f(n+ 1)− f(n)) + d(f(n− 1)− f(n)),

for every n ≥ 2 and bounded function f , with b > d, and

Af(1) = b1(f(2)− f(1))− d1f(1),

with some b1, d1 > 0. It is known from [60] that eθtηt converge to a unique QSD if and only if

(
√
b−
√
d)2 + b1

(√
d/b− 1

)
− d1 > 0.

This result can easily be recovered (and extended) by using Theorem 2 with V and ψ of the form
q 7→ qn with appropriate q > 0. See [3] for details. Note that the condition (10) is trivially satisfied.

3. The Langevin process (Round 1)

Let F ∈ C∞(Rd,Rd), γ ∈ R, σ > 0. In this section, we shall consider the following Langevin
dynamics: {

dxt = vtdt,

dvt = F (xt)dt− γvtdt+ σdBt,
(13)

Its infinitesimal generator is given for (x, v) ∈ Rd × Rd by:

L = v · ∇x + F (x) · ∇v − γv · ∇v +
σ2

2
∆v, (14)

with formal adjoint L∗ in L2(dxdv):

L∗ = −v · ∇x − F (x) · ∇v + γdivv(v·) +
σ2

2
∆v. (15)

The metastable states often correspond to the basins of attraction of a potential V when the
force F in (3) is conservative, i.e. F = −∇V . Therefore, we shall consider metastable states written
as cylinders in the position and momenta coordinates as follows:

D = O × Rd, (16)

where O is an open C2 bounded connected set of Rd.

3.1. Quasi-stationary distribution: existence and long-time convergence

The justification of the Parallel Replica method mentioned in Section 1.2 for the Langevin
dynamics (13) in D first requires the existence of a QSD on D for the associated process (Xt)t≥0

killed outside of D. Such existence can be obtained through the application of the Krein-Rutman
theorem to the semigroup of (Xt)t≥0, which shall provide a left eigenvector of this semigroup
corresponding to the QSD density. To apply the Krein-Rutman theorem, this semigroup is required
to be compact in a Banach space. To prove the compactness the idea of the proof is to first show
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that the semigroup is an integral Hilbert-Schmidt operator in L2(D) hence compact in L2(D)
using appropriate Gaussian upper-bounds for its transition density obtained in [49, Theorem 2.19].
Second, this compactness is propagated across the Banach space Cb(D) of continuous and bounded
functions on D using the continuity of the semigroup, leading to the following result in [47, Theorem
2.9].

Theorem 3 (Compactness of the killed semigroup). For any t ≥ 0, p ∈ [1,+∞] and f ∈ Lp(D),
the quantity

Mtf : (x, v) ∈ D 7→ E [f(Xt)1τ>t|X0 = (x, v)] (17)

is well-defined. Besides,

(1) the family of operators (Mt)t≥0 is a semigroup on Lp(D) and on Cb(D).
(2) For any t > 0, the operator Mt is compact from Lp(D) to Lp(D), and from Cb(D) to Cb(D).

The application of the Krein-Rutman theorem to the operator Mt for t > 0 on the Banach space
Cb(D) then yields the existence of a QSD on D of (Xt)t≥0, with a density belonging to Cb(D). The
uniqueness of this QSD follows from the positivity of the transition density of the semigroup using
a Harnack inequality provided in [49]. In addition, one can also obtain a spectral interpretation of
this QSD using Itô’s formula, see the proofs of [47, Theorems 2.14, 2.17] for more details.

Theorem 4 (Existence and uniqueness of a QSD). There exists a unique QSD µ on D for the
killed process (Xt)t≥0. In addition, there exists a smooth positive function ψ such that

dµ(x, v) = ψ(x, v)dxdv.

Moreover, ψ is the unique solution in C2(D) ∩ Cb(D) to the eigenvalue problem{
L∗ψ(x, v) = −θψ(x, v) (x, v) ∈ D,
ψ(x, v) = 0 x ∈ ∂O, v · n(x) < 0,

where n(x) is the unitary outward normal vector at x ∈ ∂O.

In addition, the compactness of the killed semigroup allows to obtain a spectral decomposition of
the killed semigroup. This gives in particular the long-time asymptotics of the law of the dynamics
conditioned to remain in D, see [47, Theorem 2.22].

Theorem 5 (Convergence to the QSD in total variation). There exists α > 0 such that for any
probability measure ν on D, there exists Cν > 0 such that for all t ≥ 0,

∥µt − µ∥TV ≤ Cνe
−αt, (18)

where µt is the law of (Xt)t≥0 conditioned to survival defined in (2) satisfying X0 ∼ ν, and ∥ · ∥TV

denotes the total-variation norm on the space of bounded signed measures on R2d.

The QSD on D can thus be seen as the longtime limit of the dynamics conditioned to stay inside
D. This proposition is useful to understand what is a metastable state. A metastable state is a state
such that the exit event from this state happens on a timescale larger than the local equilibration
time, namely the time to observe the convergence to the QSD in (18).

Furthermore, if the Langevin dynamics (13) is initially distributed according to the QSD in D,
then we can explicitly provide the law of the first exit event from D, which is given by the couple
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of the first exit time from D and its associated exit point. As mentioned in the introduction, recall
that the first exit time from a domain when starting from a QSD is well known to be distributed
according to an exponential law; this is a general property for Markov processes. By contrast,
the law of the first exit point is strongly dependent on the dynamics. In the case of the Langevin
dynamics (13), this is the first result to compute the law of the first exit point starting from the
QSD.

Proposition 1. Let us assume that X0 is distributed according to the QSD µ in D. Then the law
of the couple (τ,Xτ ) is fully characterized by the following properties:

• τ follows the exponential law of parameter θ where θ is defined in Theorem 4;
• τ is independent of Xτ ;
• The law of Xτ is given by: for any bounded function f : ∂D 7→ R,

E [f(Xτ )|X0 ∼ µ] =
1

θ

∫
∂D
|v · n(x)|ψ(x, v)f(x, v)σ∂O(dx)dv,

where n(x) is the unitary outward normal vector at x ∈ ∂O and σ∂O denotes the Lebesgue
measure on the surface ∂O.

As a result, the existence of a QSD and the long-time convergence to the QSD of the Langevin
dynamics trapped in D ensure that the Parallel Replica method also applies for the Langevin process
trapped in D following the reasoning made in [45, Proposition 5].

3.2. Quasi-stationary distribution: overdamped limit

In this section we shall assume that γ > 0 and σ =
√
2γβ−1 for some β > 0 in (13). The aim of

this section is to describe the behavior of the Langevin dynamics (13) when the friction coefficient
γ goes to infinity. This will allow us in particular to explicit the overdamped limit of the QSD.

It is well known in the literature that the law of the rescaled position of the Langevin dynamics
converges to the law of the overdamped Langevin dynamics (4), i.e. for all T > 0:

Law((xγt)t∈[0,T ]) −→
γ→∞

Law((xt)t∈[0,T ]). (19)

However, this result does not provide an overdamped limit for the couple of the position and velocity
vectors. Such a limit was provided recently in [58] where the following limit is obtained:

Law((xγt)t∈[0,T ], vγT ) −→
γ→∞

Law((xt)t∈[0,T ], Z), (20)

where Z ∼ Nd(0, β
−1Id) is a Gaussian vector independent of the process (xt)t∈[0,T ]. The proof

of (20) consists in perturbing the Brownian noise of the Langevin dynamics (13) by a vanishing
term when γ goes to infinity such that the position and velocity become independent. Then it
remains to consider the overdamped limit of the position and velocity coordinates separately, which
is much easier. In addition, since the perturbation converges to zero when γ goes to infinity, the
overdamped limit of the perturbed process is the same as the overdamped limit of the Langevin
dynamics. Following this result one can identify explicitly the overdamped limit of the QSD for the
Langevin dynamics.
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Proposition 2. Let µ(γ) (resp. µ) be the QSD of (Xt)t≥0 on D = O × Rd (resp. (Xt)t≥0 on O)
satisfying (13) (resp. (4)). Then,

µ(γ)(dxdv) −→
γ→∞

µ(dx)
e−

β|v|2
2

(2πβ−1)
d
2

dv, (21)

in terms of weak convergence measures.

In particular, if one considers the marginal in position of the Langevin QSD then it converges
weakly to the QSD of the overdamped dynamics on O as a consequence of the above proposition.

4. Langevin processes (round 2)

In this section, we present the main results of [36,37]. These results first aim at giving necessary
conditions for existence and uniqueness of a quasi-stationary distribution µD of a strongly Feller
Markov process (Xt, t ≥ 0) killed when it exits a subdomain D, see Section 4.1. These results are
then applied to Langevin processes with continuous or singular potentials, see Sections 4.2 and 4.3.

4.1. A general result

4.1.1. Notations and assumptions

Let (Xt, t ≥ 0) be a time homogeneous Markov process valued in a Polish space S, with càdlàg
paths and satisfying the strong Markov property, which is defined on the filtered probability space
(Ω,F , (Ft)t≥0, (Px)x∈S) where Px(X0 = x) = 1 for all x ∈ S. Its transition probability semigroup is
denoted by (Pt, t ≥ 0).

Let B(S) be the Borel σ-algebra of S, bB(S) the space of all bounded and Borel measurable
functions f on S (its norm will be denoted by f ∈ bB(S) 7→ ∥f∥bB(S) = supx∈S |f(x)|). The space
D([0, T ],S) of S-valued càdlàg paths defined on [0, T ] is equipped with the Skorokhod topology.

We suppose that

(C1) (strong Feller property) There exists t0 > 0 such that for each t ≥ t0, Pt is strong Feller,
i.e. Ptf is continuous on S for any f ∈ bB(S).

(C2) (trajectory Feller property) For every T > 0, x → Px(X[0,T ] ∈ ·) (the law of X[0,T ] :=
(Xt)t∈[0,T ]) is continuous from S to the spaceM1(D([0, T ],S)) of probability measures on
D([0, T ],S), equipped with the weak convergence topology.

(C3) (Lyapunov function condition) There exist a continuous function W : S → [1,+∞[,
belonging to the extended domain De(L) of the generator of (Xt, t ≥ 0), two sequences of
positive constants (rn) and (bn) where rn → +∞, and an increasing sequence of compact
subsets (Kn) of S, such that

−LW(x) ≥ rnW(x)− bn1Kn
(x), q.e,

where 1Kn
is the indicator function of Kn.

Now let D be a non-empty open domain of S, different from S. Consider the first exit time of D

τ := inf{t ≥ 0, Xt ∈ Dc}
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where Dc = S\D is the complement of D. The transition semigroup of the killed process (Xt, 0 ≤
t < τ) is:

Mtf(x) = Ex[1t<τf(Xt)], t ≥ 0, x ∈ D, f ∈ bB(D). (22)

Assume the following on the killed process (Xt, 0 ≤ t < τ):

(C4) For t ≥ 0, Mt is Feller, i.e. if f is bounded and continuous over D, so is Mtf .
(C5) There exists t0 > 0 such that for all t ≥ t0, x ∈ D, and non-empty open subsets O of D,

Mt(x, O) > 0

(we can assume this t0 > 0 is the same as the one in (C1)), and there is some x0 ∈ D such
that Px0(τ < +∞) > 0.

4.1.2. The general result for existence and uniqueness of the quasi-stationary distribution

In this section, we provide a slightly less general result than [36, Theorem 2.2]. Indeed, Theorem 6
below is actually still valid when replacing (C4) by the less stringent assumption that for t ≥ 0,
Mt is weakly Feller.

Theorem 6. Assume that (C1)→(C5) hold. Take any p ∈]1,+∞[. Then, there exists only one
quasi-stationary distribution µD of the process (Xt, t ≥ 0) in D satisfying

µD(W
1/p) :=

∫
D
W1/p(x)µD(dx) < +∞.

In addition, there are some constants δ > 0 and C ≥ 1 such that for any initial distribution ν on
D with ν(W1/p) < +∞,

∣∣Pν(Xt ∈ A|t < τ)− µD(A)
∣∣ ≤ Ce−δt ν(W

1/p)

ν(φ)
, ∀A ∈ B(D), t > 0, (23)

where φ : D → R is continuous, φ/W1/p is bounded, and φ is positive within D.

Let us give some remarks on this theorem. If W is bounded over D, the quasi-stationary distribu-
tion inside D is unique. When S is moreover compact, Theorem 6 is valid without assuming (C3)
and with W = 1 there (i.e. there exists a unique quasi-stationary distribution inM1(D) and (23)
holds for any ν ∈M1(D)). On the contrary, when W is unbounded, Theorem 6 states that there is
a unique QSD which integrate W1/p for all p > 1 (in the statement the QSD µD a priori depends
on p, but then, clearly, it doesn’t, since µD(W

1/p) < ∞ for some p > 1 implies µD(W
1/q) < ∞

for all q ⩾ p), but it doesn’t prevent the existence of other QSD ν with ν(W1/p) = +∞ for all
p > 1. This is for instance the case for the Ornstein-Uhlenbeck process killed at 0 (see [50]), to

which Theorem 6 applies with W(x) = eαx
2

with α < 1/2.
The intuition behind the assumptions (C1)→(C5) is the following. It is now well known that

a Lyapunov condition provides a spectral gap for a non killed semigroup in some weighted Banach
spaces [29,52]. Using results of [64] characterizing the essential spectral radius of a positive operator
(combined with the regularity conditions (C1) and (C2) on the non killed process (Xt, t ≥ 0)),
the Lyapunov type condition (C3) is used to get a spectral gap for Mt in bW1/pB(D) (the space of
measurable functions f over D such that f/W1/p is bounded). It is also known that an irreducibility
condition and a regularity condition on a non killed semigroup ensure the uniqueness of the invariant
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measure. It is similar for killed processes: we show that the regularity condition (C4) on Mt and
the irreducibility condition (C5) imply that Mt admits a principal eigenvalue.

Let us also refer to [3, 8, 12, 13, 32, 42, 61] and references therein for other general criteria for
existence and uniqueness of a quasi-stationary distributions.

4.2. Langevin processes with continuous coefficients

In this section we apply Theorem 6 to Langevin processes with continuous coefficients (also
called hypoelliptic damped Hamiltonian systems). Let us introduce these processes. Let d ≥ 1 and
(Ω,F , (Ft)t≥0,P) be a filtered probability space. Let (Xt = (xt, vt), t ≥ 0) be the solution of the
following hypoelliptic stochastic differential equation on R2d:{

dxt = vtdt,

dvt = −∇V (xt)dt− c(xt, vt)vtdt+Σ(xt, vt)dBt,
(24)

where (Bt, t ≥ 0) is a standard d-dimensional Brownian motion on (Ω,F , (Ft)t≥0,P). Here the
state space is S = R2d. Let us define the following assumptions on V and c:

(Av1) V : Rd → R is C1 and V is lower bounded on Rd.
(Ac1) c : R2d → Md(R) (the space of square matrices of size d with real coefficients) is continuous.

In addition, there exist η > 0 and L > 0, such that

∀v ∈ Rd, |x| ≥ L :
1

2

[
c(x, v) + cT (x, v)

]
≥ η IRd .

Finally, for all N > 0,

sup
|x|≤N,v∈Rd

∥c(x, v)∥H.S < +∞,

where ∥c(x, v)∥H.S is the Hilbert-Schmidt norm of matrix and where cT is the the transpose
matrix of c.

(AΣ) Σ : R2d → R a C∞ function, uniformly Lipschitz over R2d, and such that for some Σ0 > 0
and Σ∞ > 0,

∀x ∈ R2d, Σ0 ≤ Σ(x) ≤ Σ∞.

We also consider the less stringent assumption than (Ac1):

(Ac0) c : R2d → Md(R) is continuous and

∃A ≥ 0,∀x, v ∈ Rd :
1

2

[
c(x, v) + cT (x, v)

]
≥ −AIRd .

This will allow us to consider in particular Langevin processes with unbounded v-dependent damp-
ing coefficient:

for some ℓ0 > 0, ∀x, v ∈ Rd, c(x, v) = |v|ℓ0 (25)

and fast growing potential, in the sense that there exist n0 > 2, r0 > 0, and r > 0, for all |x| ≥ r0,

V satisfies (Av1), r−1|x|n0 ≤ V (x) ≤ r|x|n0 and r−1|x|n0 ≤ x · ∇V (x). (26)
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Notice that when (25) holds, Assumption (Ac1) is not satisfied but (Ac0) is satisfied. When V ,
c, and Σ satisfy respectively (Av1), (Ac0), and (AΣ), there is a unique weak solution to (24)
by [63, Lemma 1.1], which is thus a (strong) Markov process. In the following we always assume
that (AΣ) holds.

As explained in the introduction above (see also [27]), the process (xt, t ≥ 0) is stuck during long
periods of time in neighborhoods of the local minima of V . This is due to energetic barriers this
process has to cross to visit other regions of Rd. Such neighborhoods are called metastable regions
and are thus of the form

D = O× Rd, (27)

where O ⊂ Rd. We are interested in the existence of quasi-stationary distributions for the pro-
cesses (24) in domain D of this form. We assume that O is a C2 subdomain (not necessarily
bounded) of Rd, such that Rd \ O is non-empty.

4.2.1. The case when (Av1) and (Ac1) hold

Let us define the following last assumptions on V and c.

(Av2) There exists a C1 function G : Rd → Rd such that G and ∇G are bounded over Rd, and
such that

∇V (x) ·G(x)→ +∞ as |x| → +∞.
(Ac2) There exists some C2 lower bounded function U : Rd → R such that

sup
x,v∈Rd

|cT (x, v)G(x)−∇U(x)| < +∞.

Some examples of functions V and c satisfying (Av1), (Av2), (Ac1), and (Ac2) are given in [63,
Remark 3.2], see also [36, Remark 6.3]. The Hamiltonian of the process (24) is, for x, v ∈ Rd,

H(x, v) = V (x) +
1

2
|v|2.

Assume that (AΣ), (Av1), (Av2), (Ac1), and (Ac2) hold. Let us introduce for (x, v) ∈ R2d, the
modified Hamiltonian [63, Eq. (3.3)],

F(x, v) = aH(x, v) + v · (bG(x) +∇w(x)) + b U(x), (28)

where G, U are as (Av2) and (Ac2), a > 0, b > 0, and w : Rd → R is a compactly supported C2
function. Define, for all x, v ∈ Rd:

W(x, v) = exp
[
F(x, v)− inf

R2d
F
]
≥ 1. (29)

The following asymptotic upper bound on W1 gives a way to check if a probability measure on ν
on D ⊂ R2d satisfies ν(W1/p) < +∞ (see the proof of [36, Lemma 2.6]).

Lemma 1. Assume that V satisfies (Av1) and (Av2). Then limx→+∞ V (x) = +∞. Let c be
such that (Ac1) and (Ac2) hold with lim|x|→+∞ U(x)/V (x) = 0. Then, for any ϵ > 0, there exists

R > 0 such that if |x|+ |v| ≥ R, W(x, v) ≤ ea(1+ϵ)H(x,v).

We have the following result which ensures existence and uniqueness of the quasi-stationary
distribution of the process (24) on D (see (27)) when V and c satisfy (Av1), (Av2), (Ac1), and
(Ac2).
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Theorem 7. Assume that Σ satisfies (AΣ) and that the functions V and c satisfy (Av1), (Av2),
(Ac1), and (Ac2). Then, there exist parameters w ∈ C2c (Rd,R), a > 0, and b > 0 (see [63, Eq.
(3.4) → Eq. (3.9)] for explicit conditions on w, a, and b) such that Theorem 6 is valid for the
process (24) with D = O× Rd and with the Lyapunov function W defined in (29).

In other words, for all p > 1, under (AΣ), (Av1), (Av2), (Ac1), and (Ac2) and when
D = O×Rd (where O is as in Theorem 7), there exists a unique quasi-stationary distribution in D
for the process (24) in the space Mp = {ν ∈ M1(D), ν(W1/p) < +∞}. In addition, Equation (23)
holds for all ν ∈Mp.

To prove Theorem 7 we use Theorem 6. More precisely, we show that (C1), (C2), (C4), and
(C5) are satisfied and that, choosing well the function w and taking a > 0 and b > 0 small enough
(see [63, Eq. (3.4) → Eq. (3.9)]), the function W defined in (29) satisfies (C3).

When O is bounded, V is C∞ on O, and both Σ and c are constant, the very recent work [47]
(see also [49,58]) establishes the uniqueness of the quasi-stationary distribution in the whole space
of measure over D. These results were presented in Section 3 where the authors also considered non
gradient vector fields (see indeed (13)). Their approach is different from the one adopted in [36,37]:
it is based on a Feynman-Kac type formula for the killed semigroup, Harnack inequalities, and
Gaussian upper bounds. We finally also refer to [4] for the recent study of Hypoelliptic diffusions
killed at the boundary of a bounded subdomain of Rm with non characteristic boundary.

4.2.2. The case when (25) and (26) are satisfied

When (25) and (26) hold, and ℓ0 < n0−2, we are able to construct a bounded Lyapunov function
for the process (24) (i.e. a bounded Lyapunov function W over R2d satisfying (C3)). This implies
the following theorem.

Theorem 8. Assume that Σ satisfies (AΣ) and that the functions V and c satisfy (25) and (26).
Assume in addition that

ℓ0 < n0 − 2.

Then, Theorem 6 is valid with a bounded Lyapunov function. In particular: there exists a unique
quasi-stationary distribution in D = O × Rd for the process (24) in the whole space of probability
measuresM1(D) on D, and in addition, (23) holds for all ν ∈M1(D).

4.3. Langevin processes with singular potentials

In this section we consider the existence and uniqueness of a quasi-stationary distribution for
the process (24) when the potential V is singular. For ease of exposition, we will just focus here
on Lennard-Jones and Coulomb interactions. However much more general singular potentials are
considered in [37].

For d ≥ 1, consider a system of N ≥ 2 particles in Rd which cannot collide and let

xt = (x1t , . . . , x
N
t ) ∈ (Rd)N and vt = (v1t , . . . , v

N
t ) ∈ (Rd)N ,

denote respectively the positions of the N particles and their velocities, at time t ≥ 0. The natural
space to consider the time evolution of the positions (xt, t ≥ 0) and of the velocities (vt, t ≥ 0) of
the N particles is thus

S = O × (Rd)N , (30)

where, if d = 1,
O =

{
x = (x1, . . . , xN ) ∈ (R)N , x1 < x2 < . . . < xN

}
,
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and if d ≥ 2,

O =
{
x = (x1, . . . , xN ) ∈ (Rd)N , xi ̸= xj for all i ̸= j

}
.

Notice that in both cases, O is open, path connected, and unbounded. In molecular dynamics, the
interatomic potential of the system of N particles is typically of the form, for x = (x1, . . . , xN ) ∈ O,

V (x) =

N∑
i=1

Vc(x
i) +

∑
1≤i<j≤N

VI(x
i − xj) ∈ R, (31)

where Vc : Rd → R is the confining potential of the system and VI : Ω → R (where, if d = 1,
Ω = {y < 0}, and if d ≥ 2, Ω = {y ̸= 0}) is the potential energy modeling the interaction between
two particles, the latter becoming infinite when (and only when) y ∈ ∂Ω = {0} (which prevents
from collisions).

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. We assume that the evolution of the
positions (xt, t ≥ 0) and the velocities (vt, t ≥ 0) of the N particles on S is described by the
following hypoelliptic stochastic differential equation{

dxt = vtdt,

dvt = −∇V (xt)dt− c(xt, vt)vtdt+Σ(xt, vt) dBt,
(32)

where c : (Rd)N×(Rd)N → MNd(R) is the friction matrix, (Bt, t ≥ 0) is a standard dN -dimensional
Brownian motion, and Σ : (Rd)N × (Rd)N → R. We set Xt = (xt, vt) for t ≥ 0. Throughout this
section, we assume that Σ satisfies (AΣ) (with Nd instead of d there) and that c is such that:

(Ac) c : (Rd)N × (Rd)N → MNd(R) is a locally Lipschitz function such that:
(i) there exists c∗ > 0, ∀x, v ∈ (Rd)N : 1

2

[
c(x, v) + cT (x, v)

]
≥ c∗ I(Rd)N ,

(ii) c is bounded, i.e. supx,v∈(Rd)N ,k,ℓ=1,...,Nd |ck,ℓ(x, v)| < +∞.

In the two next sections, we consider existence and uniqueness of a quasi-stationary distribution
for the process (32) when VI is the Lennard-Jones potential or the Coulomb potential.

4.3.1. Quasi-stationary distributions for the Lennard-Jones potential (for any d ≥ 1) and the
Coulomb potential (when d ≥ 3)

We recall that the Lennard-Jones potential is defined by, for y ∈ Ω,

VLJ(y)=


b

|y|12
− c

|y|6
if y ∈ Ω

+∞ if y = 0,

where b, c > 0. When d ≥ 3, the Coulomb potential is the function defined on Ω by:

Vco(y)=


e

|y|d−2
if y ∈ Ω

+∞ if y = 0,

where e > 0. In this section, the interaction potential VI is either Vco or VLJ . The Coulomb
potential when d = 2 is treated in the next section. We assume that Vc is C2 over Rd and to
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simplify we assume that for some r > 0,

∀y ∈ Rd, |y| ≥ r, Vc(y) = A|y|α1 , (33)

where A > 0 and α1 > 1. We refer to [37] for more general confining potentials. With such confining
potentials and interaction potentials, by [37, Proposition 2.3], for any x ∈ S, there exists a unique
pathwise solution (Xt = (xt, vt), t ≥ 0) of (32) with X0 = x, which is moreover non-explosive and
remains in S for all t ≥ 0.

Recall that the Hamiltonian of the process (24) is, for (x, v) ∈ S,

H(x, v) = V (x) +
1

2
|v|2, (34)

where V is given by (31). We have that H(x, v) → +∞ (for (x, v) ∈ S, see (30)) if and only if
x→ ∂O ∪ {∞} or v → +∞.

Let us now consider

η1 ∈ (0, 1].

If α1 ∈ (1, 2), we assume in addition that η1 > (2− α1)/α1 (∈ (0, 1)). We have the following result
(see [37, Theorem 2.4]).

Theorem 9. Assume that (Ac) and (AΣ) are satisfied. Assume also that VI ∈ {Vco, VLJ} and
that Vc is a C2 potential such that (33) holds. Let O be a subdomain of O such that O \ O is
nonempty and ∂O ∩ O is C2. Set D = O × (Rd)N ⊂ S (see (30)). Choose η1 as above. Then,
Theorem 6 is valid for the process (32) on D with a continuous and unbounded Lyapunov functional
W : S → [1,+∞) which satisfies, for some m > 0, W ≤ exp

[
mHη1

]
on S.

In other words, Theorem 9 states that on D, there exists a unique quasi-stationary distribution
for the process (32) in the space Mp (∀p > 1). In addition, Equation (23) holds for all ν ∈Mp.

We refer to [37, Proposition 2.10] for the explicit construction of W, which is inspired by the
previous works [63] and [39]. Notice that O is not necessarily bounded in Theorem 9, and its closure
may contain singularities of V , namely some subset of ∂O.

4.3.2. Quasi-stationary distributions for the Coulomb potential when d = 1, 2

In this section, we consider the interaction potential VI defined by

for all y ∈ Rd: VI(y) = − log |y| if y ̸= 0, else VI(y) = +∞. (35)

When d = 2, VI is the Coulomb potential, and when d = 1, VI corresponds to a log singularity
pairwise potential. We also assume that the confining potential Vc : Rd → R satisfies: Vc ∈
C2(Rd,R) and for some r > 0, it holds:

∀y ∈ Rd, |y| ≥ r, Vc(y) = A|y|α2 , (36)

where A > 0 and α2 ≥ 0 (we refer to [37] for more general confining potentials).
With such an interaction potential and confining potentials, by [37, Proposition 3.1], for any

x ∈ S (see (30)), there exists a unique pathwise solution (Xt = (xt, vt), t ≥ 0) of (32) with X0 = x,
which is moreover non-explosive and remains in S (see (30)) for all t ≥ 0.
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Theorem 10. Let d ∈ {1, 2}. Assume that (Ac) and (AΣ) are satisfied. Assume also that VI is
given by (35) and that Vc is a C2 potential such that (36) holds. Let O be a subdomain of O such
that O \ O is nonempty and ∂O ∩ O is C2. Set D = O × (Rd)N ⊂ S (see (30)). Take η2 ∈ (0, 1].
Then, Theorem 6 is valid for the process (32) on D with a continuous and unbounded Lyapunov
functional W : S → [1,+∞) which satisfies, for some m > 0, W ≤ exp

[
mHη2

]
on S.

We refer to [37, Proposition 3.3] for the explicit construction of W, which is inspired by [51]. Let
us emphasize that there is no restriction in Theorem 10 on η2 (i.e. one can choose any η2 in (0, 1]).
We mention that in [37], we also deduce that large deviation principles hold for the non killed
process (i.e. the process (Xt, t ≥ 0) on S) with Lennard-Jones and Coulomb potential interactions,
as well as the exponential convergence of its law towards its invariant measure. The existence
and uniqueness of a quasi-stationary distribution for elliptic diffusions with Lennard-Jones type
interactions is also studied there.

5. Numerical approximation with particles

This section is based on [40]. The goal is to introduce a numerical scheme whose aim is to
sample the QSD of a killed diffusion, and to prove quantitative long-time convergence rates for this
algorithm.

5.1. The problem

Given a Markov process X killed at time τ , we introduce a numerical scheme in order to sample
its quasi-stationary distribution ν∗, or the law of Xt conditioned on survival. With great generality,
one may introduce a particle approximation of the process conditioned on survival, called a Fleming-
Viot process in most of the literature. It consists in N ∈ N independent processes (Xi), having
the same dynamic as X, but when one of them dies, instead of staying at the cemetery point, it
chooses uniformly at random another one of the processes, and branches onto it. This gives rise to
a mean-field interacting particle system, with Markov semi-group (PN,t)t⩾0. In the particular case
of a softly-killed elliptic SDE on the d-dimensional torus:

dXt = b(Xt)dt+ dBt, (37)

where b ∈ C1(Td) and B is a d-dimensional Brownian motion, we propose a numerical scheme of
this Fleming-Viot process.

Given a random variable E ∈ R+ with law e−tdt, we define the soft killing as:

τ = inf

{
t ⩾ 0, E ⩽

∫ t

0

λ(Xs)ds

}
, (38)

where λ : Td → R+ is a Lλ-Lipschitz death rate, for some Lλ > 0. As before, write:

µt = Law(Xt|τ > t),

the law of the process conditioned on survival.
First, we introduce a discretized version of the killed diffusion. We define a Markov kernel Kγ

on Td for γ small enough as follow: fix x ∈ Td, then

Kγ(x, ·) = N (x+ γb(x), γI).
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We define a Markov chain (Xn) by Xn+1 ∼ Kγ(Xn,dx). Given a sequence of independent and
uniform on [0, 1] random variable (Un), we define the death time of the chain (Xn) as:

τ̄ = inf {n ⩾ 0, Un ⩽ p(Xn)} , (39)

where p(x) = 1− e−γλ(x). Write
ηn = Law(Xn|τ > n).

The discretized killing as been defined as such in order to have for all t ⩾ 0:

η⌊t/γ⌋ → µt,

as γ → 0. This Markov chain also admits a QSD νγ .
Now, we want to define two processes: a Markov process (Yn) whose law is ηn, defined for all

time, and a particle approximation of this Markov chain (Yn). To this end, we define first, given
some probability measure µ ∈ M1(Td), a Markov kernel Qµ such that Qµ(x, ·) corresponds to the
law of some random variable having done a step of discretized diffusion, and upon death, it does
a step of discretized diffusion, conditioned on survival, with initial condition µ. More precisely, we
construct a random variable of law Qµ(x, ·) as follow:

(1) Draw X0 ∼ Kγ(x, ·) and U0 ∼ U([0, 1]).
(2) If U0 ⩾ p(X0), set X = X0 in Td (in that case, we say the particle has moved from x to X0

without dying).
(3) If U0 < p(X0) then set i = 1 and, while X is not defined, do:

(a) Draw a new X ′
i distributed according to µ, a new Xi ∼ N (X ′

i + γb(X ′
i), γId) and a

new Ui ∼ U([0, 1]).
(b) If Ui ⩾ p(Xi), set X = Xi in Td (in that case, we say the particle has died, resurrected

at X ′
i, moved to Xi and survived).

(c) If Ui < p(Xi), set i← i+ 1 (in that case, we say the particle has died, resurrected at
X ′

i, moved to Xi and died again) and go back to step (a).

We introduce the following non-linear process, solution to the problem:{
Yn+1 ∼ Qη̃n

(Yn, ·)
η̃n = Law(Yn)

. (40)

This non-linear Markov chain does at each time n a step of discretized diffusion conditioned on
survival. As said, the reason to introduce this Markov chain is the following property:

Proposition 3. For all n ∈ N

η̃n = Law (Xn | τ > n) .

Now we can define the numerical scheme of the Fleming-Viot process. For x = (x1, . . . , xN ), we
write:

π(x) :=
1

N

N∑
i=1

δxi
∈ P(Td) (41)

the empirical measure and:

Rγ,N (x, ·) = Qπ(x)(x1, ·)⊗ · · · ⊗Qπ(x)(xN , ·). (42)
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We then define recursively the process by Xn+1 ∼ Rγ,N (Xn, ·). This can be understood as follow:
each particles is an Euler-Maruyama scheme of the diffusion, and if one of them dies at time n,
then it does a step of Kγ , starting from π(Xn−1), conditioned on survival. As N goes to infinity,
if the initial condition condition of this particle system is N iid random variable of law η0, then
π(Xn) is expected to be close to the common law of the Xi’s. This can then be shown to be close
to ηn. This is the propagation of chaos phenomenon.

5.2. Main results

For this Markov chain, we proved two theorem. The first one is about the long-time behavior of
the process:

Theorem 11. There exists c0, γ0 > 0 that depends only on the drift b and the dimension d such
that, if λ is Lipschitz with a constant Lλ such that

Lλe
γ∥λ∥∞ < c0 , (43)

then there exist a distance ρ equivalent to | · | on Td, such that ρN (x, y) =
∑
ρ(xi, yi) is a distance

on TdN , and κ > 0, such that for all γ ∈ (0, γ0] N ∈ N, and all x,y ∈ TdN , there exists a coupling
(X,Y) of δxRN,γ and δyRN,γ such that:

E (ρN (X,Y)) ⩽ (1− γκ)ρN (x,y) .

This yields the existence of a stationary measure µ∞,N,γ , and exponential convergence of the Markov
chain towards this probability measure.

To construct the coupling of theorem 11, we first construct a coupling of Qµ(x, ·) and Qν(x, ·),
for any x, y ∈ T, µ, ν ∈ P(Td). This coupling is done as follow: thanks to [30], we are able couple
the step of discretized diffusion to get a coupling (X ′, Y ′) of δxK

γ and δyK
γ . The probability

that one of them dies and not the other is less then LλE(|X ′ − Y ′|). If they die together, then we
construct again thanks to [30] a sequence of coupling of µKγ and νKγ .

Replacing in this coupling µ and ν by π(x) and π(y) yields a coupling of Rγ,N (x, ·) and Rγ,N (y, ·).
The second theorem is about the convergence of the empirical measure of the process towards the

quasi-stationary distribution of the process (37) killed at time τ , in the limit γ → 0 and n,N →∞.

Theorem 12. Under the hypothesis of theorem 11, there exists C > 0 such that for all N ∈ N,
γ ∈ (0, γ0], t ⩾ 0 and µ0 ∈ P(TdN ), if (Xk)k∈N is a Markov chain with initial distribution µ0 and
transition kernel RN,γ ,

E
[
W1

(
π(X⌊t/γ⌋), ν

)]
⩽ C

(√
γ + α(N) + e−κt

)
,

where

α(N) =


N−1/2 if d = 1 ,
N−1/2 ln(1 +N) if d = 2 ,
N−1/d if d > 2 .

The second theorem is a consequence of the first one. The rate of convergence in γ, N and t would
be the same in the case of N independent diffusion, hence are optimal. The rate of convergence in
N comes from [33].
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To prove propagation of chaos, we construct a coupling of the discretized Fleming-Viot process,
with a system of N independent non-linear process defined in equation (40). This coupling is done is
a similare fashion as for the previous coupling of Rγ,N (x, ·) and Rγ,N (x, ·). For the limit γ → 0, the
coupling of the process is made with a continuous time Fleming-Viot process. Actually, thanks to
those couplings, we are able to prove similar convergence when only one or two parameters among
t, γ, or N are sent to their limit. We can summarize our results thanks to the diagram of figure 5.

Rm
N,γ

//

��

$$

PN,t

""

��

ηm //

��

µt

��

µ∞,N,γ
//

$$

µ̄∞,N

""
νγ // ν

t→∞

��

N→∞

��

γ→0 //

Figure 5. Summary of the results
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[9] P. Cattiaux and S. Méléard. Competitive or weak cooperative stochastic Lotka–Volterra systems conditioned

on non-extinction. Journal of mathematical biology, 60(6):797–829, 2010.
[10] D. Chafai and F. Malrieu. Recueil de modèles aléatoires, volume 78. Springer, 2016.
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