
HAL Id: hal-04892802
https://hal.inrae.fr/hal-04892802v1

Submitted on 17 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

STAT3 activation of SCAP-SREBP-1 signaling
upregulates fatty acid synthesis to promote tumor

growth
Yunzhou Fan, Rui Zhang, Chao Wang, Meixia Pan, Feng Geng, Yaogang

Zhong, Huali Su, Yongjun Kou, Xiaokui Mo, Etienne Lefai, et al.

To cite this version:
Yunzhou Fan, Rui Zhang, Chao Wang, Meixia Pan, Feng Geng, et al.. STAT3 activation of SCAP-
SREBP-1 signaling upregulates fatty acid synthesis to promote tumor growth. Journal of Biological
Chemistry, 2024, 300 (6), pp.107351. �10.1016/j.jbc.2024.107351�. �hal-04892802�

https://hal.inrae.fr/hal-04892802v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE COLLECTION: METABOLISM
STAT3 activation of SCAP-SREBP-1 signaling upregulates
fatty acid synthesis to promote tumor growth
Received for publication, January 27, 2024, and in revised form, April 23, 2024 Published, Papers in Press, May 6, 2024,
https://doi.org/10.1016/j.jbc.2024.107351

Yunzhou Fan1,2, Rui Zhang1, Chao Wang1 , Meixia Pan3, Feng Geng1,2, Yaogang Zhong1,2, Huali Su1,2,
Yongjun Kou1,2, Xiaokui Mo4, Etienne Lefai5 , Xianlin Han3, Arnab Chakravarti1, and Deliang Guo1,2,*
From the 1Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and
Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; 2Center for
Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA; 3Barshop Institute
for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San
Antonio, Texas, USA; 4Biostatistic Center and Department of Bioinformatics, College of Medicine at The Ohio State University,
Columbus, Ohio, USA; 5Human Nutrition Unit, French National Research Institute for Agriculture, Food and Environment,
University Clermont Auvergne, Clermont-Ferrand, France

Reviewed by members of the JBC Editorial Board. Edited by George M. Carman
SCAP plays a central role in controlling lipid homeostasis by
activating SREBP-1, a master transcription factor in controlling
fatty acid (FA) synthesis. However, how SCAP expression is
regulated in human cancer cells remains unknown. Here, we
revealed that STAT3 binds to the promoter of SCAP to activate
its expression across multiple cancer cell types. Moreover, we
identified that STAT3 also concurrently interacts with the
promoter of SREBF1 gene (encoding SREBP-1), amplifying its
expression. This dual action by STAT3 collaboratively
heightens FA synthesis. Pharmacological inhibition of STAT3
significantly reduces the levels of unsaturated FAs and phos-
pholipids bearing unsaturated FA chains by reducing the
SCAP-SREBP-1 signaling axis and its downstream effector
SCD1. Examination of clinical samples from patients with
glioblastoma, the most lethal brain tumor, demonstrates a
substantial co-expression of STAT3, SCAP, SREBP-1, and
SCD1. These findings unveil STAT3 directly regulates the
expression of SCAP and SREBP-1 to promote FA synthesis,
ultimately fueling tumor progression.

Rapidly dividing tumor cells require a continuous supply of
fatty acids (FAs) to generate sufficient phospholipids for
membrane biogenesis (1, 2). FA synthesis is known to be
upregulated in various cancers to meet this demand (2–5). De
novo FA synthesis begins with the production of palmitic acid,
consisting of 16 saturated carbons (C16:0), and is generated by
fatty acid synthase (FASN) (1). Palmitic acid undergoes a
sequential process of desaturation and elongation, resulting in
the formation of several new FAs, including palmitoleic acid
(C16:1), stearic acid (C18:0) and oleic acid (C18:1) (6–8).
Within this process, stearoyl-CoA desaturase 1 (SCD1) con-
verts palmitic acid and stearic acid into monounsaturated
palmitoleic acid and oleic acid (6–8). Numerous studies have
highlighted the critical role of oleic acid in supporting tumor
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growth (9–11). It can prevent saturated palmitic acid-induced
endoplasmic reticulum (ER) stress (12, 13) and neutralize
polyunsaturated FA levels to prevent peroxidation and the
initiation of ferroptosis (14). Thus, high levels of SCD1 ensure
an ample supply of oleic acid to sustain tumor growth (1). In
contrast, the role of palmitoleic acid in cancer growth has been
less studied (15, 16).

The de novo FA synthesis pathway is under the control of
sterol regulatory element-binding protein 1 (SREBP-1), the
master transcription factor of lipogenesis, which regulates the
expression of both FASN and SCD1 (1, 17, 18). We previously
demonstrated that the high upregulation of SREBP-1 in glio-
blastoma (GBM), the most lethal type of primary brain tumor
(19, 20) and in lung cancer, promotes the expression of FASN
and SCD1 to support rapid tumor growth (21). The elevated
expression of SREBP-1 has subsequently been validated in
various other cancer types, including liver, pancreatic, breast,
and melanoma (3, 21–23).

The family of SREBPs comprises three members: SREBP-1a,
-1c, and -2, collectively controlling the expression of genes in
regulating fatty acid and cholesterol synthesis (1, 18, 24).
Specifically, SREBP-1c primarily mediates fatty acid synthesis,
SREBP-2 mediates cholesterol synthesis and SREBP-1a regu-
lates both processes (6, 24). SREBPs are initially synthesized as
inactive precursors localized in the ER membrane. They
require SREBP cleavage-activation protein (SCAP) to transport
them from the ER to the Golgi for sequential cleavage. This
process releases the N-terminal active SREBP isoforms,
allowing them to enter the nucleus and activate the expression
of lipogenic genes (3, 17, 18, 21, 25, 26). Previous research has
mainly focused on the regulation of SCAP-SREBP trans-
location, including cholesterol-mediated feedback inhibition
(17, 24), as well as glucose, glutamine, and ammonia-activated
trafficking (1–3, 18, 21). Our group has demonstrated that
genetic inhibition or mutation of SCAP significantly sup-
presses tumor growth in GBM and lung cancer orthotopic
mouse models, highlighting SCAP as a promising molecular
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STAT3 dual regulation of SCAP and SREBP-1
target for cancer treatment (3, 21). However, how SCAP is
upregulated in human cancers to promote SREBP-1 activation,
and FA synthesis is unknown. Understanding this process
could contribute to the development of effective approaches
for targeting various types of cancer.

Signal transducer and activator of transcription 3 (STAT3),
an oncogenic transcription factor implicated in tumorigenesis,
exhibit hyperactivation in various cancer types, including
brain, lung, liver, breast, colon, and prostate cancers. This
hyperactivation can be induced by multiple factors, such as
growth factors, oncogenic proteins, carcinogens, and cytokines
(27–30). STAT3 is typically activated through phosphorylation
at tyrosine 705 (Try705), which leads to dimerization and
nuclear translocation. Consequently, STAT3 regulates the
transcription of various pro-tumoral genes, including CCND1
(encoding cyclin D1), c-myc, Survivin, and VEGF, collectively
promoting tumor progression (31, 32). Targeting STAT3 using
small-molecule inhibitors, such as napabucasin (Napa), or
degraders has been extensively tested in preclinical xenograft
models and in Phase II/III clinical trials for various cancer
therapy, including GBM, lung, liver, gastrointestinal, colo-
rectal, and pancreatic cancers (32–35).

In this study, we observed that pharmacological inhibition
of STAT3 by Napa in GBM cells led to a significant reduction
in palmitoleic acid, oleic acid and other unsaturated FA levels.
This was accompanied by a notable alteration in phospholipid
profiles. Further investigation revealed that STAT3 directly
binds to the promoters of SCAP and SREBF1 (which encodes
for SREBP-1) to activate their expression. This, in turn,
upregulates the SCAP-SREBP-1-FASN-SCD1 axis, increasing
de novo FA synthesis and desaturation and consequently
promoting tumor growth.
Results

Inhibition of STAT3 significantly reduces free FA levels and
disrupts phospholipid homeostasis in GBM cells

To investigate whether STAT3 plays a role in regulating FA
synthesis and phospholipid formation in cancer cells, we
conducted lipidomics analysis on GBM U251 cells treated with
Napa, a well-studied STAT3 inhibitor that has been used in
Phase II/III clinical trials for various cancers (Fig. 1A) (32, 36,
37). This treatment induced significant changes in the lipid
profiles of the GBM cells (Fig. 1, B–I). Notably, various species
of phosphatidic acid (PA), phosphatidylinositol (PI), phos-
phatidylserine (PS), and sphingomyelin (SM) were significantly
reduced following Napa treatment as compared to untreated
cells (Fig. 1, D–G). Additionally, multiple species of phos-
phatidylcholine (PC), phosphatidylethanolamine (PE), lyso-
phosphatidylcholine (LPC), and SM exhibited alterations, with
some increasing and others decreasing compared to control
cells (Fig. 1H). Upon closer examination of the altered lipid
species, it became evident that most of the decreased phos-
pholipids contained unsaturated fatty acid chains (Fig. 1,
D–H). Further analysis of free FA (FFA) levels in GBM cells
revealed that Napa treatment significantly reduced the levels of
many FAs, particularly for mono- and polyunsaturated FAs,
2 J. Biol. Chem. (2024) 300(6) 107351
including C16:1, C16:2, C18:1, C18:2, C20:1, C20:2, C20:3,
C22:3 and C22:4 FAs (Figs. 1I and S1). The substantial
reduction of FA levels attributed to STAT3 inhibition likely
resulted from downregulation of FA synthesis and subsequent
desaturation and elongation, impacting the critical genes
involved in this process, including FASN, SCD1, fatty acid
desaturase 1/2 (FADS1/2), and fatty acid elongase 2/5/6
(ELOVL2/5/6) (Fig. 1J) (8, 38, 39). These enzyme alterations
may account for the significant changes in both FFA and the
phospholipid profile, which were tested in subsequent studies.
Inhibition of STAT3 downregulates a SCAP-SREBP-1-FASN-
SCD1 axis in various cancer cells

After dissociation from the ER-resident protein insulin-
induced gene (Insig), SCAP promotes SREBP-1 trafficking
and nuclear translocation to activate the expression of genes
involved in FA synthesis, including FASN, SCD1, FADS, and
various members of the ELOVL gene family (Fig. 2A) (6, 7, 18,
39). We investigated whether SREBP-1 regulates the expres-
sion of these genes in GBM U251 cells. Pharmacological in-
hibition of SREBP-1 using its inhibitor fatostatin (Fato, 24 h)
and shRNA knockdown of SREBP-1 led to a significant
reduction in the expression of SREBP-1a, SREBP-1c, FASN,
SCD1, FADS1, FADS2, ELOVL2, ELOVL5 and ELOVL6 (Fig. 2,
B and C). We next investigated whether STAT3 inhibition
possibly affected the expression of SCAP and SREBF1
(encoding SREBP-1) expression, thereby leading to reduced
expression of downstream genes involved in FA synthesis.
Real-time PCR analysis revealed that pharmacological inhibi-
tion of STAT3 with Napa significantly decreased the expres-
sion of SCAP, SREBP-1a, SREBP-1c, FASN, SCD1, FADS1/2, as
well as the ELOVL2/5/6 genes in U251 cells (Fig. 2D).

We also investigated whether STAT3 inhibition had an
impact on the protein levels of these factors. By Western
blotting, we found a significant reduction in SCAP levels, as
well as the SREBP-1 precursor (P) and N-terminal (N) active
forms in multiple cancer types, including GBM (U251,
GBM30, U373, T98 and U87), lung cancer (A549 and H1299),
and liver cancer (HepG2), when compared to untreated cells
(Figs. 2E and S2A). The protein disulfide isoform (PDI), an ER
membrane protein used as the loading control for SCAP,
remained unchanged (Fig. 2E). Furthermore, through Western
blotting analysis, we demonstrated that downstream targets of
the SCAP-SREBP-1 pathway, namely FASN and SCD1,
responsible for FA synthesis and desaturation, exhibited
significantly reduced levels in Napa-treated cells in compari-
son to untreated cells (Figs. 2E and S2A). In addition, we tested
three other STAT3 inhibitors, TTI-101 (currently in Phase II
clinical trials), HO-3867, and LLL12 using GBM30 cells
(40–42). Notably, all three inhibitors demonstrated similar
effects as Napa in reducing the SCAP-SREBP-1 pathway
(Fig. S2, B and C). To strengthen the causal link between
STAT3 and the SCAP-SREBP-1-FASN-SCD1 pathway, we
employed genetic inhibition of STAT3 using two distinct
lentivirus-mediated shRNAs. This genetic inhibition (Fig. 2F)
mirrored the results of pharmacological inhibition (Fig. 2E)
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Figure 1. Inhibition of STAT3 significantly reduces free FA levels and disrupts phospholipid homeostasis in GBM cells. A, a schematic diagram
illustrating the lipidomic analysis of GBM U251 cells treated with or without napabucasin (Napa, 1 mM) in serum-free DMEM medium for 24 h. B, heatmap of
different lipids in U251 cells collected from panel A (n = 4). C, total levels of each type of lipids in U251 cells with or without Napa treatment. The data is
shown as mean ± S.D. (n = 4). D–G, heatmap of individual species of PA, PI, PS, and SM in U251 cells with or without Napa treatment (n = 4). H, levels of
representative individual lipid species of PC, LPC, PE and SM in U251 cells with or without Napa treatment. The data is shown as mean ± S.D. (n = 4). I,
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STAT3 dual regulation of SCAP and SREBP-1
and led to a substantial decrease in the protein levels of SCAP,
SREBP-1 precursor, and active forms (P and N), as well as
FASN and SCD1 in GBM, lung, and liver cancer cells.

We proceeded to investigate whether the changes in lipid
profiles induced by STAT3 inhibition using Napa resulted in
cell death. Notably, Napa treatment led to highly significant
cell death in both U251 and H1299 cells when compared to
control treatment (Fig. 2, G and H). Next, we examined
whether the supplementation of palmitoleic acid (POA,
C16:1) and/or oleic acid (OA, C18:1), the two most abundant
monounsaturated FAs in many cells, could rescue the cell
death induced by Napa treatment. Interestingly, the supple-
mentation of a mixture of bovine serum albumin (BSA)-
conjugated POA and OA at a ratio of 1:4 according to their
levels in tumor cells as demonstrated by lipidomics analysis
(Fig. S1), effectively rescued the cell death induced by Napa
treatment in both cell lines, whereas supplementation with
either POA or OA alone failed to do so (Fig. 2, G and H). The
combined rescue effects were dose-dependent from 5 to
10 mM POA and 20 to 40 mMOA, with a maximal effect at the
combination of 10 mM POA and 40 mM OA (Fig. S2D). In
contrast, supplementing saturated FAs, palmitic acid (C16:0),
stearic acid (SA, C18:0), polyunsaturated FAs linoleic acid
(LA, C18:2), and a ternary mixture of them into cancer cells
did not have rescue effects on Napa-induced cell death
(Fig. S2E). As with the rescue of Napa treatment, supple-
menting fatty acids (POA and OA) also significantly rescued
cell viability in GBM and lung cancer cells with STAT3
shRNA knockdown (Fig. 2, I and J). These results underscore
the essential role of both monounsaturated FAs in supporting
cancer cell growth.

In summary, our data demonstrate that STAT3 inhibition
downregulates the SCAP-SREBP-1-FASN-SCD1 signaling
pathway, thereby disrupting the regulation of de novo FA
synthesis and desaturation processes in cancer cells, ultimately
leading to their death.

STAT3 binds to the promoters of SCAP and SREBF1 to activate
their expression

To elucidate the underlying mechanism by which STAT3
regulates SCAP and SREBP-1 expression, we utilized the
JASPAR database for analysis of potential transcription factor
binding sites (43, 44) within the promoters of SCAP and
SREBF1. The SREBF1 gene encodes both SREBP-1a and -1c
proteins through the utilization of alternative promoters
within the same gene (24, 45–47). Our analysis revealed the
presence of multiple potential STAT3 binding motifs in the
promoters of SCAP and SREBP1 (Fig. 3, A–C). To validate
these putative binding sites, we designed corresponding
primers flanking them (Fig. 3, A–C). Subsequently, we con-
ducted chromatin immunoprecipitation using an anti-STAT3
heatmap of free fatty acids (FFAs) in U251 cells with or without Napa treatm
synthesis, elongation and desaturation catalyzed by the indicated enzymes and
as panel A. Statistical significance was analyzed by an unpaired Student’s t tes
significant. Please also see Fig. S1. ELOVL2/3/5/6, fatty acid elongase 2/3/5
lysophosphatidylethanolamine; PA, phosphatidic acid; PC, phosphatidylcholine
linositol; PS, phosphatidylserine; SCD1, stearoyl-CoA desaturase 1; SM, sphing
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antibody in four cancer cell lines U251 and U373 (GBM),
A549, and H1299 (lung cancer). The precipitated DNA was
then analyzed through real-time PCR using the specifically
designed primers (Fig. 3, A–C, top scheme). Our results
confirmed that STAT3 indeed binds to the predicted sites
within the SCAP and SREBF1 promoters (Fig. 3, A–C).

To further confirm the binding and activation of gene
expression from the SCAP promoter and the two alternative
promoters of SREBF1 by STAT3, we cloned these promoters
into pGL3-luciferase (luc) promoter-based reporter plasmid,
denoted as pGL3-SCAP-luc, pGL3-SREBP-1a-luc, and pGL3-
SREBP-1c-luc. Each of these plasmids was individually co-
transfected into GBM cell lines (U251 and U373) and the
lung cancer cell lines (A549 and H1299) along with either
pcDNA3.1 (serving as a control) or pcDNA-STAT3 for 48 h.
Bioluminescence analyses revealed that STAT3 expression led
to a significant increase in the activity of the SCAP, SREBP-1a,
and -1c promoter in each cell line. This was evidenced by
higher levels of luciferase activity when compared to the
control pcDNA3.1 plasmid transfection (Fig. 3D).

In summary, these findings confirm that STAT3 functions
as a direct transcription factor, coordinating the expression of
SCAP and SREBP-1, resulting in a rapid increase in FA levels
and ultimately promoting tumor growth.
Inhibition of STAT3 downregulates SCAP and SREBP-1 in a
GBM xenograft model

We proceeded to investigate whether the pharmacological
inhibition of STAT3 could have the same downregulatory ef-
fects on SCAP and SREBP-1 expression, as well as their
downstream FA synthesis enzymes in an in vivo setting. To do
this, we implanted 2 × 106 GBM30 cells into the flanks of mice
to establish a xenograft model. After 1 week, the tumor vol-
umes reached approximately 80 mm3, at which point we
initiated treatment by administering Napa (40 mg/kg/2 days
via i.p.) for 2 weeks. Our results demonstrated that Napa
treatment significantly suppressed tumor growth, as evidenced
by reduced tumor volume and weight (Fig. 4, A–C). Immu-
nohistochemistry (IHC) analysis revealed that Napa treatment
led to a considerable reduction in STAT3 phosphorylation at
Tyr705, as well as decreased expression of SCAP, SREBP-1,
FASN, and SCD1 (Fig. 4D). Furthermore, there was a signifi-
cant decrease in Ki67 staining, a marker of tumor proliferation,
in the tumor tissues compared to the control group (Fig. 4D).
We also examined clinical samples from patients with GBM.
IHC staining of these samples indicated a strong correlation
between high levels of STAT3 phosphorylation at Tyr705 and
elevated levels of SCAP, SREBP-1, FASN, and SCD1 in tumor
tissues. In contrast, their levels were low in the adjacent
normal tissues (Fig. 4E).
ent (n = 4). J, schematic diagram illustrating the pathways of de novo FFA
summary of the changes of specific FFAs in U251 cells after Napa treatment
t (C) or two-way ANOVA with �Sídák’s multiple comparisons test (H). NS, not
/6; FADS1/2, fatty acid desaturase 1/2; LPC, lysophosphatidylcholine; LPE,
; PE, phosphatidylethanolamine; PG phosphatidylglycerol; PI, phosphatidy-
omyelin; TG, triglycerides.
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Discussion

Aberrant activation of STAT3 signaling and exaggerated FA
synthesis are two prominent characteristics of various human
cancers (31, 48–50). However, whether these two pathways
have an intrinsic causal connection has been unclear. Our
current study revealed that STAT3 binds to, and induces the
promotion of, both SCAP and SREBF1 expression in various
cancer cells. This upregulation promotes FA synthesis and
phospholipid generation to support tumor growth. Notably,
we characterized the lipid landscape in tumor cells after
STAT3 inhibition using mass spectrometry-based lipidomics
analysis and found markedly decreased levels of unsaturated
FAs and phospholipids containing unsaturated FA chains. To
the best of our knowledge, this is the first report to perform
lipidomics in STAT3-related studies. Moreover, mono-
unsaturated fatty acid, like oleic acid (OA, C18:1), is critical for
cancer cell growth (9–11), while the role of palmitoleic acid
(POA, C16:1) has not been sufficiently emphasized before. The
production of POA is also regulated by SCD1, which converts
palmitate acid (PA, C16:0) to POA (C16:1) (6–8). POA can
further be converted to oleic acid (OA, C18:1) by ELOVL6 (7).
As inhibition of STAT3 by Napa significantly reduces both
POA and OA levels (Figs. 1I and S1), rescuing cell death
induced by Napa requires adding both. In summary, our
findings unveil the underlying molecular connection between
oncogenic STAT3 signaling and de novo FA synthesis,
providing insights into understanding how tumor cells coor-
dinate the hyperactive oncogenic signaling and acquisition of
sufficient lipid building blocks to promote rapid tumor growth.

The rate-limiting step controlling SREBP-1 activation and
its downstream FA synthesis enzyme expression is SCAP
dissociation from the ER-resident protein Insig, which then
facilitates SREBP-1 trafficking and subsequent nuclear trans-
location (1, 2, 17, 18, 24). In addition to the regulation by
nutrients, that is, cholesterol, glucose, glutamine, and
ammonia (1–3, 17, 18, 21), a previous study from Brown &
Goldstein’s group showed that the stoichiometry between
SCAP and Insig protein levels in Chinese hamster ovarian
(CHO) cells can also modulate SREBP trafficking (26). When
SCAP protein levels significantly exceed Insig, the unbound
SCAP (i.e., the portion not binding to Insig) can transport
SREBPs from the ER to the Golgi for cleavage and activation
(26). This result has been confirmed by our group. We showed
that overexpression of SCAP strongly activates SREBP-1 and
FASN-SCD1 expression and promotes rapid tumor growth in
GBM and lung cancer xenograft models (3, 21). Our current
study unveiled that STAT3 plays a dual function in the regu-
lation of the SCAP-SREBP-1 pathway. It simultaneously
upregulates the gene and protein expression of both SCAP and
SREBP-1. The abundant SCAP can overcome the restriction of
without Napa (U251, 0.5 mM; H1299, 0.4 mM) for 72 h (G). Live and dead cells w
percentage was determined by the ratio of dead cells versus total cell number
and J, representative micrographs of U251 and H1299 cells with lentivirus-medi
BSA-conjugated palmitoleic acid (POA, 5 mM) and oleic acid (OA, 20 mM) combi
after trypan blue staining. Cell viability was determined by the ratio of live cells
3). Scale bar, 100 mm. Statistical significance was analyzed by one-way ANOVA
�Sídák’s multiple comparisons test (B–D). NS, not significant. Please also see Fi
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Insig in the ER, thereby allowing high level of SREBP-1 protein
trafficking and nuclear translocation, leading to high levels of
FA production to promote tumor growth. Interestingly, a
recent study reported that STAT3 can also transcriptionally
regulate SREBP-2 expression to increase cholesterol synthesis
in triple-negative breast cancer cells (51), which together with
our current study demonstrates STAT3 plays an important
role in regulating lipid metabolism in various cancers.

Pharmacologically targeting FA synthesis by inhibiting the
key enzymes, i.e., acetyl-CoA carboxylation (ACC), FASN, and
SCD1, has been extensively tested in preclinical xenograft
models (52–57). Among these enzyme inhibitors, TVB-2640
for FASN, has been tested in Phase II/III clinical trials to
treat high-grade astrocytoma, GBM, lung, and breast cancers
(58, 59); while PF-05221304 for ACC is in Phase I/II clinical
trials to treat non-alcoholic fatty liver disease (60–62) and MK-
8245 for SCD1 is in Phase I clinical trials to treat type 2 dia-
betes. Nevertheless, we know now that all monotherapies,
particularly for treating solid tumors, almost unavoidably lead
to the development of tumor resistance, usually in a rapid
fashion. We envision that if the protein levels of FA synthesis-
related enzymes were reduced, their inhibitors would work
more potently. Recently, several small molecular inhibitors to
block SCAP-SREBP-1 trafficking to reduce FA synthesis have
been reported, such as fatostatin (63, 64), while none of them
have been translated to the clinic to test in patients. As inhi-
bition of STAT3 by the clinically tested inhibitor Napa can
efficiently reduce FASN and SCD1 protein levels by inhibition
of SCAP-SREBP-1 as shown by our current study, combining a
STAT3 inhibitor with FA synthesis enzyme inhibitors may
produce a strong synergistic effect to suppress tumor growth
by dramatically reducing FA availability. In addition, recent
studies from other groups reported that STAT3 transcrip-
tionally regulates the expression of CD36, a fatty acid trans-
porter, facilitating FA uptake in leukemia and breast cancer
(65–68). Thus, the combination of a STAT3 inhibitor with FA
metabolism inhibitors may be very effective in treating various
cancers. We will test this combination in future studies.
Experimental procedures

Human glioblastoma samples

Human glioblastoma samples used in this study are de-
identified. Biopsies from individuals were obtained from the
Department of Pathology at the Ohio State University Medical
Center and the UCLA Medical Center after surgery and were
fixed in 4% paraformaldehyde for 24 h, then embedded in
paraffin. Analysis of tissues from individuals was approved by
the Ohio State University Institutional Human Care and Use
Committee.
ere quantified (H) by hemocytometer after trypan blue staining. Cell death
(live + dead). The data is shown as mean ± S.D. (n = 3). Scale bar, 100 mm. I
ated shRNA knockdown of STAT3 in serum-free medium supplemented with
nation for 72 h (I). Live and dead cells were quantified (J) by hemocytometer
versus total cell number (live + dead). The data is shown as mean ± S.D. (n =
with Tukey’s multiple comparisons test (J and H) or two-way ANOVA with

g. S2. N, N-terminus of SREBP-1; P, precursor of SREBP-1.
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Xenograft mouse model

A xenograft model was generated using female athymic
nude mice (NCr-nu/nu, 6–8 weeks) obtained from the OSU
Target Validation Shared Resource. GBM30 cells (2 × 106)
were suspended in 100 ml PBS with 50% Matrigel and
implanted in the mouse flank. The mice were randomly
divided into 2 groups after implantation for drug treatment.
Napabucasin (40 mg/kg/2 days) formulated with 10% DMSO/
10% Tween 80 in PBS and vehicle was administrated to mice
by i.p. when tumor size reached approximately 80 mm3. Mice
were housed at a maximum of 5 per cage in a conventional
barrier facility with free access to water and food on a 12 h
light/12 h dark cycle at 22 �C and a relative humidity of 25%.
Mouse health status was monitored by following the approved
protocols. All animal procedures were approved by the Sub-
committee on Research Animal Care at the Ohio State Uni-
versity Medical Center.
Materials

Napabucasin (HY-13919), TTI-101 (HY-112288), HO-3867
(HY-100453), stearic acid (C18:0, HY-B2219), and linoleic acid
(C18:2, HY-N0729) were purchased from MedChemExpress.
LLL12 (#1792) was from BioVision. Fatostatin (#5533803) was
from ChemBridge Corp Antibodies for STAT3 (#9139),
phospho-STAT3 (Tyr705, #9145), FASN (#3180), SCD1
(#2438), anti-mouse IgG (HRP-linked antibody, #7076), and
anti-rabbit IgG (HRP-linked antibody, #7074) were purchased
from Cell Signaling. SREBP-1 antibody (#557036) was from BD
Pharmingen. SCAP antibody (#A303-554A) was from Bethyl
Laboratories. PDI antibody (sc-30932) and palmitoleic acid
(C16:1, sc-205424A) were from Santa Cruz Biotechnology.
Beta-actin (#A1978) antibody, normal mouse IgG (#NI03),
oleic acid (C18:1, #O1383), palmitic acid (C18:1, #P9417),
bovine serum albumin (#A7030), human EGF (#E9644),
Heparin (#H3393) and trypan blue solution (#T8154) were
from Sigma-Aldrich. Recombinant Human FGF (#4114-TC-
01M) was from R&D Systems. B-27 Supplement (#12587010)
was from Fisher. Antibodies for STAT3 and phospho-STAT3
were validated by shRNA knockdown of STAT3, and other
antibodies were validated by our previous publications (3, 9,
21, 69).
Cell culture

Human glioblastoma (GBM) cell lines U251, U373, T98,
and liver cancer cell line HepG2 from American Type
Culture Collection (ATCC) were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 5%
fetal bovine serum (FBS) at 37 �C in 5% CO2. Human lung
cancer cell lines A549 and H1299 from ATCC were cultured
in RPMI 1640 supplemented with 5% FBS. These cell lines
were validated by short tandem repeat profiling. Primary
GBM patient-derived cells GBM30 were cultured in
DMEM/F12 supplemented with B-27 (1×), heparin
(2 mg/ml), EGF (20 ng/ml) and fibroblast growth factor
(FGF, 20 ng/ml).
Lipidomics analysis

2 × 106 U251 cells were plated in 15 cm dishes and incu-
bated overnight, then washed once with PBS and treated with
DMSO or 1 mM napabucasin in serum-free medium for 24 h.
Cultured cells were collected using trypsin, then centrifuged at
500g for 5 min, and washed with cold PBS for three times.

Cell pellets were homogenized on ice with 0.5 ml of
0.1× PBS at 6500 rpm, 0 �C in 2 ml Precellys Lysing tube
(Bertin) using Cryolys Evolution homogenizer (Precellys Evo-
lution). The protein concentration of cell homogenates was
quantified using the Pierce BCA protein assay kit (#23225,
Thermo Scientific). Bovine serum albumin was used as stan-
dard. An adequate amount of each homogenate (equivalent to
0.64 mg protein) was transferred into a disposable glass culture
test tube. The same lipid internal standard mixture for quan-
titation of lipids was added prior to lipid extraction. Lipid
extraction was performed using a modified Bligh and Dyer
procedure, as described previously (70). Lipid extracts were
flushed with nitrogen, capped, and stored at −20 �C until lipid
analysis.

Shotgun lipidomics was performed as described previously
(71). Lipid extract was further diluted to a final concentration
of �500 fmol total lipids per mL. Mass spectrometric analysis
was performed on a triple quadrupole mass spectrometer
(TSQ Altis, Thermo Fisher Scientific) and a Q Exactive mass
spectrometer (Thermo Scientific, San Jose, CA), both of
which were equipped with an automated nanospray device
(TriVersa NanoMate, Advion Bioscience Ltd, Ithaca, NY) as
described (72). Identification and quantification of lipid spe-
cies were performed using an automated software program
(73, 74). Data processing (e.g., ion peak selection, baseline
correction, data transfer, peak intensity comparison, and
quantitation) was performed as described (74). Data were
normalized per million cells. Reproducibility by analyzing a
prepared sample by multidimensional mass spectrometry-
based shotgun lipidomics (MDMS-SL) is approximately
95%, and precision is approximately 90%, largely due to var-
iations in determining protein content for normalizing lipid
levels. The content of lipids was analyzed and quantified by
the GraphPad Prism 10 software and heatmap. Heatmaps
were generated using MultiExperiment Viewer (MeV) soft-
ware, and Z score of each lipid for each replicate was calcu-
lated by subtracting its mean and then dividing by its
standard deviation across two groups.
Quantitative real-time PCR

Total RNA was isolated from cells with TRIzol (15596018,
Fisher) according to the manufacturer’s protocol, and cDNA
was synthesized with iScript cDNA Synthesis Kit (1708891,
Bio-Rad). Quantitative real-time PCR was performed with
PowerUp SYBR Green Master Mix (A25778, Fisher) using the
Applied Biosystems QuantStudio 6 Pro RealTime PCR System
(Thermo Fisher Scientific). The expression was normalized to
the 36B4 housekeeping gene and calculated with the
comparative method (2−DDCt). The primers are listed in
Table 1.
J. Biol. Chem. (2024) 300(6) 107351 9



Table 1
Primers for quantitative real-time PCR

Gene Primer Sequence

SCAP Forward 50-TCCTCATCGGCTACTTCACC-30
Reverse 50-TCGCTTGTTCAGGTCTGCTA-30

SREBP-1a Forward 50-TCAGCGAGGCGGCTTTGGAGCAG-30
Reverse 50-CATGTCTTCGATGTCGGTCAG-30

SREBP-1c Forward 50-GGAGCCATGGATTGCACATT-30
Reverse 50-TCGTTTGTACCCGTTGATGA-30

FASN Forward 50-GTTCACGGACATGGAGCAC-30
Reverse 50-GTGGCTCTTGATGATCAGGTC-30

SCD1 Forward 50-TGCGATATGCTGTGGTGCT-30
Reverse 50-GATGT CCAGCGGTACTCA-30

FADS1 Forward 50-CTGTCGGTCTTCAGCACCTCAA-30
Reverse 50-CTGGGTCTTTGCGGAAGCAGTT-30

FADS2 Forward 50-TGCAACGTGGAGCAGTCCTTCT-30
Reverse 50-GGCACATAGAGACTTCACCAGC-30

ELOVL2 Forward 50-TCCACTTGGGAAGGAGGCTACA-30
Reverse 50-CCAGGAACTCTACTGATTTGGAG-30

ELOVL5 Forward 50-ACGTCTACCACCATGCCTCGAT-30
Reverse 50-TGGAAGGGACTGACGACAAACC-30

ELOVL6 Forward 50-CCATCCAATGGATGCAGGAAAAC-30
Reverse 50-CCAGAGCACTAATGGCTTCCTC-30

36B4 Forward 50-AATGGCAGCATCTACAACCC-30
Reverse 50-TCGTTTGTACCCGTTGATGA-30

STAT3 dual regulation of SCAP and SREBP-1
Lentiviral transduction

Mission pLKO.1-puro lentivirus vector containing shRNA
for STAT3 (1, TRCN0000020843; 2, TRCN0000329887),
SREBP-1 (1, TRCN0000414192; 2, TRCN0000421299) and the
non-mammalian shRNA control (SHC002) were from Sigma-
Aldrich. The shRNA vector and packing plasmids psPAX2 and
the envelope plasmid pMD2.G were transfected into 293FT
cells using the polyethyleneimine. Supernatants were har-
vested at 48 h, 72 h and concentrated using the Lenti-X
Concentrator (631232, Takara). The virus titer was quanti-
fied by real-time PCR by using qPCR Lentivirus Titration Kit.
The lentiviral transduction was performed according to
Sigma’s MISSION protocol with polybrene (8 mg/ml). The
cancer cells were infected with the same multiplicity of
infection of shRNA.

Western blotting

Cells were lysed by RIPA buffer containing a protease in-
hibitor cocktail and phosphatase inhibitor. The proteins were
separated by using 12% SDS-PAGE and transferred onto an
ECL nitrocellulose membrane. After blocking for 1 h in 5%
nonfat milk diluted by Tris-buffered saline containing 0.1%
Tween 20, the membranes were incubated with various pri-
mary antibodies, followed by secondary antibodies conjugated
to horseradish peroxidase. The immunoreactivity was revealed
by use of an ECL kit.

Preparation of cell membrane fractions

Cell membranes were isolated as previously described (75,
76). Cells were washed once with PBS and harvested by
scraping. Cells were resuspended in a buffer containing 10 mM
HEPES-KOH (pH 7.6), 10 mM KCl, 1.5 mM MgCl2, 1 mM
sodium EDTA, 1 mM sodium EGTA, 250 mM sucrose, and a
mixture of protease inhibitors, 5 mg/ml pepstatin A, 10 mg/ml
leupeptin, 0.5 mM PMSF, 1 mM DTT, and 25 mg/ml ALLN for
30 min on ice. Extracts were passed through a 22G × 1-1/2
10 J. Biol. Chem. (2024) 300(6) 107351
inch needle 30 times and centrifuged at 890g at 4 �C for 5 min
to remove nuclei. The supernatants were centrifuged at
20,000g for 20 min at 4 �C. For subsequent Western blot
analysis of SCAP protein, the pellet was dissolved in 0.1 ml of
SDS lysis buffer (10 mM Tris-HCl pH 6.8, 100 mM NaCl, 1%
(v/v) SDS, 1 mM sodium EDTA, and 1 mM sodium EGTA)
and designated as ‘membrane fraction’. The membrane frac-
tion was incubated at 37 �C for 30 min, and protein concen-
tration was determined. 1 ml of bromophenol blue solution
(100 × ) was added before the samples were subjected to SDS-
PAGE.

Fatty acids preparation

FAs conjugated to the BSA solution were prepared as
described previously (77). FAs were dissolved in 0.1 M of
NaOH to yield a 50 mM concentration and heated while
stirring at 70 �C for unsaturated FAs or 90 �C for saturated
FAs until dissolved (a few seconds). A 0.2 ml aliquot of the
resulting fatty acid solution was added while stirring into
1.2 ml of a 10% BSA solution at 37 �C. After 15 min of slow
stirring to allow clarification of the solution, 0.6 ml of water
was added to bring the final concentration to 5 mM of fatty
acid. The solutions were filtered through a 0.22 mm filter and
stored at −80 �C. The molar ratio of BSA and FAs in BSA-
conjugated FAs was approximately 1:5.5.

Cell proliferation assay

In lipid rescue experiments, U251, H1299 cells were
plated in 6-well plates and incubated overnight, then washed
once with PBS and pretreated with 9.1 mM BSA, 10 mM
palmitoleic acid, 40 mM oleic acid, 10 mM palmitoleic acid
plus 40 mM oleic acid in serum-free medium for 24 h, then
treated with napabucasin (U251 cells: 0.5 mM, H1299 cells:
0.4 mM) for 72 h. Cell numbers were counted using a he-
mocytometer, and dead cells were distinguished by trypan
blue solution.
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Chromatin immunoprecipitation assay

The ChIP assay was performed using SimpleChIP Plus
Enzymatic Chromatin IP Kit (9005S, Cell Signaling) according
to the manufacturer’s protocol. Briefly, cells in 15 cm dishes
were fixed with formaldehyde at a final concentration of 1%
and then incubated with glycine, lysed in buffers A and B,
digested with micrococcal nuclease, centrifuged to get the
pellet nuclei, sonicated in ChIP buffer to harvest the cross-
linked chromatin. 3 mg anti-STAT3 or anti-mouse IgG anti-
bodies with protein G magnetic beads were added to each
ChIP reaction and incubated overnight. After low salt washing
three times and high salt washing one time, each ChIP reaction
was eluted using ChIP elution at 65 �C for 0.5 h. The cross-
links were reversed using NaCl and proteinase K and incu-
bated at 65 �C for 2 h. Purified DNA was analyzed by quan-
titative real-time PCR using designed primers (Table 2).

SREBP-1a, SREBP-1c, and SCAP promoter constructs

For all genes, luciferase (luc) reporter constructs were ob-
tained by cloning promoter DNA region into the pGL3-luc
vector (Promega). PCR fragments were amplified from
genomic DNA using primers where suitable restriction sites
were added in the 50 end (Table 3), then cloned into pGemT
vector (Promega) and sequenced.

For SCAP, the PCR fragment generated with the specific
primers was first cloned into the pGemT vector, then cut
KpnI/HindIII and inserted KpnI/HindIII into pGL3-luc to
generate pGL3-SCAP (−1448/+52)-luc. For SREBP-1a, the
PCR fragment generated with the specific primers was first
cloned into the pGemT vector (Promega), then cut KpnI/BlpI
and inserted KpnI/BlpI into pGL3-luc to generate pGL3-
SREBP-1a (−1761/+194)-luc. pGL3-SREBP-1c (−1470/+90)-
luc SREBP-1c was obtained as described previously (78).
Table 2
Primers for chromatin immunoprecipitation assay

Gene Primer

SREBP-1a Site-1 P1-Forward
P1-Reverse

SREBP-1a Site-2 P2-Forward
P2-Reverse

SREBP-1a Site-3 P3-Forward
P3-Reverse

SREBP-1a Site-4 P4-Forward
P4-Reverse

SREBP-1a Site-5 P5-Forward
P5-Reverse

SREBP-1a Site-6 P6-Forward
P6-Reverse

SREBP-1a NS P7-Forward
P7-Reverse

SREBP-1c Site-1 P1-Forward
P1-Reverse

SREBP-1c Site-2 P2-Forward
P2-Reverse

SREBP-1c NS P3-Forward
P3-Reverse

SCAP Site1-3 P1-Forward
P1-Reverse

SCAP Site-4 P2-Forward
P2-Reverse

SCAP Site-5 P3-Forward
P3-Reverse

SCAP NS P4-Forward
P4-Reverse
Promoter-luciferase reporter assay

U251, U373, H1299, A549 cells were seeded in 12-well
plates and transiently co-transfected with pcDNA-STAT3
(U251 and U373 cells: 0.5 mg, A549 and H1299 cells: 1 mg),
pGL3-SCAP-luc, pGL3-SREBP-1a-luc, or pGL3-SREBP-1c-luc
(U251 and U373 cells: SCAP 100 ng, SREBP-1a 50 ng, SREBP-
1c, 50 ng; A549 and H1299 cells: SCAP 50 ng, SREBP-1a 20 ng,
SREBP-1c, 20 ng) plasmids, and pRL-TK renilla (U251 and
U373 cells: 10 ng, A549 and H1299 cells: 5 ng) (Promega)
using X-tremeGENE HP DNA Transfection Reagent
(6366244001, Roche) for 48 h. The firefly and renilla luciferase
activities were measured using Bright-Glo (E2610, Promega)
and Renilla-Glo (E2610, Promega) luciferase assay systems.
The measurement was performed on a GloMax Discover
microplate reader (Promega). For the pcDNA and STAT3
transfection group, average normalized ratio is:

pcDNA ratio¼Target gene promoter−luc=Renilla
pGL3−luc=Renilla

;

STAT3 ratio ¼ Target gene promoter−luc=Renilla
pGL3−luc=Renilla

Fold Activity¼ STAT3 ratio
pcDNA ratio
Immunohistochemistry

Tissue sections were cut from paraffin blocks of biopsies.
Tissue slides were placed in oven at 60 �C for 0.5 h and then
deparaffinized in xylene 3 times for 5 min each followed by
Sequence

50-TCACCCAGCACTTCCTATCC-30
50-CCCCACCAACACTCTAGAGG-30
50-GTAATTTTCCACCGCAGCCA-30
50-TTTAGAAGGGGTGTGTGGGG-30
50-TTATGAAGGTCTGGGGTCGG-30
50-AAGCAGAGAGAAGCACCCTT-30
50-CTAGGCCACAGAACCAGGTT-30
50-CTGGATCATCACAAGCTGGG-30
50-CACAGCTACCTCTTCCTTGC-30
50-AGTACCCAAGGAAGACTGGC-30
50-GCCTGGGACCCCTATAACTT-30
50-CCATCCCAAACTTCATTTCC-30
50-ACTGAGGTGGAGGACACACT-30
50-TCAAAGACTGGGCTGTCAGG-30
50-CCGTCTGTTGTCCTTGAACC-30
50-GTCTCTCTCGCAACCTGTCC-30
50-GTGCTGGCAGTCAGGAAAC-30
50-GATGAGGCCACTCCTGAAAA-30
50-CCTTGACAGGTGAAGTCGGC-30
50-AAGTGCAATCCATGGCTCCG-30
50-GGATGGTTTCGATCTCCTGA-30
50-AAGTAACAATGGGGACAGTGG-30
50-CTGCCTTGCATTGGTGACTA-30
50-ATAAGGCAGGCCCTGTACCT-30
50-CCTTGGACTCCCACAGTGTT-30
50-GGCTCTCATCGGTCATCAAG-30
50-CCACTGCTGAAACTCCCCTT-30
50-TAGGCTCTCCTTGTTTGCGG-30
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Table 3
Primers for SCAP and SREBP-1a promoter constructs

Gene Primer Sequence

SCAP Forward 50-TGGTACCAAATACCTGTTCCCTGTG-30
Reverse 50-CAAACTTCTCTGGGAGTTCC-30

SREBP-1a Forward 50-GTGGCTCGTCCATGGCGCAGCC-30
Reverse 50-AGAAGCCACAGAGCCCAAGTCC -30
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dipping in graded alcohols (100%, 95%, 80% and 70%) 3 times
for 2 min each. Slides were washed with distilled water (dH2O)
3 times for 5 min each and immersed in 3% hydrogen peroxide
for 10 min followed by washing with dH2O. Slides were
transferred into pre-heated 0.01 M Citrate buffer (pH 6.0) in a
steamer for 30 min, and then washed with dH2O and PBS after
cooling. Slides were blocked with 3% BSA/PBS at room tem-
perature for 1 h and then incubated with primary antibody
overnight at 4 �C, followed by incubating with secondary
antibody including Biotinylated Anti-rabbit IgG and Bio-
tinylated Anti-mouse IgG at room temperature for 30 min.
After incubation with avidin-biotin complex followed by
washing 3 × 5 min with PBS and staining with NovaRed so-
lution, slides were washed with tap water, counterstained with
hematoxylin and dipped briefly in graded alcohols (70%, 80%,
95% and 100%) in xylene 2 times for 5 min each. Finally, slides
were mounted and imaged.

Statistical analysis

All figures are representative of at least two biological rep-
licates with similar results, unless stated otherwise. Statistical
analysis was performed with Excel or GraphPad Prism 10.
Lipid amount, gene expression, cell death, binding to pro-
moter, promoter activity, tumor volume, tumor weight, and
quantification of IHC intensity were performed using a two-
tailed Student’s t test, as well as by ANOVA, as appropriate.
The data are reported as means ± SD. p values are indicated in
the figure, NS, not significant.
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