



## A screening analysis of foliar terpene emissions of 36 rainforest tree species in French Guiana and their relationships with seasonality

Joan Llusià, Dolores Asensio, Jordi Sardans, Iolanda Filella, Guille Peguero, Oriol Grau, Romà Ogaya, Ifigenia Urbina, Albert Gargallo-Garriga, Lore Verryckt, et al.

### ► To cite this version:

Joan Llusià, Dolores Asensio, Jordi Sardans, Iolanda Filella, Guille Peguero, et al.. A screening analysis of foliar terpene emissions of 36 rainforest tree species in French Guiana and their relationships with seasonality. *Trees - Structure and Function*, 2024, 38 (4), pp.997-1012. 10.1007/s00468-024-02530-9 . hal-04894275

HAL Id: hal-04894275

<https://hal.inrae.fr/hal-04894275v1>

Submitted on 19 Feb 2025

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution 4.0 International License

1 **A screening analysis of foliar terpene emissions of 36 rainforest tree species in French Guiana**  
2 **and their relationships with seasonality**

3  
4 **Joan Llusia<sup>a,b\*</sup>, Dolores Asensio<sup>a,b</sup>, Jordi Sardans<sup>a,b</sup>, Iolanda Filella<sup>a,b</sup>, Guille Peguero<sup>a,b</sup>, Oriol Grau<sup>a,b</sup>, Romà**  
5 **Ogaya<sup>a,b</sup>, Ifigenia Urbina<sup>a,b</sup>, Albert Gargallo-Garriga<sup>a,b</sup>, Lore T. Verryckt<sup>c</sup>, Leandro Van Langenhove<sup>c</sup>, Laëtitia M.**  
6 **Brechet<sup>e,f</sup>, Elodie Courtois<sup>d</sup>, Clément Stahl<sup>e</sup>, Ivan A. Janssens<sup>c</sup>, Josep Peñuelas<sup>a,b</sup>**

7  
8 <sup>a</sup> CREAf, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain.

9 <sup>b</sup> CSIC, Global Ecology Unit CREAf- CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain.

10 <sup>c</sup> Department of Biology, Research Group PLECO (Plant and Ecosystems), University of Antwerp, Universiteitsplein 1,  
11 2610, Wilrijk, Belgium.

12 <sup>d</sup> Laboratoire Ecologie, Evolution, interactions des systèmes amazoniens (LEEISA), Université de Guyane, CNRS,  
13 IFREMER, 97300 Cayenne, French Guiana.

14 <sup>e</sup> INRAE, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université des Antilles, Université de  
15 Guyane, 97387 Kourou, French Guiana

16 <sup>f</sup> Center of Excellence Global Change Ecology, Department of Biology University of Antwerp, Universiteitsplein 1, 2610  
17 Wilrijk, Belgium

18  
19 \* Corresponding author at: CREAf, Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193,  
20 Catalonia, Spain.

21  
22 *E-mail address:* [j.llusia@creaf.uab.cat](mailto:j.llusia@creaf.uab.cat) (J. Llusia).

23  
24 **Abstract**

25 **Key message** Inventory and Seasonal Variation of Terpene Emissions from Tropical Trees in French Guiana:  
26 **Implications for Environmental and Ecological Roles.**

27 **Abstract** A limited understanding of foliar terpene emissions from different tree species is prominent in diverse tropical  
28 forests. We conducted a study in French Guiana, screening BVOC emissions from 36 tropical woody species. We focused  
29 on 32 species in the dry season and 33 in the wet season, documenting terpene emissions for the first time in some of these  
30 tree species. Our findings show that 93.8% emitted terpenes in the dry season, while only 33.3% did so in the wet season.  
31 Terpene emissions ranged from 0.01-80.9 µg g<sup>-1</sup> h<sup>-1</sup> in the dry season and 0-11.7 µg g<sup>-1</sup> h<sup>-1</sup> in the wet season, consistent  
32 with previous reports. We identified and quantified 23 terpene compounds, including 19 monoterpenes and 4  
33 sesquiterpenes. Additionally, 2 non-terpenoid compounds were detected: 2,2,4,6,6-pentamethylheptane (with no detected  
34 emissions in the dry season) and toluene. Among the monoterpenes, the most abundant were α-terpinolene, limonene, α-  
35 pinene, β-ocimene, and sabinene. As for sesquiterpenes, β-caryophyllene, α-caryophyllene, and α-copaene were observed  
36 during the dry season, while during the wet season, α-terpinolene predominated, followed by limonene, α-pinene, sabinene,  
37 β-caryophyllene, and α-copaene. Isoprene was detected in most of the species studied in both seasons.

38 Sesquiterpene emissions displayed a notable phylogenetic pattern, whereas total terpenes and monoterpenes did not;  
39 however, total terpenes and monoterpenes exhibited a significant seasonal influence.

40 Our study demonstrates that seasonality strongly influences BVOC production in tropical trees, with higher emissions in  
41 the dry season. These findings imply that various factors and conditions influence tree emissions in this tropical forest,  
42 affecting their ecological, environmental, and climatic roles, as well as the implementation of atmospheric chemistry  
43 models.

44

45 **Keywords** biogenic volatile organic compounds (BVOCs) emissions · chemical diversity · monoterpenes · sesquiterpenes ·  
46 tropical forest · seasonality

47

## 48 **Introduction**

49 Biogenic Volatile Organic Compounds (BVOCs), which include a variety of organic compounds, are emitted by various  
50 organisms such as bacteria, fungi, marine life, plants, and even humans (Wheatley 2002; Morath et al. 2012; Bourtsoukidis  
51 et al. 2018; Lawson et al. 2020; Edtbauer et al. 2021). On the other hand, phyllospheric emissions, originating from the leaf  
52 surface, also contribute to BVOC emissions, with processes like oxidation and adsorption/desorption playing significant  
53 roles (Kembel et al. 2014; Koskella 2020; Farré-Armengol et al. 2016; Kesselmeier et al. 1999; Rundell et al. 2015). These  
54 compounds range from short-chain methanol (with C1) to longer-chain hemiterpenes like isoprene (with C5), terpenes like  
55 monoterpenes (MTs, with C10), sesquiterpenes (SQTs, with C15), and diterpenes (DTs, with C20) exhibiting a wide array  
56 of functional groups (Kesselmeier and Staudt 1999; Heiden et al. 1999; Guenther 2013; Yáñez-Serrano et al. 2020). Among  
57 BVOCs, terpenoids, including hemiterpenes, have garnered considerable attention in ecophysiology studies (Llusia and  
58 Peñuelas 2000; Peñuelas et al. 2005; Owen and Peñuelas 2005; Yáñez-Serrano et al. 2018; Misztal et al. 2015).

59 The production and release of BVOCs are influenced by both biotic and abiotic factors. Biotic factors involve  
60 interactions with other organisms (Kegge and Pierik 2010), while abiotic factors include environmental conditions like air  
61 temperature, humidity, light intensity, water availability, and seasonal variations (Dement et al. 1975; Tingey et al. 1980;  
62 Hansted et al. 1994; Llusia and Peñuelas 1999; Staudt and Seufert 1995; Loreto et al. 1996; Seufert 1997; Jardine et al.  
63 2020; Peñuelas and Llusia 1997, 1999). Air temperature, particularly crucial for regulating BVOC emissions, affects  
64 enzymatic reactions involved in BVOC biosynthesis and their diffusion in biological tissues (Llusia and Peñuelas 2000).  
65 Temperature not only influences the emission rates of MTs but also affects their composition, acting as a "thermometer" to  
66 measure these changes. Changes in monoterpene composition, especially the increase in  $\beta$ -ocimenes and the decrease in  $\alpha$ -  
67 pinene, may reflect the response of plants to thermal stress and their ability to adapt to warmer conditions (Jardine et al.  
68 2017). Additionally, air humidity, light intensity and quality, water availability, and seasonal changes contribute to the  
69 complex dynamics of BVOC production and emission (Kuhn et al. 2002; Holzinger et al. 2000; Jardine et al. 2015, 2020).

70 The impacts of these factors on BVOCs can vary depending on the specific climatic zone and the plant species present.  
71 Notably, even within the same plant species, different populations or individuals can display adaptations to thrive in diverse  
72 climatic conditions, showcasing their capacity to adjust BVOC production and emission in response to environmental  
73 changes (Kigathi et al., 2019; Picazo-Aragonés et al., 2020).

74 BVOCs play essential ecological roles, including plant defense mechanisms, plant-insect interactions, and ecosystem  
75 biodiversity maintenance (Raguso 2008; Farré-Armengol et al. 2015; Borges et al. 2008; Peñuelas and Llusià 2001;  
76 Pichersky and Gershenzon 2002; Vickers et al. 2009). They can act as antioxidants, protect against oxidative stress, and aid  
77 in coping with environmental stressors like heat damage (Sharkey and Singsaas 1995; Peñuelas and Llusià 2002; Loreto et  
78 al. 2004; Munné-Bosch et al. 2004; Copolovici et al. 2005; Peñuelas et al. 2005; Medori et al. 2012; Centrito et al. 2014;  
79 Salomon et al. 2016; Dumanovic et al. 2021), protecting cell membranes from peroxidation and reactive oxygen species  
80 (Loreto and Velikova 2001; Loreto et al. 2004; Munné-Bosch et al. 2004; Llusià et al. 2005; Peñuelas and Munné-Bosch  
81 2005; Salomon et al. 2016; Dumanovic et al. 2021), providing a competitive advantage in harsh environments. This  
82 protective capacity of BVOCs would explain that, despite the adverse environmental conditions that negatively affect  
83 photosynthesis and transpiration, it does not result in a reduction in the production and emission rates of BVOCs. Isoprene,  
84 for instance, plays a crucial role in tropical forest survival under climatic stress (Taylor et al. 2018), underscoring the  
85 ecological importance of BVOC emissions. The opportunistic emissions hypothesis sees these functions as evolved from  
86 these volatile compounds once they are byproducts of primary metabolism (Peñuelas and Llusià 2004; Owen and Peñuelas  
87 2005).

88 Moreover, BVOC emissions significantly affect atmospheric chemistry and climate by influencing aerosol formation,  
89 cloud formation, precipitation patterns, and temperature regulation (Andreae and Crutzen 1997; Singh and Zimmerman  
90 1992; Kulmala et al. 2009; Peñuelas and Staudt 2010). They also have implications for air quality, reacting with other  
91 pollutants to form secondary pollutants like tropospheric ozone formation and particulate matter (Laothawornkitkul et al.  
92 2009).

93 In tropical forests such as French Guiana's, terpene production and emission rates are likely to vary seasonally in  
94 response to temperature and water availability fluctuations. Considering their ecological significance in tropical forests and  
95 their influence on atmospheric chemistry and climate, coupled with the scarcity of information regarding their emissions  
96 from tropical plant species (Courtois et al., 2009, 2016; Alves et al., 2016; Mu et al., 2022; Bourtsoukidis et al., 2024), our  
97 study was prompted.

98 Thus, our objective is twofold: (i) to analyze terpene emissions from various tree species in French Guiana, including  
99 those that have not been previously studied (Table S8), and (ii) to investigate the influence of seasonality on the production  
100 and emission rates of any BVOCs, specifically comparing the dry and wet seasons.

102 **Materials and methods**

103 **Site description and sampling**

104 The screening campaign was conducted in French Guiana on the Guiana Shield, one of three South American cratons  
105 (Gibbs and Barron 1993) (Fig. 1) and part of the Amazonian rainforest, one of the largest undisturbed areas of tropical  
106 forest in the world (Hansen et al. 2013). This tropical region rests on a Precambrian geological substrate that is particularly  
107 low in phosphorus content, especially if compared to the generally younger, nutrient-rich soils of western Amazonia  
108 (Hammond 2005; Grau et al. 2017). Fieldwork was performed at two research stations, Nouragues (Bongers 2001)  
109 (04°05'N, 52°40'W) and Paracou (Gourlet-Fleury et al. 2004) (05°18'N, 52°53'W) in well-conserved old-growth tropical  
110 forests. Sampling was conducted in 2015 on May 28–June 11 in Paracou and June 14–July 1 in Nouragues (wet season),  
111 and on October 5–22 in Paracou and October 24–November 8 in Nouragues (dry season).

112 Mean annual air temperature is 26°C (Bongers 2001; Gourlet-Fleury et al. 2004), and precipitation is similar, although  
113 slightly lower in Paracou (annual average of 2990 and 3100 mm in Paracou and Nouragues, respectively; Bongers 2001;  
114 Aguilos et al. 2019).

115 The tropical climate of French Guiana is characterized by important interannual variability in the short dry seasons,  
116 with the amount of precipitation between August and November varying from 102.2 to 532.0 mm, and long wet seasons  
117 lasting from December to July, with cumulative annual rainfall varying from 1900 to 2800 mm (Aguilos et al. 2018). This  
118 is due to the north/south movement of the Inter-Tropical Convergence Zone (Aceituno et al. 2009).

119 Soil water content and nutrient availabilities vary with topographical position in this French Guianese tropical forests  
120 (Epron et al. 2006; Ferry et al. 2010; Stahl et al. 2011; Allié et al. 2015). Local spatial variation (less than 200 m) creates  
121 specific habitats that differ in terms of soil characteristics, aboveground vegetation (Sabatier et al. 1997) and forest  
122 structure (Baraloto et al. 2007; Allié et al. 2015) and dynamics (Ferry et al. 2010; Courtois et al. 2018).

123 Nouragues has sandy soils of variable depth originating from weathered granite (van der Meer and Bongers 1996),  
124 while Paracou has shale floors with pegmatite veins of a Precambrian metamorphic formation known as the Bonidoro  
125 series (Epron et al. 2006). The soils of both sites are classified as nutrient-poor Acrisols (FAO-ISRIC-ISSS 1998)  
126 (Nachtergaele et al. 2000).

127 The selected trees were among the most abundant and mature tree species in the two studied areas (Table S1, Verryckx  
128 et al. 2022). We also used a fully resolved and dated Bayesian phylogeny, previously derived at the sampling sites  
129 (Baraloto et al. 2012). In addition to the previously mentioned selection criteria, it was taken into account that they were  
130 adult trees and of a similar diameter depending on the species. Thirty-six tree species were included in the sampling.  
131 Among these, 32 species were sampled during the dry season, while 33 species were sampled during the wet season  
132 (Figures 2 and 3; Table S1 and S7). The number of samples per species is indicated in Table S7. Certain species could not  
133 be sampled during specific seasons. In the dry season, *Carapa surinamensis*, *Dipteryx odorata*, *Pouteria eugeniifolia*, and

134 *Vochysia sabatieri* were not sampled. In the wet season, *Tetragastris panamensis*, *Moronobea coccinea*, and *Sympomia*  
135 *globulifera* could not be sampled. This discrepancy arises because the leaves of these species were not in ideal conditions to  
136 be sampled (Table S7). Additionally, the species names were verified based on the list published in Stegeé et al. (2019) (see  
137 Table S8). It should be noted that in this list, *Aniba roseaodora* appears as *A. rosiodora*, *Eugenia culcullata* as *E. cucullata*,  
138 and *Tetragastris panamensis* is not included.

139 To obtain the branches that were used for perform gas exchange measurements and collect BVOC samples, we  
140 collaborated with expert tree climbers to collect sunlit branches between 1 and 2 meters long. Two branches were cut from  
141 each sampled tree. To avoid cavitation, we immediately immersed approximately 20 cm of the cut end in water, cutting  
142 about 7 cm of the branch into the water. For transport to the laboratory, we carefully placed the harvested branches in  
143 plastic bags with damp paper (Verryckt et al. 2020ab). Throughout the sampling process, the branches remained submerged  
144 in water. Transport time from the forest to the laboratory varied depending on the location. In Nouragues it ranged between  
145 20 and 30 minutes, while in Paracou it lasted between 1 and 2 hours. We studied the variation of the effects of branch  
146 excision and transport among branches at the different heights in the canopy. When the branch had acclimated to its new  
147 environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not  
148 significantly differ between the excised and intact branches. We therefore conclude that branch excision did not affect the  
149 measurement of gas exchange, provided that the branch is recut under water and is allowed sufficient time to acclimate to  
150 its new environmental conditions, as we did (Verryckt et al. 2020ab).

151 Upon arrival at the laboratory, we meticulously selected twigs with the seemingly healthiest leaves, following the  
152 procedure mentioned earlier. Subsequently, these selected twigs were recut underwater at the base to prevent cavitation and  
153 then immersed in plastic cups filled with water. To ensure stability during the acclimatization period, they were sealed  
154 inside transparent plastic bags for approximately 24 hours at 23-25 °C (Niinemets et al. 2005, 2009; Llusià et al. 2010a,  
155 2014). For VOC sampling, three twigs were collected from each branch as replicates. Thus, a total of 6 twigs per tree were  
156 sampled. All leaf handling steps were carried out with utmost care to avoid causing wounds or other alterations that could  
157 lead to artifacts in VOC emission determination. Tests were conducted to compare the response of leaves on cut branches  
158 with those on uncut branches, and it was observed that the differences in photosynthetic activity and transpiration were not  
159 significant (Verryckt et al. 2020a, 2021).

160 Furthermore, samples without leaves were taken, thus characterizing the contribution of VOCs from the sampling  
161 system. These samples obtained from the system were used as blanks, subtracted from those obtained with leaves in the  
162 calculations described later on.

163

164

165

166 **Soil water content and soil temperature**

167 Soil water content and temperature were measured in the same BVOC sampling period, at a depth of 10 cm at five points in  
168 the 50x50 m tree sample plots. Soil moisture was measured with an HH2 soil moisture meter connected to an ML2x soil  
169 moisture sensor (Delta-T Devices Ltd, Cambridge, England), while soil temperature was measured with a digital soil  
170 thermometer (TO 15, Jules Richard instruments, Argenteuil, France) (Table S2).

171  
172 **Sampling of BVOC emissions**

173 Measurements of BVOC emissions were conducted in the laboratory on a pre-cut branch with attached leaves, as  
174 previously mentioned. These measurements were carried out using a Licor-6400XT gas-exchange system coupled with a  
175 leaf chamber equipped with environmental control capabilities.

176 All tubes and accessories used for BVOC sampling were constructed of PFA Teflon (Cole Parmer, USA).  
177 Hydrocarbon-free ambient air was delivered to the gas inlet of the LI-6400XT using a capillary-grade hydrocarbon trap  
178 (Restek, USA). BVOC emissions were measured at a quantum flux density of 1000  $\mu\text{mol m}^{-2} \text{ s}^{-1}$  under standard  
179 temperature conditions (30°C) with controlled CO<sub>2</sub> concentrations of 400 ppm. Given that, all tree species had leaves with a  
180 surface area greater than that of the chamber surface; the leaves were clamped on an area of the limb without prominent  
181 ribs. The 6400-40 is designed with a uniform, integrated LED light source and PAM fluorimeter that easily attaches to the  
182 LI-6400XT sensor head, giving the user complete control of the environment surrounding the 2-cm<sup>2</sup> leaf area. The flow in  
183 the cuvette was an average of 675 ml min<sup>-1</sup> in the two seasons.

184 The air exiting the cuvette was pumped through custom-made sampling tubes, comprised of stainless steel tubes (89  
185 mm in length and 6.4 mm in external diameter), which were equipped with adsorbents (115 mg of Tenax® TA and 230 mg  
186 of SulfiCarb®). These tubes were separated by sorbent-retaining springs, fixed using gauze-retaining springs, and sealed  
187 with airtight caps (Markes International Inc., Wilmington, USA). Air samples were collected using a Q<sub>max</sub> air-sampling  
188 pump (Supelco, Bellefonte, Pennsylvania). The flow was measured with a Bios Defender 510 flowmeter (Bios International  
189 Corporation, Butler, USA) and adjusted with a valve. The sampling time was 20 min and the flow was 360  $\pm$  3 mL min<sup>-1</sup>.  
190 The hydrophobic properties of the activated adsorbents minimized any sample displacement by water. The terpenes were  
191 not chemically transformed in these tubes, as demonstrated by reference to trapped standards ( $\alpha$ -pinene,  $\beta$ -pinene,  
192 camphene, myrcene, *p*-cymene, limonene, sabinene, camphor,  $\alpha$ -humulene and dodecane). Prior to terpene sampling, the  
193 tubes were conditioned twice for 30 min at 350°C with a stream of 100 mL min<sup>-1</sup> of purified helium. The trapping and  
194 desorption efficiency of standards such as  $\alpha$ -pinene,  $\beta$ -pinene and limonene was 99%. Blank samples of air with no plants  
195 in the cuvette were collected in the tubes for 20 min immediately before each measurement. The terpene content of the  
196 blank samples was subtracted from the samples collected from plants in order to calculate the rates of terpene emission.

197 All the leaves used for VOC sampling were collected and the specific leaf area (SLA) was obtained by dividing the  
198 fresh leaf area by its dry weight. Leaf area was measured with the LI-3100C Leaf Area Meter (LI-COR, Lincoln, NE,  
199 USA), after which the leaves were dried for at least 48 h and weighed.

200

## 201 **BVOC analysis**

202 The emitted BVOCs trapped in the sorbent tubes were sampled using an automatic sample processor (TD Auto sampler,  
203 Series 2 Ultra, Markes International Inc. Wilmington, USA) and thermally desorbed using a coupled injector with a  
204 cryotrap (Unity, Series 2, Markes International Inc. Wilmington, USA) connected to a Gas Chromatograph (7890A, Agilent  
205 Technologies, Santa Clara, USA) with a mass spectrometer detector (5975C inert MSD with Triple-Axis Detector, Agilent  
206 Technologies). A full-scan (between 35 to 350 m/z) method was used in the chromatographic analyses.

207 Pre-desorption conditions consisted of a pre-purge time of 0.1 min, with a split of 20 mL min<sup>-1</sup>, and a dry purge of 2  
208 min. Then, BVOCs were desorbed with a flow path temperature of 200 °C, minimum carrier pressure of 0.5 KPa, and a GC  
209 cycle time of 30 min, optimal time to recover maximum sample; the standby split was 25 mL min<sup>-1</sup>. Sample desorption  
210 time was 30 min at 320 °C with the trap maintained in-line, with a flow rate of 50 mL min<sup>-1</sup> and a split of 2 mL min<sup>-1</sup>; the  
211 cryotrap low temperature was -25 °C. Prior to heating, traps were held in a pre-cryotrap fire purge for 2 min. The cryotrap  
212 flow rate was 50 mL min<sup>-1</sup>, with a split of 10 mL min<sup>-1</sup>, and the heating rate was 40 °C s<sup>-1</sup> to a cryotrap high of 320 °C  
213 maintained for 7 min, with a split of 5 mL min<sup>-1</sup>.

214 Then, the cryofocused desorbed samples were injected into a GC column (Agilent Tech., HP 5MS, 30 m x 0.25 µm x  
215 0.25 mm) using a transfer line at 250°C. Following sample injection at 35 °C (initial time: 3 min), the column temperature  
216 was increased stepwise by 15 °C min<sup>-1</sup> to 150 °C, by 50 °C min<sup>-1</sup> to 250 °C for 5 min, and by 30 °C min<sup>-1</sup> to 280 °C for 5  
217 min, and was maintained at each time for 5 min. The total run time was 30 min, the helium column flow rate was 1 mL  
218 min<sup>-1</sup>.

219

## 220 **Terpene identification and quantification**

221 Terpene identification was performed by comparing the derived mass spectra with published results (Wiley275 and Nist05a  
222 libraries) and known standards such as those mentioned below for quantification. Quantification of peaks was conducted  
223 using the fragmentation product with mass 93 (Blanch et al. 2012; Llusia et al. 2012; Hellén et al. 2024), while calibration  
224 curves were prepared using commercial standards for some of the most abundant recorded compounds: four monoterpenes  
225 (α-pinene, 3-carene, β-pinene and limonene) and one sesquiterpene (α-caryophyllene) (Fluka Chemie AG, Buchs,  
226 Switzerland). These standards were adsorbed on cartridges similar to those used for the samples by means of a valve  
227 coupled to the chromatograph and a flow of Helium 5.0 like the one used for the flows generated by the Q<sub>max</sub> pump. They

were then desorbed and analysed following the same protocol as used for the samples. Terpene calibration curves for signals and concentrations were always highly correlated ( $r^2 \geq 0.95$ ) and the sensitivity of the most abundant terpenes were similar (differences were < 5%). The response factor for the MTs was an average of the standard MTs and only that of the  $\alpha$ -caryophyllene for the sesquiterpenes. We estimate a 5% error in the quantification given by the response variation of each standard with respect to each other. For isoprene, we used a Linde gas standard (1 ppm) of which we made three dilutions to obtain its calibration curve.

To prepare the liquid standards, three different dilutions were made: 1  $\mu$ L of the pure standard was diluted in 1000  $\mu$ L of pentane and then 100  $\mu$ L of this standard were taken and diluted in another 1000  $\mu$ L of pentane. From this second dilution another 100  $\mu$ L were taken and diluted in 1000  $\mu$ L of pentane.

In addition, we also prepared standards from a standard at 500 ppb of a 50-L bottle (Reimer Environmental, Inc., Miami, USA). We injected 15, 25 and 35 mL into three sampling tubes using the same valve as mentioned above. In each sequence (of 30 tubes) of analysis, a series of three standards (one for each concentration) of the gas standard were added at the beginning, and at the end of series 3 (one for each concentration) of the liquid standard (previously gassed). To avoid interference in samples due to contamination, the standards were arranged from lowest to highest concentrations. In addition, the analysis of the sequences always started with an empty tube followed by a tube with the same adsorbents taken from the field but not sampled to test for possible contamination during the process.

To calculate the micrograms ( $\mu$ g) of terpenes per gram (g) of dry matter and per hour, we used the following formula:

$$[(AUs / svb) - (AUb / svb)] \times [(rf \times Fch \times 60 \text{ min}) / (AUrf \times g \text{ d.m.} \times st)] \quad \text{Equ. 1.}$$

In this equation, the variables represent the following:

- AUs and Aub: Arbitrary units of area of the air sampled from the cuvette and of the blank air sample (area units).
- Svs and svb: Volume of air sampled from the cuvette with leaves and as blank (milliliters, mL).
- rf: Response factor calculated from the calibration curves (micrograms,  $\mu$ g).
- Fch: Flow rate in the sampling chamber (milliliters per minute, mL  $\text{min}^{-1}$ ).
- AUrf: Arbitrary units of area corresponding to the response factor (arbitrary units).
- g d.m.: Grams of dry matter (g).
- st: Sampling time (minutes, min).

The Shapiro-Wilk test ( $N > 30$ ) showed that the data of the variables (i.e. emissions of total BVOCs, monoterpenes and sesquiterpenes) were normally distributed ( $P > 0.05$ ).

We used Bayesian phylogenetic linear mixed-effects models implemented in the MCMCglmm R package (Hadfield 2010) (Table S6) to test for the effects of season while controlling for the potential effects of intraspecific plasticity and

259 phylogenetic ancestry on the foliar variables. In these analyses season was included as a fixed factor, and phylogenetic  
260 relationships and species identities as random factors. The phylogenetic term accounted for the variability related with  
261 shared ancestry, while the species term accounted for species-specific traits independent of shared ancestry. Thus, both  
262 random factors accounted for the variance explained by heritability and by the plastic expression of species' emission  
263 capacities.

264 We computed the phylogenetic signal as Pagel's  $\lambda$  to assess the importance of phylogenetic ancestry on the emission of  
265 BVOCs. The corresponding  $P$ -values were based on the variance in phylogenetically independent contrasts relative to tip-  
266 shuffling randomization, as implemented in the *phylosig* function in the R *phytools* package (Revell 2012). Pagel's  $\lambda$  (1999)  
267 provides a quantitative phylogenetic measure in which  $\lambda$  is a scaling parameter for the correlations between species in  
268 relation to the correlation expected under Brownian evolution.  $\lambda$  has a natural scale between zero (no correlation between  
269 species) and 1.0 (correlation between species equal to the expected Brownian correlation).  $\lambda$  itself is not a correlation but,  
270 rather, a scaling factor for a correlation, so  $\lambda > 1.0$  is theoretically possible. However, depending on the structure of the  
271 tree,  $\lambda >> 1.0$  is not usually defined.

272 Terpene emission rates were expressed as  $\mu\text{g g}^{-1} \text{ d.m. h}^{-1}$ .

273

## 274 **Results**

### 275 **Environmental conditions**

276 The French Guiana monthly average rainfall in 2015 was  $237 \pm 44$  mm during the wet season (December–August) and  $47.5 \pm 11.1$  mm during the dry season (September–November), with the maximum rainfall falling in May (532 mm) and the minimum in October (33 mm). The field campaign during the dry season was conducted with 32.8 mm of rainfall. Mean air temperature during the rainy season was 27–28°C, with a maximum of 28°C in December. During the dry season the maximum temperatures were 28–28.5°C, with minimum temperatures recorded in February (26.5°C). The overall air temperature remains steady throughout the year in French Guiana.

277 Soil water content and temperature values correspond to measurements made in the experimental plots. The average soil water content was  $20.2 \pm 0.3\%$  in the dry season and  $32.3 \pm 0.2\%$  in the wet season (Fig. 1 and Table S2). The average soil temperature in the dry season was  $26.5 \pm 0.1^\circ\text{C}$  and in wet season  $23.7 \pm 0.01^\circ\text{C}$  (Fig. 1 and Table S2).

285

### 286 **BVOC emission rates**

287 Total BVOC emissions varied from  $0.01$  to  $80.9 \mu\text{g g}^{-1} \text{ d.m. h}^{-1}$  in the dry season and from  $0$  to  $11.7 \mu\text{g g}^{-1} \text{ d.m. h}^{-1}$  in the wet season, indicating considerable variation based on environmental conditions (Fig. 2, 3, 4, and S1, and Table S3 and S4). The values for total BVOCs they were  $5.7 \pm 0.6$  and  $1.3 \pm 0.7 \mu\text{g g}^{-1} \text{ d.m. h}^{-1}$  while, for total terpenes were  $5.4 \pm 0.6$  and  $0.5 \pm 0.7 \mu\text{g g}^{-1} \text{ d.m. h}^{-1}$ , in dry and wet season respectively. The majority of both total BVOCs and terpenes were

291 mainly emitted during the dry season (see Figs. 4 and S1). These differences were statistically significant, with ANOVA  
292 analysis showing  $P < 0.0001$ . Sample sizes were 285 in the dry season and 219 in the wet season. Of the monoterpenes, the  
293 most abundant were  $\alpha$ -terpinolene, limonene,  $\alpha$ -pinene, t- $\beta$ -ocimene and sabinene. Of the sesquiterpenes,  $\beta$ -caryophyllene,  
294  $\alpha$ -caryophyllene and  $\alpha$ -copaene were observed during the dry season, while during the wet season,  $\alpha$ -terpinolene  
295 predominated, followed by limonene,  $\alpha$ -pinene, sabinene,  $\beta$ -caryophyllene and  $\alpha$ -copaene (Figs. 3A, 4 and Table S3).  
296 Isoprene was detected in most of the species studied in both seasons (Figs. 3B, 4 and S1, and Table S3). However, in three  
297 tree species (*Gustavia hexapétala* ( $1.8 \pm 1.6$  vs  $0 \pm 0 \mu\text{g g}^{-1} \text{d.m. h}^{-1}$ ), *Eugenia culcullata* ( $3.1 \pm 1.1$  vs  $0.4 \pm 0.1 \mu\text{g g}^{-1} \text{d.m. h}^{-1}$ )  
298 and *Dycorinia guianensis* ( $1.2 \pm 0.8$  vs  $0 \pm 0 \mu\text{g g}^{-1} \text{d.m. h}^{-1}$ )) was significantly higher in the wet season than in the dry  
299 season ( $P < 0.01$ ). Only *Aniba rosaeodora* emitted more isoprene in the dry season than in the wet season ( $2.2 \pm 2.0$  vs  $0 \pm$   
300  $0 \mu\text{g g}^{-1} \text{d.m. h}^{-1}$ ) (Fig. 3B).

301 Among the BVOCs detected, the main non-terpenoid compounds were 2,2,4,6,6-pentamethyl heptane (with no detected  
302 emissions in the dry season and  $0.3 \pm 0.1 \mu\text{g g}^{-1} \text{d.m. h}^{-1}$  in the wet season) and toluene ( $0.1 \pm 0.02 \mu\text{g g}^{-1} \text{d.m. h}^{-1}$  in the dry  
303 season and  $0.012 \pm 0.007 \mu\text{g g}^{-1} \text{d.m. h}^{-1}$  in the wet season) (Fig. 4 and Table S4). Notably, 2,2,4,6,6-pentamethyl heptane  
304 exhibited a strong correlation with isoprene during the wet season ( $r^2 = 0.23$ ,  $P < 0.0001$ ,  $N = 219$ ), while toluene showed a  
305 correlation with  $\alpha$ -pinene during the dry season ( $r^2 = 0.15$ ,  $P < 0.01$ ,  $N = 285$ ).

306 The emission rates of the terpenes and toluene followed a similar pattern to the total BVOCs, except for 2,2,4,6,6-  
307 pentamethyl heptane, which was primarily emitted during the wet season (Fig. 4 and Table S4). Among the emitted  
308 BVOCs,  $\alpha$ -terpinolene, limonene,  $\alpha$ -pinene, t- $\beta$ -ocimene (MT),  $\beta$ -caryophyllene, and  $\alpha$ -caryophyllene (SQT) were the most  
309 abundant, especially in the dry season (Fig. 3A and 4). Additionally, there was a group of unidentified sesquiterpenes  
310 emitted, collectively surpassing the previously mentioned BVOCs, also in the dry season (Fig. 3A).

311 Figure 2 displays all the tree species studied along with their average terpene emissions during both the dry and wet  
312 seasons. Among these species, 27.6% were classified as high terpene emitters, 51.7% as intermediate emitters, and 20.7%  
313 as low emitters. The remaining species were categorized as very low emitters (Fig. 2A). Notably, 90.6% of the species  
314 emitted terpenes during the dry season, whereas only 36.4% emitted terpenes during the wet season. The percentages for  
315 monoterpenes mirrored those of the total terpenes. However, sesquiterpenes were emitted by 75% of the species in the dry  
316 season and only by 15.6% in the wet season (Figs. 2 and 3).

317 Specifically, 2,2,4,6,6-pentamethyl heptane was emitted by 31.3% of the tree species exclusively during the wet season,  
318 while toluene was emitted by 37.5% of the species during the dry season and by 6.3% of the species during the wet season  
319 (Table S4). Monoterpenes generally predominated over sesquiterpenes, except in the case of the tree species *Eperua*  
320 *grandiflora* (Fig. 2B, C). Notably, a significant phylogenetic signal, as assessed by Pagel's  $\lambda$ , was observed only for  
321 sesquiterpenes (Table S5).

322 **Discussion**

323 Our results emphasized the species-specificity of BVOC emissions and the varying tree species responses to seasonal and  
324 environmental conditions (Gomes-Alves et al. 2022; Khun et al. 2002; Mishra and Sinha 2020). The majority of the species  
325 emitted terpenes, isoprene, and other BVOCs (Figs. 2 and 3; Table S3). However, the emitted quantities were relatively low  
326 compared to similar studies in other ecosystems such as the Mediterranean forests (Llusia et al. 2013) but comparable to  
327 those observed in analogous tropical environments (Llusia et al. 2010a, 2014). In the Amazon rainforest, various studies  
328 have explored BVOC emissions and their fluctuations. Jardine et al. (2015) studied the speciation of 12 monoterpenes and  
329 their vertically resolved ambient air mixing ratios in a central Amazon rainforest and their reactive potential of some of  
330 them. Specifically, they observed the highly reactive cis- $\beta$ -ocimene (160 ppt), trans- $\beta$ -ocimene (79 ppt) and terpinolene (32  
331 ppt), which represented approximately 21% of the total monoterpene composition and 55% of the rate of ozonolysis of  
332 monoterpenes from the upper part of the canopy. Leaf-level emissions of highly reactive monoterpenes accounted for up to  
333 1.9% of photosynthesis, confirming light-dependent emissions in several genera of Amazonian trees, corroborating the  
334 present study accounting the qualitatively results. Jardine et al. (2017) utilized monoterpenes as an indicator to gauge the  
335 central Amazon rainforest's response to climate warming and found that monoterpene emissions increase with temperature,  
336 especially  $\beta$ -ocymene, corroborating our results of higher emissions in the dry season (Figs. 3A, 4, S1 and Tables S3 and  
337 S4). And in another study (Yáñez-Serrano et al., 2018), conducted in the Amazon rainforest, the chemical speciation of  
338 monoterpenes, was investigated using samples collected during the dry season of October 2015 at the Amazon Tall Tower  
339 Observatory (ATTO). A distinct differentiation in chemical composition between day and night was found, with  $\alpha$ -pinene  
340 being more abundant during the day and limonene predominating at night. Reactivity calculations revealed that higher  
341 abundance does not always correlate with greater reactivity, and modeling simulations indicated the need for further  
342 research to fully understand the processes of monoterpene exchange in the tropical forest canopy. This study highlights the  
343 importance of chemical speciation in understanding the role of monoterpenes in atmospheric chemistry and the carbon  
344 cycle in tropical forest ecosystems. Furthermore, Byron et al. (2022) investigated the chemical speciation of chiral  
345 monoterpenes in a tropical rainforest ecosystem, revealing distinct diel emission peaks and shifts in emissions in response  
346 to drought conditions. Their findings emphasize the importance of considering enantiomeric distribution in understanding  
347 monoterpene emission mechanisms and predicting atmospheric feedbacks in forest ecosystems, which complements our  
348 understanding of BVOC emissions.

349 Gomes-Alves et al. (2022) investigated the variability of isoprenoid emission patterns, including isoprene, in  
350 Amazonian ecosystems in response to ecophysiological and environmental factors. They conducted measurements of  
351 isoprenoid emission capacities across seasons and environmental gradients for three dominant tree species in the central  
352 Amazon. Contrary to the common perception that isoprene emissions predominantly occur under water stress and high  
353 temperatures, their results align with those of Gomes-Alves et al. (2022), who documented higher isoprene emissions

354 during the wet season, challenging previous assumptions (Taylor et al. 2018) across all tree species. They suggested that  
355 the decreased emissions during the dry season could represent a plastic response to escalating abiotic stress, such as heat  
356 and drought, coupled with reduced substrate availability for isoprenoid synthesis. The study proposed that shifts in  
357 emission composition, characterized by elevated isoprene emissions during the wet season, might serve as a physiological  
358 adaptation to optimize plant performance under prevailing wet season conditions. These findings contrast with the higher  
359 terpene emissions observed in the driest and hottest seasons, indicating potential differences in emission behavior between  
360 isoprene and other isoprenoids, necessitating separate consideration in seasonal emission studies.

361 In their study, Gomes-Alves et al. (2022) noted a significant decrease in isoprenoid emission capacity during the  
362 transition from the wet to the dry season, coinciding with heightened abiotic stress due to heat and drought in the Amazon  
363 rainforest. Moreover, they observed an increase in emissions of heavier isoprenoids, such as monoterpenes and  
364 sesquiterpenes, during this seasonal transition, suggesting a plastic response of plants to changing conditions. This  
365 adaptation in the composition of isoprenoid emissions may represent a strategy to mitigate abiotic stress and sustain  
366 essential plant functions. Additionally, previous research has demonstrated the variability of plant responses in isoprenoid  
367 emission rates in relation to climatic and ecological factors (Staudt et al. 2017). It has also been observed that moderate  
368 drought can lead to an increase in isoprenoid emission rates as plants adapt to water stress (Dani et al., 2014). However,  
369 under conditions of extreme drought, these rates have been shown to decline substantially (Llusia and Peñuelas, 1998).

370 Furthermore, the study by Byron et al. (2022) examined the response of monoterpene emissions to drought in a tropical  
371 rainforest ecosystem. They found that, during a controlled drought experiment, monoterpene emissions exhibited distinct  
372 diurnal peaks and changes in the composition of  $\alpha$ -pinene enantiomers. Additionally, as drought progressed, the emission  
373 source of (-)- $\alpha$ -pinene shifted towards storage pools, promoting cloud formation. This alteration in monoterpene emission  
374 composition may be linked to the plant's ability to adapt to water and thermal stress, supporting the hypothesis of a plastic  
375 response to drought.

376 In summary, these findings suggest that plants can adjust their terpene emissions, including isoprenoids, as an adaptive  
377 strategy to cope with abiotic stress during the dry season in tropical rainforests. The ability to modulate the composition of  
378 terpene emissions could have significant implications for atmospheric chemistry and climate feedback processes in these  
379 ecosystems.

380 Given the present climate change scenario with altered rainfall patterns (Dore 2005), and recognizing that moderate  
381 drought conditions amplify BVOC emissions (Niinemets 2010), a negative feedback effect might occur, particularly  
382 regarding increased aridity. During moderate drought conditions, heightened terpenes in the atmosphere could potentially  
383 enhance rainfall, alleviating, to some degree, the detrimental impacts of climate change in these areas (Llusia and Peñuelas  
384 1998; Llusia et al. 2006, 2008, 2010b; Blanch et al. 2007, 2009).

385 It is noteworthy that non-terpene compounds like toluene and 2,2,4,6,6-pentamethyl heptane were detected (Heiden et  
386 al. 1999; Zhiqun et al. 2017; Misztal et al. 2015).  $\alpha$ -Pinene emission rates also showed a correlation with these factors,  
387 especially during the dry season (Fig. 4). This study also presents the first report of 2,2,4,6,6-pentamethyl heptane emission  
388 from the leaves of several tropical tree species (Khun et al. 2002; Courtois et al. 2009). This BVOC is known to have  
389 allopathic effects, implying a role in plant defense (Zhiqun et al. 2017).

390 BVOC emissions are thus sensitive to taxonomy and environmental factors, including temperature, light, and moisture  
391 availability. Considering the increasing occurrence of drought periods in tropical areas due to climate change,  
392 understanding the potential implications for BVOC emissions is crucial. Drought stress can significantly affect plant  
393 physiology and metabolism, potentially altering the quantity and composition of BVOC emissions.

394 The findings of this study contribute to the characterization of BVOC emissions from some tropical tree species and,  
395 therefore, to our understanding of the complex interactions between climate change, drought, tree species and BVOC  
396 emissions. By considering the potential effects of drought on BVOC emissions and their implications for atmospheric  
397 chemistry and climate processes, we can develop a more comprehensive understanding of the role of BVOCs in the context  
398 of climate change and its impact on drought periods in tropical areas (Dore 2005; Fubao et al. 2018).

399

#### 400 **Conclusions and final remarks**

401 This study reports the results of the emissions of different BVOCs by 36 tree species in the tropical forests of French  
402 Guiana and confirms that there are significant seasonal differences, on average, for BVOCs emitted. On average, emissions  
403 in the dry season were higher than in the wet season; as well, the proportion of each type of BVOCs in each season was  
404 found to be different. Species' shared ancestry had a significant effect on sesquiterpene (Liang et al. 2021) emissions but  
405 not on the total terpenes or monoterpenes.

406 This study provides strong evidence of higher rates of foliar terpene emissions from tropical trees in the dry season than  
407 in the wet season. Our results underscore the potential role of this variation in the capacity of terpene emissions to act as a  
408 buffer effect on climate change (Engelhart et al. 2008). More BVOC emissions under increased drought could partly  
409 counteract the severity of droughts by favoring cloud formation and precipitation (Jardine et al. 2020).

410 As these compounds have important roles in atmospheric chemistry, aerosol formation, and plant-atmosphere  
411 interaction, further research in this field will help improve our understanding of biogeochemical processes and address  
412 important issues related to climate change and air quality.

413

#### 414 **Authorship contribution statement**

415 **AG-G** Manuscript review. **CS, DA, GP, LB and RO** Support in field work and manuscript review. **EC, IU, LVL and OG**  
416 Support in field work. **IAJ** Planning and development of the experiment, supervision of the collection of the samples. **IF**

417 Planning and development of the experiment. Manuscript review. **JL** Collection of samples of BVOCs and their analysis  
418 and writing of the document. **JP** Planning and development of the experiment, supervision of the collection of the samples  
419 and analyses and manuscript review. **JS** Planning and development of the experiment, supervision of the collection of the  
420 samples. Analysis of the Bayesian phylogeny. Manuscript review. **LTV** Support in field and laboratory work, manuscript  
421 review. All authors read and commented on the paper.

422

### 423 Acknowledgements

424 This research was supported by the Spanish Government project TED2021-132627B-I00 funded by MCIN,  
425 AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, Fundación Ramón Areces project  
426 CIVP20A6621, the Catalan Government project SGR2021-1333, and the ERC Synergy project SyG-2013-610028  
427 IMBALANCE-P. We would like to thank staff at the Nouragues research station, managed by USR mixte LEEISA (CNRS;  
428 Cayenne), and the Paracou research station, managed by UMR Ecofog (CIRAD, INRAE; Kourou). Both of these research  
429 stations receive support from *Investissement d’Avenir* grants managed by Agence Nationale de la Recherche (CEBA: ANR-  
430 10-LABX-25-01, ANAEE-France: ANR-11-INBS-0001). We are also grateful to Anna Escolà and Pere-Roc Fernández for  
431 their dedicated work as field and laboratory technicians in French Guiana.

432

### 433 Declarations

434 **Conflict of interest** The authors declare that they have no known competing financial interests or personal relationships  
435 that could influence the work reported in this paper.

436

### 437 References

438 Aceituno P, Prieto MR, Solari ME, Martínez A, Poveda G, and Falvey M (2009) The 1877-78 El Niño episode: Climate  
439 anomalies in South America and associated impacts. *Climatic Change* 92:389-416

440 Aguilos M, Hérault B, Burban B, Wagner F, Bonal D (2018) What drives long-term variations in carbon flux and balance  
441 in a tropical rainforest in French Guiana? *Agr Forest Meteorol* 253:114-123.  
442 <https://doi.org/10.1016/j.agrformet.2018.02.009>

443 Aguilos M, Stahl C, Burban B, Hérault B, Courtois E, Coste S, et al. (2019) Interannual and seasonal variations in  
444 ecosystem transpiration and water use efficiency in a tropical rainforest. *Forests* 101:14.  
445 <https://doi.org/10.3390/f10010014>

446 Allié E, Péliquier R, Engel J, Petronelli P, Freycon V, Deblauwe V, Soucémariadin L, Weigel J, Baraloto C (2015)  
447 Pervasive local-scale tree-soil habitat association in a tropical forest community. *PLoS One*, 10(11), e0141488

448 Alves EG, Jardine K, Tota J, Jardine A, Yáñez-Serrano AM, Karl T, Tavares J, Nelson B, Gu D, Stavrakou T, Martin S,  
449 Artaxo P, Manzi A, Guenther A (2016) Seasonality of isoprenoid emissions from a primary rainforest in central  
450 Amazonia. *Atmos Chem Phys* 16(6):3903-3925

451 Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry.  
452 *Science* 276:1052-1058

453 Baraloto C, Hardy OJ, Paine CET, Dexter KG, Cruaud C, Dunning LT, Gonzalez MA, Molino JF, Sabatier D, Savolainen  
454 V, Chave J (2012) Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. *J  
455 Ecol* 100(3):690–701. <https://doi.org/10.1111/j.1365-2745.2012.01966.x>

456 Baraloto C, Morneau F, Bonal D, Blanc L, Ferry B (2007) Seasonal water stress tolerance and habitat associations within  
457 four neotropical tree genera. *Ecology* 88:478–489

458 Blanch J, Peñuelas J, Llusià J (2007) Sensivity of terpene emissions to drought and fertilization in terpene-storing *Pinus*  
459 *halepensis* and non-storing *Quercus ilex*. *Physiol Plantarum* 131:211-225.

460 Blanch J, Peñuelas J, Sardans J, Llusià J (2009) Drought, warming and soil fertilization effects on leaf volatile terpene  
461 concentrations in *Pinus halepensis* and *Quercus ilex*. *Acta Phys Plant* 31:207-218

462 Blanch S, Sampedro L, Llusià J, Moreira X, Zas R, Peñuelas J (2012) Effects of phosphorus availability and genetic  
463 variation of leaf terpene content and emission rate in *Pinus pinaster* seedlings susceptible and resistant to the pine weevil,  
464 *Hylobius abietis*. *Plant Biol* 14:66-72. <https://doi.org/10.1111/j.1438-8677.2011.00492.x>

465 Bongers F (2001) Nouragues: dynamics and plant-animal interactions in a Neotropical rainforest. Berlin: Springer

466 Borges RM, Bessière JM, Hossaert-McKey M (2008) The chemical ecology of seed dispersal in monoecious and dioecious  
467 figs. *Funct Ecol* 22(3):484-493

468 Bourtsoukidis E, Behrendt T, Yáñez-Serrano AM, Hellén H., Diamantopoulos E., Catão E., ... Williams J (2018) Strong  
469 sesquiterpene emissions from Amazonian soils. *Nature communications* 9(1): 2226

470 Bourtsoukidis E, Pozzer A, Williams J, Makowski D, Peñuelas J, Matthaios VN, ... Sciare J (2024) High temperature  
471 sensitivity of monoterpane emissions from global vegetation. *Communications Earth & Environment* 5(1): 23

472 Byron J, Kreuzwieser J, Purser G, van Haren J, Ladd SN, Meredith LK, ... Williams J (2022) Chiral monoterpenes reveal  
473 forest emission mechanisms and drought responses. *Nature* 609: 307-312

474 Centritto M, Haworth M, Marino G, Pallozzi E, Tsonev T, Velikova V, Nogues I, Loreto F (2014) Isoprene emission aids  
475 recovery of photosynthetic performance in transgenic *Nicotiana tabacum* following high intensity acute UV-B exposure.  
476 *Plant Sci* 226:82-91

477 Copolovici LO, Filella I, Llusià J, Niinemets Ü, Peñuelas J (2005) The capacity for thermal protection of photosynthetic  
478 electron transport varies for different monoterpenes in *Quercus ilex*. *Plant Physiol* 139: 485–96

479 Courtois EA, Paine CE, Blandinieres PA, Stien D, Bessiere JM, Houel E, Baraloto C, Chave J (2009) Diversity of the  
480 volatile organic compounds emitted by 55 species of tropical trees: a survey in French Guiana. *J chem ecol* 35(11): 1349-  
481 1362

482 Courtois EA, Dexter KG, Paine CET, Stien D, Engel J, Baraloto C, Chave J (2016) Evolutionary patterns of volatile  
483 terpene emissions across 202 tropical tree species. *Ecol Evol* 6(9): 2854-2864

484 Courtois EA, Stahl C, Van den Berge J, Bréchet L, Van Langenhove L, Richter A, Urbina I, Soong JL, Peñuelas J, Janssens  
485 IA (2018) Spatial variation of soil CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O fluxes across topographical positions in tropical forests of the  
486 Guiana Shield. *Ecosystems* 21(7): 1445-1458

487 Dani KGS, Jamie IM, Prentice IC, Atwell BJ (2014) Increased ratio of electron transport to net assimilation rate supports  
488 elevated isoprenoid emission rate in eucalypts under drought. *Plant Physiology* 166(2): 1059-1072

489 Dement WA, Tyson BJ, Mooney HA (1975) Mechanism of monoterpane volatilization in *Salvia mellifera*. *Phytochemistry*  
490 14(12):2555-2557

491 Dore MH (2005) Climate change and changes in global precipitation patterns: what do we know? *Environ int* 31(8): 1167-  
492 1181

493 Dumanović J, Nepovimova E, Natić M, Kuca K, Jaćević V (2021) The significance of reactive oxygen species and  
494 antioxidant defense system in plants: A concise overview. *Front Plant Sci* 11: 552-969

495 Edtbauer A, Pfannerstill EY, Pires FAP, Barbosa CGG, Rodriguez-Caballero E, Zannoni N, Alves RP, Wolff S,  
496 Tsokankunku A, Aptroot A, Oliveira Sá M de, Araújo AC de, Sörgel M, Mota de Oliveira S, Weber B Williams J (2021)  
497 Cryptogamic organisms are a substantial source and sink for volatile organic compounds in the Amazon region. *Commun  
498 Earth Environ* 2(1): 1-14

499 Engelhart GJ, Asa-Awuku A, Nenes A, Pandis SN (2008) CCN activity and droplet growth kinetics of fresh and aged  
500 monoterpane secondary organic aerosol. *Atmos Chem Phys* 8:3937-3949. <https://doi.org/10.5194/acp-8-3937-2008>

501 Epron D, Bosc A, Bonal D, Freycon V (2006) Spatial variation of soil respiration across a topographic gradient in a tropical  
502 rain forest in French Guiana. *J Trop Ecol* 22:565-74. <https://doi.org/10.1017/S0266467406003415>

503 FAO-ISRIC-ISSS (1998) World reference base for soil resources. FOOD AND AGRICULTURE ORGANIZATION OF  
504 THE UNITED NATIONS Rome 1998. 84 World Soil Resources Reports. International Society of Soil Science ISSS-  
505 AISS-IBG. International Soil Reference and Information Centre ISRIC. Food and Agriculture Organization of the United  
506 Nations. M-41. ISBN 92-5-104141-5

507 Farré-Armengol G, Filella I, Llusià J, Peñuelas J (2015) Relationships among floral VOC emissions, floral rewards and  
508 visits of pollinators in five plant species of a Mediterranean shrubland. *Plant Ecol Evol* 148: 90-99 (Supplementary  
509 materials).

510 Farré-Armengol G, Filella I, Llusia J, Peñuelas J (2016) Bidirectional interaction between phyllospheric microbiotas and  
511 plant volatile emissions. *Trends Plant Sci* 21(10): 854-860. <https://doi.org/10.1016/J.TPLANTS.2016.06.005>

512 Ferry B, Morneau F, Bontemps JD, Blanc L, Freycon V (2010) Higher tree falls rates on slopes and waterlogged soils result  
513 in lower stand biomass and productivity in a tropical rain forest. *J Ecol* 98(1): 106-116

514 Fubao S, Roderick ML, Farquhar GD (2018) Rainfall statistics, stationarity, and climate change. *Proceedings of the*  
515 *National Academy of Sciences* 115.10: 2305-2310

516 Gibbs AK, Barron CN (1993) The geology of the Guiana Shield. Oxford: Oxford University Press

517 Gomes-Alves E, Taylor T, Robin M, Pinheiro Oliveira D, Schiatti J, Duvoisin Júnior S, Zannoni N, Williams J, Hartmann  
518 C, Gonçalves JFC, Schöngart J, Wittmann F, Piedade MTF (2022) Seasonal shifts in isoprenoid emission composition  
519 from three hyperdominant tree species in central Amazonia. *Plant Biol* 24(5): 721-733

520 Gourlet-Fleury S, Guehl JM, Laroussinie O (2004) Ecology and management of a Neotropical rainforest. Lessons drawn  
521 from Paracou, a long-term experimental research site in French Guiana. Paris: Elsevier. ISBN 2-84299-455-8

522 Grau O, Peñuelas J, Ferry B, Freycon V, Blanc L, Desprez M, Baraloto C, Chave J, Descroix A, Dourdain A, Guitet S,  
523 Janssens IA, Sardans J, Hérault B (2017) Nutrient-cycling mechanisms other than the direct absorption from soil may  
524 control forest structure and dynamics in poor Amazonian soils. *Sci Rep-UK* 7:45017. <https://doi.org/10.1038/srep45017>

525 Guenther A (2013) Biological and chemical diversity of biogenic volatile organic emissions into the atmosphere. *Int Scho  
526 Res Not*

527 Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. *J  
528 stat softw* 33:1-22

529 Hammond D (2005) Tropical Forests of the Guiana Shield: Ancient Forests in a Modern World, CABI Publishing,  
530 Cambridge.

531 Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S, Goetz S, Loveland T  
532 (2013) High-resolution global maps of 21st-century forest cover change. *Science* 342: 850-853

533 Hansted L, Jakobsen HB, Olsen CE (1994) Influence of temperature on the rhythmic emission of volatiles from *Ribes  
534 nigrum* flowers in situ. *Plant, Cell Environ* 17(9): 1069-1072

535 Heiden AC, Kobel K, Komenda M, Koppmann R, Shao M, Wildt J (1999) Toluene emissions from plants. *Geophys Res  
536 Let* 26(9): 1283-1286. <https://doi.org/10.1029/1999GL900220>

537 Hellén H, Tykkä T, Schallhart S, Stratigou, E, Salameh, T, Iturrate-Garcia, M (2024) Measurements of atmospheric C 10–  
538 C 15 biogenic volatile organic compounds (BVOCs) with sorbent tubes. *Atmospheric Measurement Techniques* 17(1):  
539 315-333

540 Holzinger R, Sandoval-Soto L, Rottenberger S, Crutzen PJ, Kesselmeier J (2000) Emissions of volatile organic compounds  
541 from *Quercus ilex* L. measured by Proton Transfer Reaction Mass Spectrometry under different environmental  
542 conditions. *J Geophys Res-Atmos* 105(D16): 20573–20579. <https://doi.org/10.1029/2000JD900296>

543 Jardine AB, Jardine KJ, Fuentes JD, Martin ST, Martins G, Durgante F, Carneiro V, Higuchi N, Manzi AO, Chambers JQ  
544 (2015) Highly reactive light-dependent monoterpenes in the Amazon. *Geophys Res Let* 42(5):1576-1583

545 Jardine KJ, Jardine AB, Holm JA, Lombardozzi DL, Negron-Juarez RI, Martin ST, Beller HR, Gimenez BO, Higuchi N,  
546 Chambers JQ (2017) Monoterpene “thermometer” of tropical forest-atmosphere response to climate warming. *Plant Cell*  
547 *Environ* 40: 441–452. <https://doi.org/10.1111/pce.12879>

548 Jardine KJ, Zorzanelli RF, Gimenez BO, de Oliveira Piva LR, Teixeira A, Fontes CG, Robles E, Higuchi N, Chambers JQ,  
549 Martin ST (2020) Leaf isoprene and monoterpene emission distribution across hyperdominant tree genera in the Amazon  
550 basin. *Phytochemistry* 175: 112366

551 Kegge W, Pierik R (2010) Biogenic volatile organic compounds and plant competition. *Trends Plant Sci* 15(3): 126-132

552 Kembel SW, O'Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere  
553 bacterial communities and plant functional traits in a Neotropical forest. *P Natl Acad Sci* 111(38): 13715-13720

554 Kesselmeier J, Staudt M (1999) Biogenic Volatile Organic Compounds VOC: An Overview on Emission, Physiology and  
555 Ecology. *J Atmos Chem* 33: 23-88. <https://doi.org/10.1023/A:1006127516791>

556 Kesselmeier J, Wilske B, Muth S, Bode K, Wolf A (1999) Exchange of oxygenated volatile organic compounds between  
557 boreal lichens and the atmosphere. LAURILA T, LINDFORS V. Biogenic VOC emissions and photochemistry in the  
558 boreal regions of Europe, CEC Air Pollution Research Report. Luxembourg: Official Publication of the European  
559 Commission 70: 57-71

560 Kigathi, RN, Weisser WW, Reichelt M, Gershenzon J, Unsicker SB (2019) Plant volatile emission depends on the species  
561 composition of the neighboring plant community. *BMC plant biology* 19: 1-17

562 Koskella B (2020) The phyllosphere. *Current Biol* 30(19): R1143-R1146

563 Kuhn U, Rottenberger S, Biesenthal T, Wolf A, Schebeske G, Ciccioli P, Brancaleoni E, Frattoni M, Tavares TM,  
564 Kesselmeier J (2002) Isoprene and monoterpene emissions of Amazonian tree species during the wet season: Direct and  
565 indirect investigations on controlling environmental functions. *J Geophys Res-Atmos* 107(D20): LBA-38

566 Kulmala M, Suni T, Lehtinen KEJ, Dal Maso M, Boy M, Reissell A, Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN  
567 (2009) Biogenic volatile organic compounds in the Earth system. *New Phytol* 183(1): 27-51

568 Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. *New*  
569 *Phytol* 183(1): 27-51

570 Lawson CA, Seymour JR, Possell M, Suggett DJ, Raina JB (2020) The volatilomes of Symbiodiniaceae-associated bacteria  
571 are influenced by chemicals derived from their algal partner. *Front Marine Sci* 7: 106

572 Liang D, Li W, Yan X, Caiyin Q, Zhao G, Qiao J (2021) Molecular and Functional Evolution of the Spermatophyte  
573 Sesquiterpene Synthases. *Int J Mol Sci* 22(12): 6348

574 Llusià J, Peñuelas J (1998) Changes in terpene content and emission in potted Mediterranean woody plants under severe  
575 drought. *Can J Bot* 76: 1366-1373

576 Llusià J, Peñuelas J (1999) *Pinus halepensis* and *Quercus ilex* terpene emission rates as affected by temperature and  
577 humidity. *Biol Plantarum* 42(2): 317-320

578 Llusià J, Peñuelas J (2000) Seasonal patterns of terpene content and emission from seven Mediterranean woody species in  
579 field conditions. *Am J Bot* 87: 133-140

580 Llusià J, Peñuelas J (2001) Emission of volatile organic compounds by apple trees in response to spider mite attack and  
581 attraction of predatory mites. *Exp App Acarol* 25(1): 65-77

582 Llusià J, Peñuelas J, Alessio G, Estiarte M (2006) Seasonal contrasting changes of foliar concentrations of terpenes and  
583 other volatile organic compounds in four dominant species of a Mediterranean shrubland submitted to a field  
584 experimental drought and warming. *Physiol Plantarum* 127: 632-649

585 Llusià J, Peñuelas J, Alessio GA, Estiarte M (2008) Contrasting Species-Specific, Coumpound-Specific, Seasonal, and  
586 Interannual Response of Foliar Isoprenoid Emissions to Experimental Drought in a Mediterranean Shrubland. *Int J Plant  
587 Sci* 169: 637-645

588 Llusià J, Peñuelas J, Asensio D, Munné-Bosch S (2005) Airbone limonene confers limited thermotolerance to *Quercus ilex*.  
589 *Physiol Plantarum* 123: 40-48

590 Llusià J, Peñuelas J, Guenther A, Rapparini F (2013) Seasonal variations in terpene emission factors of dominant species in  
591 four ecosystems in NE Spain. *Atmospheric Environment* 70: 149-158

592 Llusià J, Peñuelas J, Ogaya R, Alessio G (2010b) Annual and seasonal changes in foliar terpene content and emission rates  
593 in *Cistus albidus* L. submitted to soil drought in Prades forest (Catalonia, NE Spain). *Acta Phys Plant* 32: 387-394. DOI  
594 10.1007/s11738-009-0416-y

595 Llusià J, Peñuelas J, Sardans J, Owen S, Niinemets Ü (2010a) Measurement of volatile terpene emissions in 70 dominant  
596 vascular plant species in Hawaii: aliens emit more than natives. *Global Ecol Biogeogr* 19: 863-874. DOI 10.1111/j.1466-  
597 8238.2010.00557.x

598 Llusià J, Peñuelas J, Seco R, Filella I (2012) Seasonal changes in the daily emission rates of terpenes by *Quercus ilex* and  
599 the atmospheric concentrations of terpenes in the natural park of Montseny, NE Spain. *J Atmos Chem* 69: 215-230

600 Llusià J, Sardans J, Niinemets Ü, Owen SM, Peñuelas J (2014) A screening study of leaf terpene emissions of 43 rainforest  
601 species in Danum Valley Conservation Area (Borneo) and their relationships with chemical and morphological leaf traits.  
602 *Plant Biosys* 148: 307-317

603 Loreto F, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Tricoli D (1996) Influence of environmental factors and air  
604 composition on the emission of [alpha]-pinene from *Quercus ilex* leaves. *Plant Physiol* 110(1): 267-275

605 Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidences for an isoprene-  
606 like antioxidant action of monoterpenes emitted by *Quercus ilex* (L.) leaves. *Tree Physiol* 24: 361-367

607 Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage,  
608 quenches ozone products, and reduces lipid peroxidation of cellular membranes. *Plant Physiol* 127: 1781-1787

609 Medori M, Michelini L, Nogues I, Loreto F, Calfapietra C (2012) The impact of root temperature on photosynthesis and  
610 isoprene emission in three different plant species. *The Scientific World Journal* 2012

611 Mishra AK, Sinha V (2020) Emission drivers and variability of ambient isoprene, formaldehyde and acetaldehyde in north-  
612 west India during monsoon season. *Environ Poll* 267: 115538

613 Misztal PK, Hewitt CN, Wildt J, Blande JD, Eller AS, Fares S, ... Goldstein AH (2015) Atmospheric benzenoid emissions  
614 from plants rival those from fossil fuels. *Scientific reports* 5: 12064

615 Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their  
616 biotechnological potential. *Fungal Biol Rev* 26(2-3): 73-83

617 Mu Z, Llusià J, Zeng J, Zhang Y, Asensio D, Yang K, Yi Z, Wang X, Peñuelas J (2022) An overview of the isoprenoid  
618 emissions from tropical plant species. *Frontiers Plant Sci* 13: 833030. <https://doi.org/10.3389/fpls.2022.833030>

619 Munné-Bosch S, Peñuelas J (2004) Drought-induced oxidative stress in strawberry tree (*Arbutus unedo* L.) growing in  
620 Mediterranean field conditions. *Plant Sci* 166(4): 1105-1110

621 Nachtergaele FO, Spaargaren O, Deckers JA, Ahrens B (2000) New developments in soil classification: world reference  
622 base for soil resources. *Geoderma* 96(4): 345-357

623 Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. *Trends Plant Sci* 15(3):  
624 145-153

625 Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal diffusion conductance limits photosynthesis more  
626 strongly in older leaves of Mediterranean evergreen broad-leaved species. *Plant, Cell and Environment* 28: 1552-1566

627 Niinemets Ü, Wright I, Evans JR (2009) Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a  
628 broad range of foliage structural and physiological variation. *Journal of Experimental Botany* 60: 2433-2449

629 Owen SM, Peñuelas J (2005) Opportunistic emissions of volatile isoprenoids. *Trends Plant Sci* 10(9): 420-426

630 Peñuelas J, Llusià J (1997) Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by  
631 *Rosmarinus officinalis*. *J Chem Ecol* 23(4): 979-993

632 Peñuelas J, Llusià J (1999) Seasonal Emission of Monoterpenes by the Mediterranean tree *Quercus Ilex* in field conditions:  
633 relations with photosynthetic rates, temperature and volatility. *Physiol Plantarum* 105: 641-647

634 Peñuelas J, Llusià J (2001) The complexity of factors driving volatile organic compound emissions by plants. *Biol*  
635 *Plantarum* 44: 481-487

636 Peñuelas J, Llusià J (2002) Linking photorespiration, monoterpenes and thermotolerance in *Quercus*. *New Phytol* 155(2):  
637 227-237

638 Peñuelas J, Llusià J (2003) BVOCs: Plant defense against climate warming? *Trends Plant Sci* 8(3): 105-109

639 Peñuelas J, Llusià J (2004) Plant VOC emissions: making use of the unavoidable. *Trends Ecol Evol* 19(8): 402-404

640 Peñuelas J, Llusià J, Asensio D, Munné-Bosch S (2005) Linking isoprene with plant thermotolerance, antioxidants and  
641 monterpene emissions. *Plant, Cell Environ* 28: 278-286

642 Peñuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. *Trends Plant Sci* 10 (4): 166-169

643 Peñuelas J, Sardans J, Llusià J, Owen S, Carnicer J, Giambelluca TW, Rezende EL, Waite M, Niinemets Ü (2010) Faster  
644 returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. *Global*  
645 *Change Biol* 16: 2171-2185. doi: 10.1111/j.1365-2486.-2009.02054.x

646 Peñuelas J, Sardans J, Llusià J, Silva J, Owen S, Bala-Ola Bernadus, Linatoc AC, Dalimin MN, Niinemets Ü (2013) Foliar  
647 chemistry and standing folivory of early and late-successional species in a Bornean rainforest. *Plant Ecol Divers* 6: 245-  
648 256

649 Peñuelas J, Staudt M (2010) BVOCs and global change. *Trends Plant Sci* 15(3): 133-144

650 Picazo-Aragonés J, Terrab A, Balao F (2020) Plant volatile organic compounds evolution: transcriptional regulation,  
651 epigenetics and polyploidy. *International Journal of Molecular Sciences* 21(23): 8956

652 Pichersky E, Gershenson J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and  
653 defense. *Curr Opin Plant Biol* 5(3): 237-243

654 Raguso RA (2008) Start making scents: the challenge of integrating chemistry into pollination ecology. *Entomologia  
655 experimentalis et applicata* 128(1): 196-207

656 Revell L, Phytools J (2012) an R package for phylogenetic comparative biology (and other things). *Methods Ecol Evol* 3:  
657 217-223

658 Rundell SM, Spakowicz DJ, Narváez-Trujillo A, Strobel SA (2015) The biological diversity and production of volatile  
659 organic compounds by stem-inhabiting endophytic fungi of ecuador. *J Fungi* 1(3): 384-396.  
660 <https://doi.org/10.3390/jof1030384>

661 Sabatier D, Grimaldi M, Prévost MF, Guillaume J, Godron M, Dosso M, Curmi, P (1997) The influence of soil cover  
662 organization on the floristic and structural heterogeneity of a Guianan rain forest. *Plant ecology* 131(1): 81-108

663 Salomon MV, Purpora R, Bottini R, Piccoli P (2016) Rhizosphere associated bacteria trigger accumulation of terpenes in  
664 leaves of *Vitis vinifera* L. cv. Malbec that protect cells against reactive oxygen species. *Plant Physiol Biochem* 106: 295-  
665 304

666 Seufert G (1997) BEMA: a European commission project on biogenic emissions in the Mediterranean area. *Atmos*  
667 *Environ-UK*

668 Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. *Nature* 374(6525): 769-769

669 Singh HB, Zimmerman PB (1992) Atmospheric distribution and sources of nonmethane hydrocarbons. In: *Gaseous*  
670 *pollutants: Characterization and cycling* 177-235

671 Stahl C, Burban B, Goret JY, Bonal D (2011) Seasonal variations in stem CO<sub>2</sub> efflux in the Neotropical rainforest of  
672 French Guiana. *Ann For Sci* 68(4): 771-782

673 Staudt M, Seufert G (1995) Light-dependent emission of monoterpenes by holm oak (*Quercus ilex* L.).  
674 *Naturwissenschaften* 82(2): 89-92

675 Staudt, M, Morin, X, Chuine I (2017) Contrasting direct and indirect effects of warming and drought on isoprenoid  
676 emissions from Mediterranean oaks. *Regional environmental change* 17: 2121-2133

677 SteegeTH, Mota de Oliveira S, Pitman NC, Sabatier D, Antonelli A, Guevara Andino JE, ... Salomão RP (2019) Towards a  
678 dynamic list of Amazonian tree species. *Scientific reports* 9(1): 3501

679 Taylor TC, McMahon SM, Smith MN, Boyle B, Violle C, Haren J, Simova I, Meir P, Ferreira LV, Camargo PB, Costa  
680 ACL, Enquist BJ, Saleska SR (2018) Isoprene emission structures tropical tree biogeography and community assembly  
681 responses to climate. *New Phytol* 220: 435–446

682 Tingey DT, Manning M, Grothaus LC, Burns WF (1980) Influence of light and temperature on monterpene emission rates  
683 from slash pine. *Plant Physiol* 65(5): 797-801

684 Van der Meer PJ, Bongers F (1996) Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. *J Ecol*  
685 19-29. <https://www.jstor.org/stable/2261696>

686 Verryck L, Vicca S, Van Langenhove L, Stahl C, Asensio D, Urbina I, Ogaya R, Llusià J, Grau O, Peguero G, Gargallo-  
687 Garriga A, Courtois EA., Margalef O, Portillo-Estrada M, Ciais P, Obersteiner M, Fuchslueger L, Lugli LF, Fernandez-  
688 Garberí P-R, Vallicrosa H, Verlinden M, Ranits C, Vermeir P, Coste S, Verbruggen E, Bréchet L, Sardans J, Chave J,  
689 Peñuelas J, Janssens IA (2021) Vertical profiles of leaf photosynthesis and leaf traits, and soil nutrients in two tropical  
690 rainforests in French Guiana before and after a three-year nitrogen and phosphorus addition experiment. *Earth System*  
691 *Data* doi: 10.5194/essd-2021-142

692 Verryck LT, Ellsworth DS, Vicca S, Van Langenhove L, Peñuelas J, Ciais P, Posada JM, Stahl C, Coste S, Courtois EA,  
693 Obersteiner M, Chave J, Janssens IA (2020b) Can light-saturated photosynthesis in lowland tropical forests be estimated  
694 by one light level? *Biotropica* 52:1184–1194. Doi: 10.1111/btp.12817

695 Verryck LT, Van Langenhove L, Ciais P, Courtois EA, Vicca S, Peñuelas J, Stahl C, Coste S, Ellsworth DS, Posada JM,  
696 Obersteiner M, Chave J, Janssens IA (2020a) Coping with branch excision when measuring leaf net photosynthetic rates  
697 in a lowland tropical forest. *Biotropica* 52(4): 608-615

698 Verryckt LT, Vicca S, Van Langenhove L, Stahl C, Asensio D, Urbina I, Ogaya R, Llusià J, Grau O, Peguero G, Gargallo-  
699 Garriga A, Courtois EA, Margalef O, Portillo-Estrada M, Ciais P, Obersteiner M, Fuchslueger L, Lugli LF, Fernandez-  
700 Garberí PR, Vallicrosa H, Verlinden M, Ranits C, Vermeir P, Coste S, Verbruggen E, Bréchet L, Sardans J, Chave J,  
701 Peñuelas J, Janssens IA (2022) Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical  
702 rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment. *Earth Syst Sci Data*  
703 14(1): 5-18

704 Vickers CE, Gershenson J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant  
705 abiotic stress. *Nat Chem Biol* 5(5): 283-291

706 Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. *Anton  
707 Leeuw* 81(1): 357-364

708 Yáñez-Serrano AM, Bourtsoukidis E, Alves EG, Bauwens M, Stavrakou T, Llusià J, Filella I, Guenther A, Williams J,  
709 Artaxo P, Sindelarova K, Doubalova J, Kesselmeier J, Peñuelas J (2020) Amazonian Biogenic Volatile Organic  
710 Compounds under Global Change. *Glob Change Biol* 26: 4722–4751. doi: 10.1111/gcb.15185

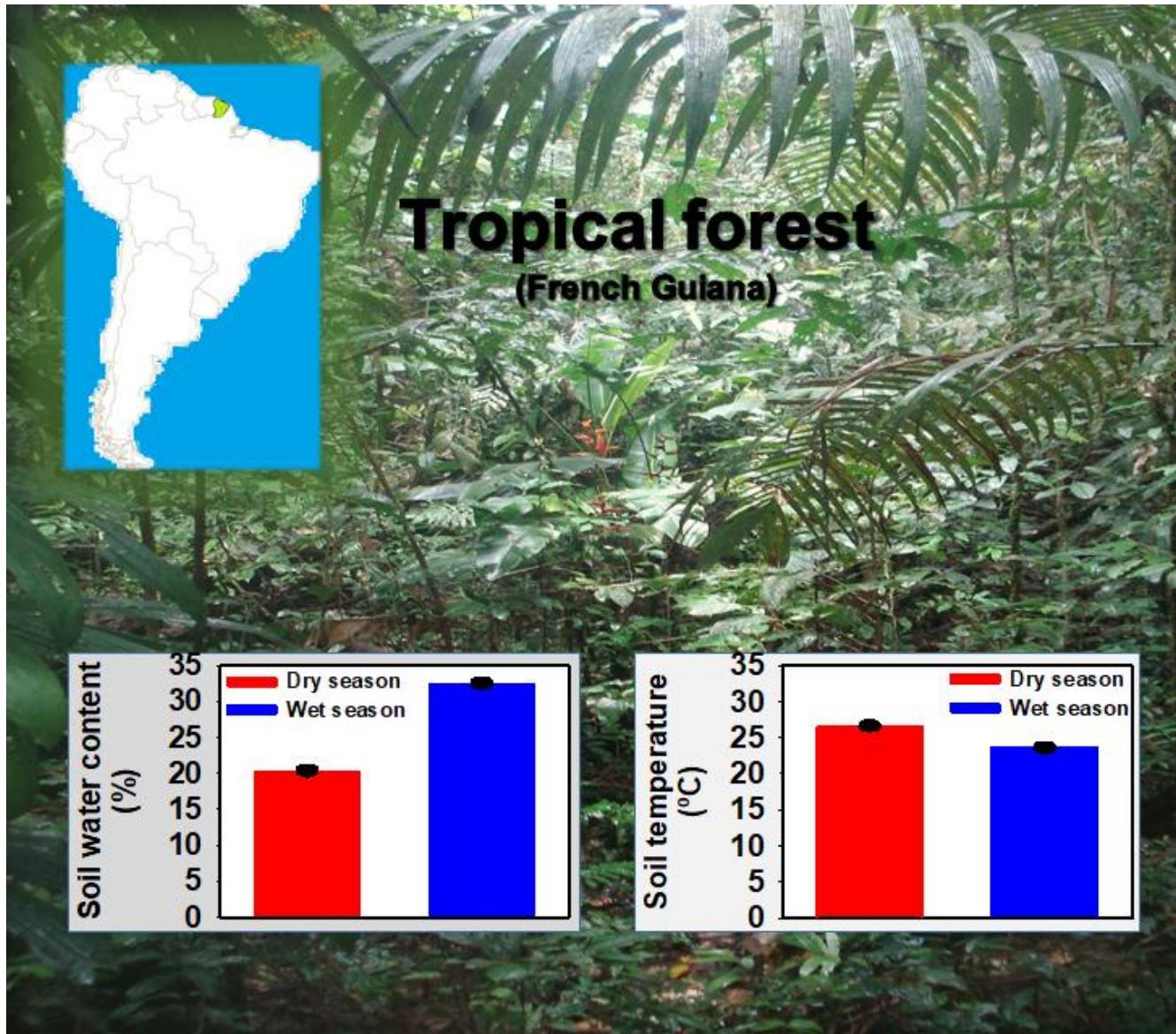
711 Yáñez-Serrano AM, Fasbender L, Kreuzwieser J, Dubbert D, Haberstroh S, Lobo-do-Vale R, Caldeira MC, Werner C  
712 (2018) Volatile diterpene emission by two Mediterranean Cistaceae shrubs. *Sci Rep-UK* 8(1): 6855

713 Yáñez-Serrano AM, Nölscher AC, Bourtsoukidis E, Gomes Alves E, Ganzeveld L, Bonn B,...Kesselmeier, J. (2018)  
714 Monoterpene chemical speciation in a tropical rainforest: variation with season, height, and time of day at the Amazon  
715 Tall Tower Observatory (ATTO). *Atmospheric Chemistry and Physics* 18(5): 3403-3418

716 Zhiqun T, Jian Z, Junli Y, Chunzi W, Danju Z (2017) Allelopathic effects of volatile organic compounds from *Eucalyptus  
717 grandis* rhizosphere soil on *Eisenia fetida* assessed using avoidance bioassays, enzyme activity, and comet assays.  
718 *Chemosphere* 173: 307-317

719

720


721

722

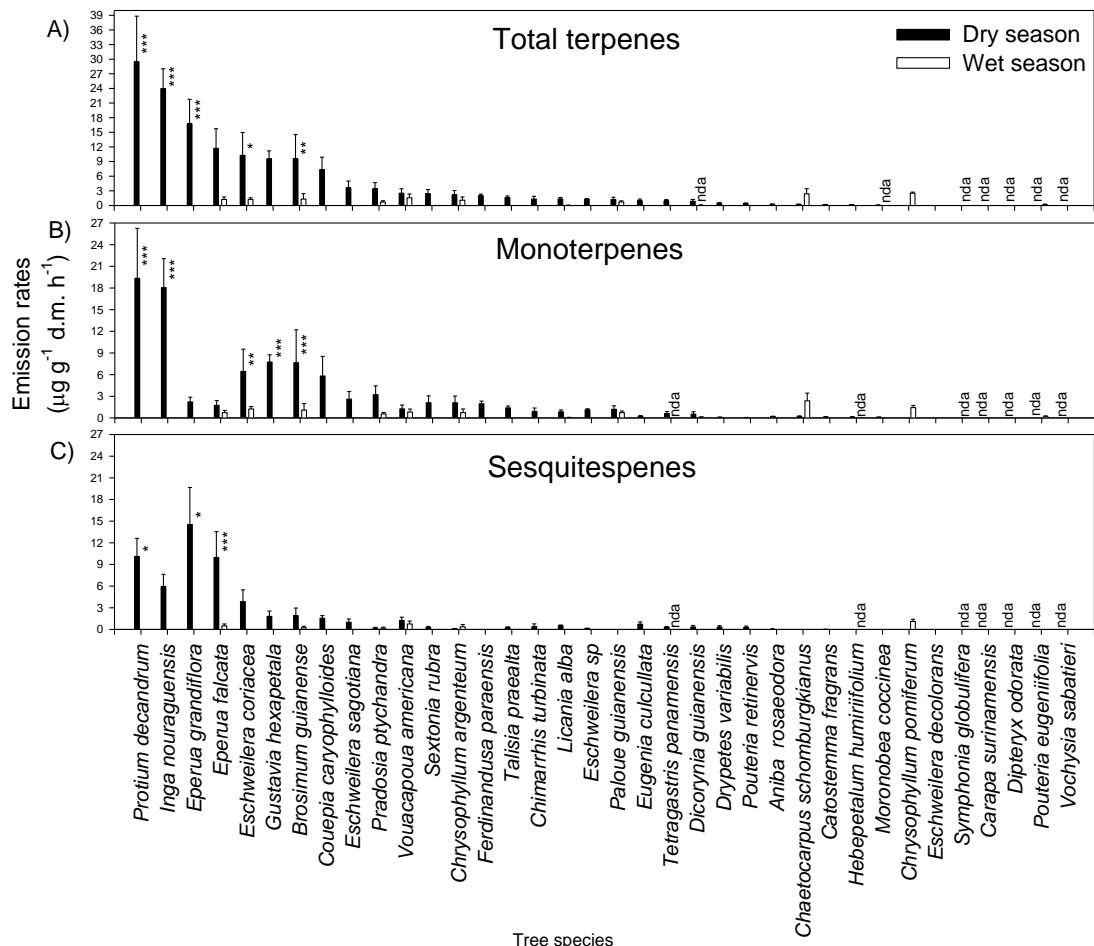
723

724

725



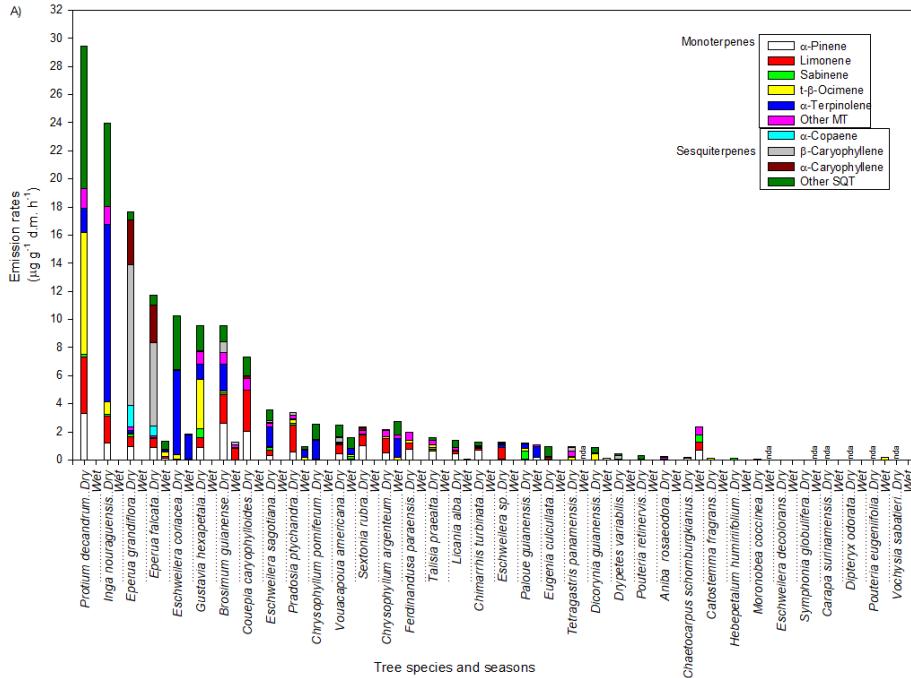
726


727 **Fig. 1.** Mean soil water content (%) and soil temperature (°C) ( $\pm$  standard error) in French Guiana, South America. The  
 728 picture was taken during the 2015 wet season at the Nouragues Ecological Research Station.

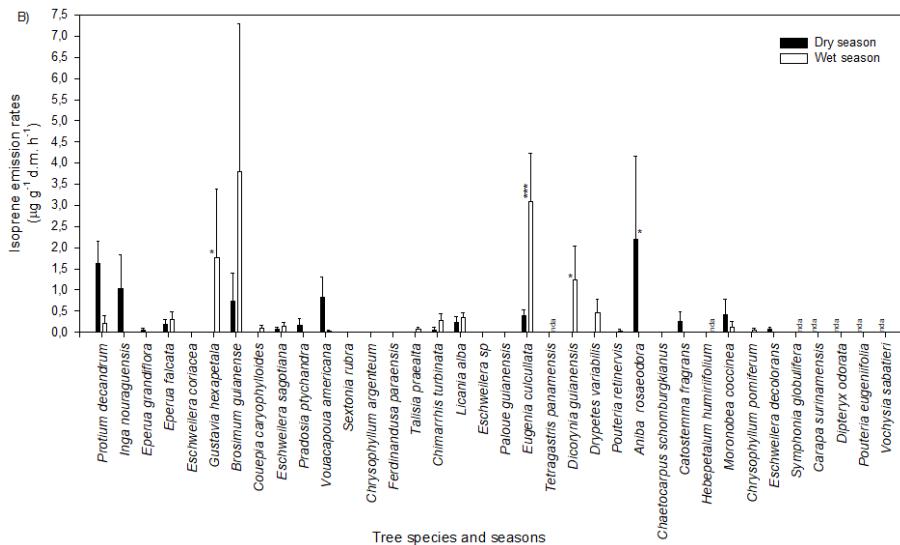
729

730

731

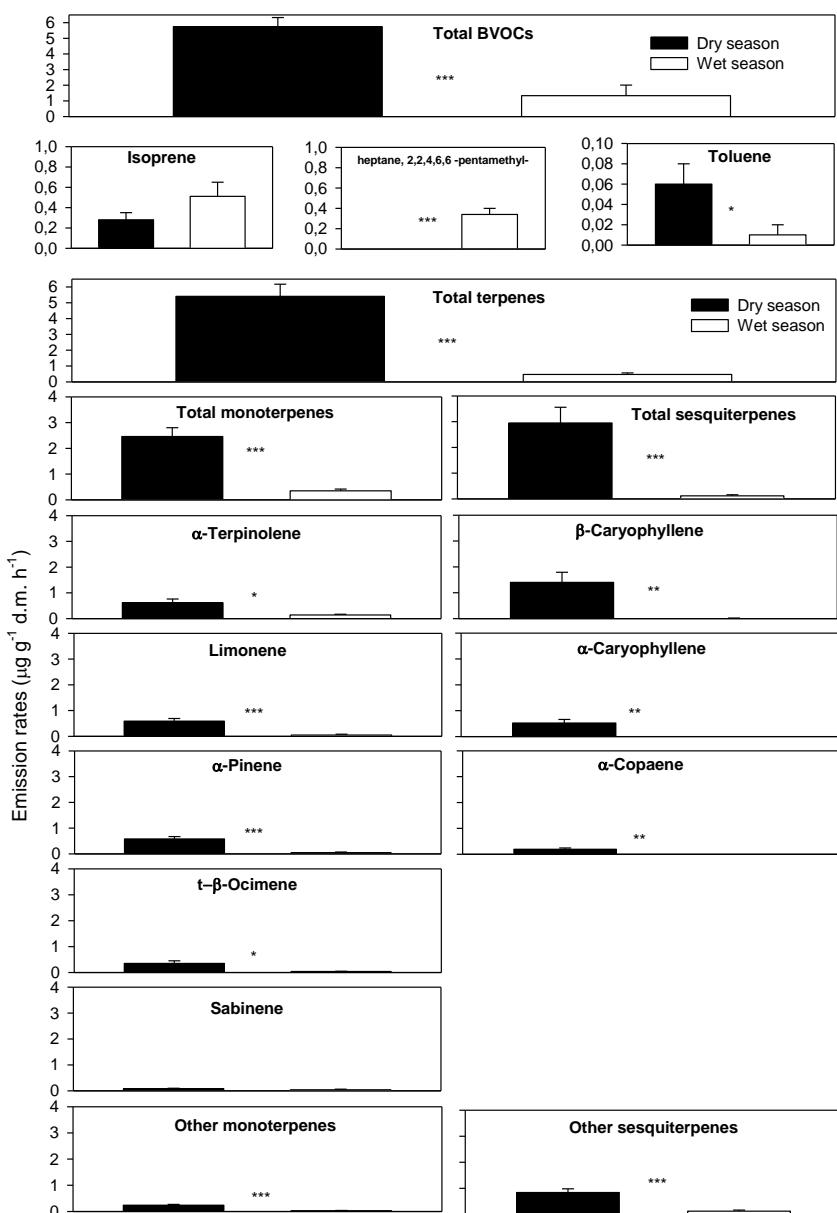

732




733  
734

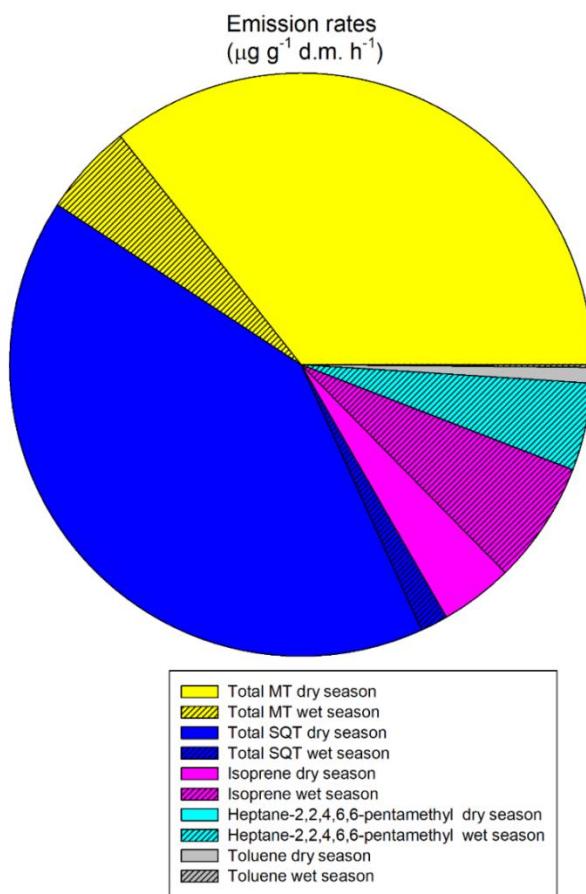
735 **Fig. 2.** Mean terpene emissions ( $\pm$  standard deviation) for A) total terpenes, B) monoterpenes and C) sesquiterpenes from  
736 36 tropical tree species in French Guiana. Asterisks indicate significant differences between seasons, \*  $P < 0.01$ , \*\*  $P <$   
737 0.001, \*\*\*  $P < 0.00001$ ; N = 285 and 219 in the dry and wet season, respectively. Nda stands for no data available.

738




739




740

741 **Fig. 3.** Mean terpene emissions ( $\pm$  standard error) for A) Total terpenes and B) the isoprene group from 36 tropical tree  
 742 species in French Guiana. Asterisks indicate significant differences between seasons, \*  $P < 0.01$ , \*\*  $P < 0.001$ , \*\*\*  $P <$   
 743 0.00001; N = 285 and 219 in the dry and wet season, respectively. "N" refers to the sample size, representing the number of  
 744 observations available in each season. "Nda" stands for no data available.



745

746 **Fig. 4.** Mean biogenic volatile organic compound (BVOC) emissions ( $\pm$  standard error) from 36 tropical tree species in  
 747 French Guiana. Asterisks indicate significant differences between seasons: \*  $P < 0.01$ , \*\*  $P < 0.001$ , \*\*\*  $P < 0.00001$ ; N =  
 748 285 and 219 in the dry and wet seasons, respectively. In this context, "N" represents the sample size, indicating the number  
 749 of observations available for each season.



750

751 **Fig. S1.** Means of the different types of BVOCs emitted by 36 tropical tree species in French Guiana. MT: monoterpenes;  
 752 SQT: sesquiterpenes.

**Table S1.** List of the different tropical tree species studied in the dry and wet seasons in the Nouragues Ecological Research Station and Paracou Experimental Field Station in French Guiana.

| Season | Site      | Species                             | Family           |
|--------|-----------|-------------------------------------|------------------|
| Dry    | Nouragues | <i>Aniba rosaeodora</i>             | Lauraceae        |
|        |           | <i>Brosimum guianense</i>           | Moraceae         |
|        |           | <i>Chimarrhis turbinata</i>         | Rubiaceae        |
|        |           | <i>Chrysophyllum argenteum</i>      | Sapotaceae       |
|        |           | <i>Couepia caryophylloides</i>      | Chrysobalanaceae |
|        |           | <i>Dicorynia guianensis</i>         | Fabaceae         |
|        |           | <i>Eperua falcata</i>               | Fabaceae         |
|        |           | <i>Eschweilera coriacea</i>         | Lecythidaceae    |
|        |           | <i>Eschweilera decolorans</i>       | Lecythidaceae    |
|        |           | <i>Eugenia culcullata</i>           | Myrtaceae        |
|        |           | <i>Ferdinandusa paraensis</i>       | Rubiaceae        |
|        |           | <i>Inga nouraguensis</i>            | Fabaceae         |
|        |           | <i>Licania alba</i>                 | Chrysobalanaceae |
|        |           | <i>Paloue guianensis</i>            | Fabaceae         |
|        |           | <i>Pouteria retinervis</i>          | Sapotaceae       |
|        |           | <i>Pradosia ptychandra</i>          | Sapotaceae       |
|        |           | <i>Protium decandrum</i>            | Burseraceae      |
|        |           | <i>Sextonia rubra</i>               | Lauraceae        |
|        |           | <i>Talisia paealta</i>              | Sapindaceae      |
| Wet    | Paracou   | <i>Vochysia sabatieri</i>           | Vochysiaceae     |
|        |           | <i>Vouacapoua americana</i>         | Fabaceae         |
|        |           | <i>Carapa surinamensis</i>          | Meliaceae        |
|        |           | <i>Catostemma fragrans</i>          | Malvaceae        |
|        |           | <i>Chaetocarpus schomburgkianus</i> | Euphorbiaceae    |
|        |           | <i>Chrysophyllum pomiferum</i>      | Sapotaceae       |
|        |           | <i>Dipteryx odorata</i>             | Fabaceae         |
|        |           | <i>Drypetes variabilis</i>          | Putranjivaceae   |
|        |           | <i>Eperua falcata</i>               | Fabaceae         |
|        |           | <i>Eperua grandiflora</i>           | Fabaceae         |
|        |           | <i>Eschweilera sagotiana</i>        | Lecythidaceae    |
|        |           | <i>Eschweilera sp</i>               | Lecythidaceae    |
|        |           | <i>Gustavia hexapetala</i>          | Lecythidaceae    |
|        |           | <i>Hebepetalum humiriifolium</i>    | Linaceae         |
|        |           | <i>Licania alba</i>                 |                  |
|        |           | <i>Moronobea coccinea</i>           | Clusiaceae       |
|        |           | <i>Pouteria eugeniifolia</i>        | Sapotaceae       |
|        |           | <i>Symponia globulifera</i>         | Clusiaceae       |
|        |           | <i>Tetragastris panamensis</i>      | Burseraceae      |
|        |           | <i>Vouacapoua americana</i>         |                  |
|        |           | <i>Aniba rosaeodora</i>             | Lauraceae        |
|        |           | <i>Agonandra silvatica</i>          |                  |
|        |           | <i>Brosimum guianense</i>           | Moraceae         |
|        |           | <i>Chimarrhis turbinata</i>         | Rubiaceae        |

|         |                                     |                  |
|---------|-------------------------------------|------------------|
|         | <i>Chrysophyllum argenteum</i>      | Sapotaceae       |
|         | <i>Couepia caryophylloides</i>      | Chrysobalanaceae |
|         | <i>Dicorynia guianensis</i>         | Fabaceae         |
|         | <i>Eperua falcata</i>               | Fabaceae         |
|         | <i>Eschweilera coriacea</i>         | Lecythidaceae    |
|         | <i>Eschweilera decolorans</i>       | Lecythidaceae    |
|         | <i>Eugenia culcullata</i>           | Myrtaceae        |
|         | <i>Ferdinandusa paraensis</i>       | Rubiaceae        |
|         | <i>Inga nouraguensis</i>            | Fabaceae         |
|         | <i>Licania alba</i>                 | Chrysobalanaceae |
|         | <i>Paloue guianensis</i>            | Fabaceae         |
|         | <i>Pouteria retinervis</i>          | Sapotaceae       |
|         | <i>Pradosia ptychandra</i>          | Sapotaceae       |
|         | <i>Protium decandrum</i>            | Burseraceae      |
|         | <i>Sextonia rubra</i>               | Lauraceae        |
|         | <i>Talisia praealta</i>             | Sapindaceae      |
|         | <i>Vochysia sabatieri</i>           | Vochysiaceae     |
|         | <i>Vouacapoua americana</i>         | Fabaceae         |
| Paracou | <i>Carapa surinamensis</i>          | Meliaceae        |
|         | <i>Catostemma fragrans</i>          | Malvaceae        |
|         | <i>Chaetocarpus schomburgkianus</i> | Euphorbiaceae    |
|         | <i>Chrysophyllum argenteum</i>      |                  |
|         | <i>Chrysophyllum pomiferum</i>      | Sapotaceae       |
|         | <i>Dipteryx odorata</i>             | Fabaceae         |
|         | <i>Drypetes variabilis</i>          | Putranjivaceae   |
|         | <i>Eperua falcata</i>               |                  |
|         | <i>Eperua grandiflora</i>           | Fabaceae         |
|         | <i>Eschweilera sagotiana</i>        | Lecythidaceae    |
|         | <i>Eschweilera sp</i>               | Lecythidaceae    |
|         | <i>Gustavia hexapetala</i>          | Lecythidaceae    |
|         | <i>Hebepetalum humiriifolium</i>    | Linaceae         |
|         | <i>Licania alba</i>                 |                  |
|         | <i>Moronoea coccinea</i>            | Clusiaceae       |
|         | <i>Pouteria eugeniiifolia</i>       | Sapotaceae       |
|         | <i>Symphonia globulifera</i>        | Clusiaceae       |
|         | <i>Tetragastris panamensis</i>      | Burseraceae      |
|         | <i>Vouacapoua americana</i>         |                  |

**Table S2.** Mean ( $\pm$  STD) soil water content (%) and soil temperature ( $^{\circ}$ C) around the 36 tropical tree species in French Guiana. Letters indicate significant differences between seasons. N indicates the number of measurements.

| Specific name                  | Season | Soil water content (%) | Soil temperature ( $^{\circ}$ C) | N  |
|--------------------------------|--------|------------------------|----------------------------------|----|
| <i>Protium decandrum</i>       | Dry    | 23.6 $\pm$ 0a          | 26.3 $\pm$ 0a                    |    |
|                                | Wet    | 33.1 $\pm$ 0b          | 23.7 $\pm$ 0b                    |    |
| <i>Inga nouraguensis</i>       | Dry    | 23.6 $\pm$ 0a          | 26.3 $\pm$ 0a                    |    |
|                                | Wet    | 33.1 $\pm$ 0b          | 23.7 $\pm$ 0b                    |    |
| <i>Eperua grandiflora</i>      | Dry    | 15.6 $\pm$ 1.1a        | 26 $\pm$ 0.4                     | 20 |
|                                | Wet    | 28.8 $\pm$ 1.5b        | nda                              |    |
| <i>Eperua falcata</i>          | Dry    | 20.3 $\pm$ 0.6a        | 25 $\pm$ 0.07a                   | 32 |
|                                | Wet    | 34.2 $\pm$ 0.7b        | 23.7 $\pm$ 0b                    |    |
| <i>Eschweilera coriacea</i>    | Dry    | 20.2 $\pm$ 0a          | 26.2 $\pm$ 0a                    | 6  |
|                                | Wet    | 35.8 $\pm$ 0.3b        | 23.9 $\pm$ 0.05b                 |    |
| <i>Gustavia hexapetala</i>     | Dry    | 21.3 $\pm$ 0a          | 24.6 $\pm$ 0                     |    |
|                                | Wet    | 30.7 $\pm$ 0b          | nda                              |    |
| <i>Brosimum guianense</i>      | Dry    | 18.7 $\pm$ 0a          | 28 $\pm$ 0a                      | 6  |
|                                | Wet    | 35 $\pm$ 0b            | 23.7 $\pm$ 0b                    |    |
| <i>Couepia caryophylloides</i> | Dry    | 23.4 $\pm$ 0a          | 29.6 $\pm$ 0a                    |    |
|                                | Wet    | 31.5 $\pm$ 0b          | 23.7 $\pm$ 0b                    |    |
| <i>Eschweilera sagotiana</i>   | Dry    | 19.9 $\pm$ 1.6a        | 27 $\pm$ 0.6                     |    |
|                                | Wet    | 32.8 $\pm$ 0b          | nda                              |    |
| <i>Pradosia ptychandra</i>     | Dry    | 20.3 $\pm$ 0.5a        | 28 $\pm$ 0a                      |    |
|                                | Wet    | 36.4 $\pm$ 0b          | 23.6 $\pm$ 0b                    |    |
| <i>Chrysophyllum pomiferum</i> | Dry    | 20.5 $\pm$ 0           | 25.1 $\pm$ 0                     | 6  |
|                                | Wet    | nda                    | nda                              |    |
| <i>Vouacapoua americana</i>    | Dry    | 22.6 $\pm$ 0.5a        | 25.4 $\pm$ 0.1a                  | 18 |
|                                | Wet    | 32.1 $\pm$ 1b          | 23.7 $\pm$ 0.03b                 |    |
| <i>Sextonia rubra</i>          | Dry    | 25.4 $\pm$ 0a          | 28.5 $\pm$ 0a                    | 17 |
|                                | Wet    | 33.4 $\pm$ 0b          | 23.7 $\pm$ 0b                    |    |

|                                     |     |             |              |
|-------------------------------------|-----|-------------|--------------|
| <i>Chrysophyllum argenteum</i>      | Dry | 20.2 ± 0a   | 26.2 ± 0a    |
|                                     | Wet | 32.7 ± 1.3b | 23.9 ± 0b    |
|                                     |     |             | 6            |
| <i>Ferdinandusa paraensis</i>       | Dry | 24.2 ± 0a   | 27.5 ± 0a    |
|                                     | Wet | 31.4 ± 0b   | 23.3 ± 0b    |
| <i>Talisia praearcta</i>            | Dry | 25.4 ± 0a   | 29 ± 0a      |
|                                     | Wet | 36.3 ± 0b   | 23.5 ± 0b    |
| <i>Licania alba</i>                 | Dry | 22.5 ± 0.7a | 27.7 ± 0.3a  |
|                                     | Wet | 33 ± 0.5b   | 23.7 ± 0.02b |
|                                     |     |             | 40           |
| <i>Chimarrhis turbinata</i>         | Dry | 25.2 ± 0a   | 27.6 ± 0a    |
|                                     | Wet | 38.1 ± 0b   | 23.4 ± 0b    |
| <i>Eschweilera sp</i>               | Dry | 12.8 ± 0a   | 24.5 ± 0     |
|                                     | Wet | 27.9 ± 0b   | nda          |
| <i>Paloue guianensis</i>            | Dry | 21.8 ± 0a   | 28 ± 0a      |
|                                     | Wet | 36.4 ± 0b   | 23.6 ± 0b    |
|                                     |     |             | 4            |
| <i>Eugenia culcullata</i>           | Dry | 9 ± 0a      | 28.9 ± 0a    |
|                                     | Wet | 25.3 ± 0b   | 23.5 ± 0b    |
| <i>Tetragastris panamensis</i>      | Dry | 25.3 ± 0    | 25 ± 0       |
|                                     | Wet | nda         | nda          |
| <i>Dicorynia guianensis</i>         | Dry | 19 ± 0a     | 28 ± 0a      |
|                                     | Wet | 34.4 ± 0.5b | 23.8 ± 0.02b |
| <i>Drypetes variabilis</i>          | Dry | 22.2 ± 0a   | 24.8 ± 0     |
|                                     | Wet | 29.7 ± 0b   | nda          |
| <i>Pouteria retinervis</i>          | Dry | 9 ± 0a      | 29 ± 0a      |
|                                     | Wet | 25.3 ± 0b   | 23.5 ± 0b    |
| <i>Aniba rosaeodora</i>             | Dry | 24.2 ± 0a   | 27.5 ± 0a    |
|                                     | Wet | 31.4 ± 0b   | 23.3 ± 0b    |
| <i>Chaetocarpus schomburgkianus</i> | Dry | 13.7 ± 0a   | 25.4 ± 0     |
|                                     | Wet | 27.8 ± 0b   | nda          |
| <i>Catostemma fragrans</i>          | Dry | 21.3 ± 0a   | 24.6 ± 0     |
|                                     |     |             | 6            |
|                                     | Wet | 30.7 ± 0b   | nda          |
| <i>Hebepetalum humiriifolium</i>    | Dry | 15 ± 0      | 24.7 ± 0     |
|                                     | Wet | nda         | nda          |
| <i>Moronobea coccinea</i>           | Dry | 9.9 ± 0a    | 24.9 ± 0     |
|                                     | Wet | 26.2 ± 0b   | nda          |
| <i>Symponia globulifera</i>         | Dry | 19.4 ± 0    | 24.6 ± 0     |
|                                     | Wet | nda         | nda          |

|                                     |     |           |           |
|-------------------------------------|-----|-----------|-----------|
| <i>Eschweilera decolorans</i>       | Dry | 22.9 ± 0a | 27.3 ± 0a |
|                                     | Wet | 37.6 ± 0b | 23.9 ± 0b |
| <i>Capirona decorticans</i>         | Dry | nda       | nda       |
|                                     | Wet | 31.5 ± 0  | 23.7 ± 0  |
| <i>Caryocar glabrum</i>             | Dry | nda       | nda       |
|                                     | Wet | 33.4 ± 0  | 23.7 ± 0  |
| <i>Chrysophyllum sanguinolentum</i> | Dry | nda       | nda       |
|                                     | Wet | 31.5 ± 0  | 23.7 ± 0  |
| <i>Helicostylis pedunculata</i>     | Dry | nda       | nda       |
|                                     | Wet | 36.4 ± 0  | 23.6 ± 0  |
| <i>Hirtella bicornis</i>            | Dry | nda       | nda       |
|                                     | Wet | 33.4 ± 0  | 23.7 ± 0  |
| <i>Hymanea courbaril</i>            | Dry | nda       | nda       |
|                                     | Wet | 35.5 ± 0  | 23.9 ± 0  |
| <i>Lecythis poiteaui</i>            | Dry | nda       | nda       |
|                                     | Wet | 38.1 ± 0  | 23.4 ± 0  |
| <i>Myrcia splendens</i>             | Dry | nda       | nda       |
|                                     | Wet | 25.3 ± 0  | 23.5 ± 0  |
| <i>Protium opacum</i>               | Dry | nda       | nda       |
|                                     | Wet | 36.4 ± 0  | 23.6 ± 0  |
| <i>Sloanea sp</i>                   | Dry | nda       | nda       |
|                                     | Wet | nda       | nda       |
| <i>Sterculia pruriens</i>           | Dry | nda       | nda       |
|                                     | Wet | 30.7 ± 0  | nda       |
| <i>Pouteria eugeniiifolia</i>       | Dry | nda       | nda       |
|                                     | Wet | 27.8 ± 0  | nda       |
| <i>Carapa surinamensis</i>          | Dry | nda       | nda       |
|                                     | Wet | 29.7 ± 0  | nda       |
| <i>Dipteryx odorata</i>             | Dry | nda       | nda       |
|                                     | Wet | 30.7 ± 0  | nda       |
| <i>Vochysia sabatieri</i>           | Dry | nda       | nda       |
|                                     | Wet | 33.4 ± 0  | 23.7 ± 0  |

6

**Table S3.** Mean (minimum, maximum  $\pm$  standard deviation and standard error, in  $\mu\text{g g}^{-1}$  d.m.  $\text{h}^{-1}$ ) biogenic volatile organic compounds (BVOCs) and *P-value* of the 36 tropical tree species studied in the dry and wet seasons in French Guiana. N = 285 and 219 for the dry and wet seasons, respectively. MTu: monoterpene unidentified; SQTs: Sum of unidentified sesquiterpenes.

| Season                        | Dry   |      |      |      |     | Wet |      |      |      |     |     |                |
|-------------------------------|-------|------|------|------|-----|-----|------|------|------|-----|-----|----------------|
|                               | BVOCs | Mean | Min. | Max. | Std | Ste | Mean | Min. | Max. | Std | Ste | <i>P-value</i> |
| Total BVOCs                   | 5,5   | 0    | 80,9 | 12,8 | 0,8 |     | 0,8  | 0    | 11,7 | 1,9 | 0,1 | 0.000010       |
| Total terpenes                | 5,4   | 0    | 80,9 | 12,8 | 0,8 |     | 0,5  | 0    | 10,3 | 1,5 | 0,1 | 0.000010       |
| Total monoterpenes            | 2,5   | 0    | 39,6 | 5,7  | 0,3 |     | 0,4  | 0    | 6,6  | 1   | 0,1 | 0.000010       |
| Other monoterpenes            | 0,2   | 0    | 4,5  | 0,6  | 0   |     | 0    | 0    | 2    | 0,2 | 0   | 0.000010       |
| Total sesquiterpenes          | 3     | 0    | 79,9 | 10,3 | 0,6 |     | 0,1  | 0    | 4,4  | 0,6 | 0   | 0.000100       |
| Other sesquiterpenes          | 0,8   | 0    | 16,7 | 2,3  | 0,1 |     | 0,1  | 0    | 4,4  | 0,6 | 0   | 0.000010       |
| Isoprene                      | 0,3   | 0    | 13   | 1,2  | 0,1 |     | 0,5  | 0    | 22,9 | 2,1 | 0,1 | ns             |
| Heptane-2,2,4,6,6-pentamethyl | 0     | 0    | 0    | 0    | 0   |     | 0,3  | 0    | 5,7  | 0,8 | 0,1 | 0.000010       |
| Toluene                       | 0,1   | 0    | 3,2  | 0,3  | 0   |     | 0    | 0    | 1,4  | 0,1 | 0   | 0.010000       |
| MTu1                          | 0     | 0    | 0    | 0    | 0   |     | 0    | 0    | 0,3  | 0   | 0   | ns             |
| MTu2                          | 0     | 0    | 0,4  | 0    | 0   |     | 0    | 0    | 0    | 0   | 0   | ns             |
| MTu3                          | 0     | 0    | 0    | 0    | 0   |     | 0    | 0    | 0    | 0   | 0   | ns             |
| $\alpha$ -Pinene              | 0,6   | 0    | 15,4 | 1,5  | 0,1 |     | 0,1  | 0    | 2,5  | 0,2 | 0   | 0.000010       |
| MTu4                          | 0     | 0    | 0,9  | 0,1  | 0   |     | 0    | 0    | 0,7  | 0,1 | 0   | 0.020000       |
| MTu5                          | 0     | 0    | 0,6  | 0,1  | 0   |     | 0    | 0    | 0,2  | 0   | 0   | 0.000026       |
| MTu6                          | 0     | 0    | 0,2  | 0    | 0   |     | 0    | 0    | 0    | 0   | 0   | ns             |
| MTu7                          | 0,1   | 0    | 2    | 0,2  | 0   |     | 0    | 0    | 0,4  | 0   | 0   | 0.000010       |
| MTu8                          | 0,1   | 0    | 1,8  | 0,2  | 0   |     | 0    | 0    | 1,6  | 0,1 | 0   | 0.010000       |
| Limonene                      | 0,6   | 0    | 13,7 | 1,7  | 0,1 |     | 0,1  | 0    | 4,9  | 0,4 | 0   | 0.000010       |
| Sabinene                      | 0,1   | 0    | 2,4  | 0,3  | 0   |     | 0    | 0    | 2,2  | 0,2 | 0   | ns             |
| trans- $\beta$ -Ocimene       | 0,4   | 0    | 19,8 | 1,8  | 0,1 |     | 0    | 0    | 1,8  | 0,2 | 0   | 0.010000       |
| MTu9                          | 0     | 0    | 0,8  | 0,1  | 0   |     | 0    | 0    | 0    | 0   | 0   | 0.010000       |
| MTu10                         | 0     | 0    | 0,7  | 0,1  | 0   |     | 0    | 0    | 0    | 0   | 0   | 0.001000       |
| MTu11                         | 0     | 0    | 0,5  | 0    | 0   |     | 0    | 0    | 0    | 0   | 0   | ns             |
| MTu12                         | 0     | 0    | 1,7  | 0,1  | 0   |     | 0    | 0    | 0    | 0   | 0   | ns             |
| $\alpha$ -Terpinolene         | 0,6   | 0    | 19,7 | 2,6  | 0,2 |     | 0,1  | 0    | 3,6  | 0,5 | 0   | 0.010000       |
| MTu13                         | 0     | 0    | 0,4  | 0    | 0   |     | 0    | 0    | 0    | 0   | 0   | ns             |
| MTu14                         | 0     | 0    | 0,5  | 0    | 0   |     | 0    | 0    | 0    | 0   | 0   | ns             |
| $\alpha$ -Copaene             | 0,2   | 0    | 8,8  | 0,9  | 0,1 |     | 0    | 0    | 0    | 0   | 0   | 0.002500       |
| $\beta$ -Caryophyllene        | 1,4   | 0    | 54,6 | 6,7  | 0,4 |     | 0    | 0    | 1,3  | 0,1 | 0   | 0.002000       |
| $\alpha$ -Caryophyllene       | 0,5   | 0    | 19,3 | 2,4  | 0,1 |     | 0    | 0    | 0    | 0   | 0   | 0.001000       |
| SQTs                          | 0,8   | 0    | 16,7 | 2,3  | 0,1 |     | 0,1  | 0    | 4,4  | 0,6 | 0   | 0.0001         |

**Table S4.** Mean emissions ( $\pm$  standard error) of the two main non-terpenic volatile compounds emitted by some tropical tree species in French Guiana. Letters indicate significant differences between seasons ( $P < 0.05$ ).

| Specific name                  | Season | Heptane-2,2,4,6,6-pentamethyl | Toluene          |
|--------------------------------|--------|-------------------------------|------------------|
| <i>Protium decandrum</i>       | Dry    | 0 $\pm$ 0                     | 0.1 $\pm$ 0.1a   |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0a       |
| <i>Inga nouraguensis</i>       | Dry    | 0 $\pm$ 0                     | 0 $\pm$ 0        |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0        |
| <i>Eperua grandiflora</i>      | Dry    | 0 $\pm$ 0                     | 0.04 $\pm$ 0.02a |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0a       |
| <i>Eperua falcata</i>          | Dry    | 0 $\pm$ 0a                    | 0 $\pm$ 0        |
|                                | Wet    | 1.1 $\pm$ 0.3b                | 0 $\pm$ 0        |
| <i>Eschweilera coriacea</i>    | Dry    | 0 $\pm$ 0a                    | 0.03 $\pm$ 0.02a |
|                                | Wet    | 1 $\pm$ 0.3b                  | 0 $\pm$ 0a       |
| <i>Gustavia hexapetala</i>     | Dry    | 0 $\pm$ 0                     | 0.5 $\pm$ 0.3a   |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0b       |
| <i>Brosimum guianense</i>      | Dry    | 0 $\pm$ 0a                    | 0 $\pm$ 0        |
|                                | Wet    | 4.1 $\pm$ 0.4b                | 0 $\pm$ 0        |
| <i>Couepia caryophylloides</i> | Dry    | 0 $\pm$ 0                     | 0 $\pm$ 0        |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0        |
| <i>Eschweilera sagotiana</i>   | Dry    | 0 $\pm$ 0                     | 0.03 $\pm$ 0.02a |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0a       |
| <i>Pradosia ptychandra</i>     | Dry    | 0 $\pm$ 0a                    | 0.2 $\pm$ 0.1a   |
|                                | Wet    | 0.7 $\pm$ 0.2b                | 0.1 $\pm$ 0.04a  |
| <i>Chrysophyllum pomiferum</i> | Dry    | 0 $\pm$ 0                     | 0.04 $\pm$ 0.03  |
|                                | Wet    | nda                           | nda              |
| <i>Vouacapoua americana</i>    | Dry    | 0 $\pm$ 0                     | 0 $\pm$ 0a       |
|                                | Wet    | 0 $\pm$ 0                     | 0.1 $\pm$ 0.1a   |
| <i>Sextonia rubra</i>          | Dry    | 0 $\pm$ 0                     | 0.1 $\pm$ 0.1a   |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0a       |
| <i>Chrysophyllum argenteum</i> | Dry    | 0 $\pm$ 0a                    | 0.01 $\pm$ 0.01a |
|                                | Wet    | 0.6 $\pm$ 0.3b                | 0 $\pm$ 0a       |
| <i>Ferdinandusa paraensis</i>  | Dry    | 0 $\pm$ 0                     | 0.1 $\pm$ 0.1a   |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0a       |
| <i>Talisia praearcta</i>       | Dry    | 0 $\pm$ 0                     | 0 $\pm$ 0        |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0        |
| <i>Licania alba</i>            | Dry    | 0 $\pm$ 0a                    | 0.2 $\pm$ 0.1a   |
|                                | Wet    | 0.3 $\pm$ 0.1b                | 0 $\pm$ 0b       |
| <i>Chimarrhis turbinata</i>    | Dry    | 0 $\pm$ 0                     | 0.3 $\pm$ 0.3a   |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0b       |
| <i>Eschweilera sp</i>          | Dry    | 0 $\pm$ 0                     | 0 $\pm$ 0        |
|                                | Wet    | 0 $\pm$ 0                     | 0 $\pm$ 0        |
| <i>Paloue guianensis</i>       | Dry    | 0 $\pm$ 0a                    | 0 $\pm$ 0        |
|                                | Wet    | 0.6 $\pm$ 0.2b                | 0 $\pm$ 0        |
| <i>Eugenia culcullata</i>      | Dry    | 0 $\pm$ 0                     | 0 $\pm$ 0        |

|                                     |     |            |       |
|-------------------------------------|-----|------------|-------|
|                                     | Wet | 0 ± 0      | 0 ± 0 |
| <i>Tetragastris panamensis</i>      | Dry | 0 ± 0      | 0 ± 0 |
|                                     | Wet | nda        | nda   |
| <i>Dicorynia guianensis</i>         | Dry | 0 ± 0a     | 0 ± 0 |
|                                     | Wet | 0.7 ± 0.1b | 0 ± 0 |
| <i>Drypetes variabilis</i>          | Dry | 0 ± 0      | 0 ± 0 |
|                                     | Wet | 0 ± 0      | 0 ± 0 |
| <i>Pouteria retinervis</i>          | Dry | 0 ± 0      | 0 ± 0 |
|                                     | Wet | 0 ± 0      | 0 ± 0 |
| <i>Aniba rosaeodora</i>             | Dry | 0 ± 0      | 0 ± 0 |
|                                     | Wet | 0 ± 0      | 0 ± 0 |
| <i>Chaetocarpus schomburgkianus</i> | Dry | 0 ± 0a     | 0 ± 0 |
|                                     | Wet | 0.2 ± 0.1b | 0 ± 0 |
| <i>Catostemma fragrans</i>          | Dry | 0 ± 0      | 0 ± 0 |
|                                     | Wet | 0 ± 0      | 0 ± 0 |
| <i>Hebepetalum humiriifolium</i>    | Dry | 0 ± 0      | 0 ± 0 |
|                                     | Wet | nda        | nda   |
| <i>Moronobea coccinea</i>           | Dry | 0 ± 0      | 0 ± 0 |
|                                     | Wet | 0 ± 0      | 0 ± 0 |
| <i>Sympmania globulifera</i>        | Dry | 0 ± 0      | 0 ± 0 |
|                                     | Wet | nda        | nda   |
| <i>Eschweilera decolorans</i>       | Dry | 0 ± 0      | 0 ± 0 |
|                                     | Wet | 0 ± 0      | 0 ± 0 |
| <i>Pouteria eugeniiifolia</i>       | Dry | nda        | nda   |
|                                     | Wet | 0.5 ± 0.3  | 0 ± 0 |
| <i>Carapa surinamensis</i>          | Dry | nda        | nda   |
|                                     | Wet | 0 ± 0      | 0 ± 0 |
| <i>Dipteryx odorata</i>             | Dry | nda        | nda   |
|                                     | Wet | 0 ± 0      | 0 ± 0 |
| <i>Vochysia sabatieri</i>           | Dry | nda        | nda   |
|                                     | Wet | 0 ± 0      | 0 ± 0 |

**Table S5.** Results of the phylogenetic analyses using Pagel's  $\lambda$  and the corresponding  $P$  values. Significant values ( $P < 0.05$ ) are shown in bold.

|                            | Total BVOCs | Total terpenes | Total monoterpenes | Total sesquiterpenes |
|----------------------------|-------------|----------------|--------------------|----------------------|
| Phylogenetic signal lambda | 0.2         | 0.2            | 6.6                | 0.8                  |
| logL(lambda)               | -104        | -103           | -825               | -827                 |
| LR(lambda=0)               | 0.1         | 0.1            | -0.001             | 673                  |
| P-value (based on LR test) | 0.7         | 0.8            | 1                  | 0.01                 |

**Table S6.** Results of the Bayesian phylogenetic linear mixed models with season as fixed factor and phylogeny and species as random factors obtained with the R package *MCMCglmm*. The phylogeny term accounted for variability in the shared ancestry, while the species term accounted for species-specific traits independently of the shared ancestry. Significant values of fixed independent variables ( $P < 0.05$ ) are shown in bold.

| Variables        | Fixed factors    |           |          |          |          |            | $R^2$         |         |         |             |       |
|------------------|------------------|-----------|----------|----------|----------|------------|---------------|---------|---------|-------------|-------|
|                  | Statistics Table |           |          |          |          |            | Fixed factors | Random  |         | Total model |       |
|                  |                  | post.mean | l-95% CI | u-95% CI | eff.samp | pMCMC      |               | $R^2_f$ | $R^2_s$ |             |       |
| Total terpenes   |                  |           |          |          |          |            | 0.1           | 0.02    | 0.01    | 0.1         | 0.2   |
|                  | (Intercept)      | 0.1       | -0.2     | 0.4      | 1700     | 0.4        |               |         |         |             |       |
|                  | seasonWET        | -0.4      | -0.6     | -0.3     | 1700     | <6e-04 *** |               |         |         |             |       |
| MTu1             |                  |           |          |          |          |            | 0.01          | 0.0001  | 0.00004 | 0.01        | 0.02  |
|                  | (Intercept)      | -0.1      | -0.2     | 0.1      | 1413     | 0.5        |               |         |         |             |       |
|                  | seasonWET        | 0.1       | -0.1     | 0.3      | 1863     | 0.3        |               |         |         |             |       |
| Hept-6en-3yn-1ol |                  |           |          |          |          |            | 0.02          | 0.0001  | 0.0004  | 0.1         | 0.1   |
|                  | (Intercept)      | -0.03     | -0.3     | 0.2      | 2056     | 0.8        |               |         |         |             |       |
|                  | seasonWET        | 0.1       | -0.1     | 0.3      | 1554     | 0.3        |               |         |         |             |       |
| Toluene          |                  |           |          |          |          |            | 0.01          | 0.0002  | 0.0003  | 0.02        | 0.04  |
|                  | (Intercept)      | 0.1       | -0.1     | 0.2      | 1700     | 0.3        |               |         |         |             |       |
|                  | seasonWET        | -0.2      | -0.4     | -0.1     | 1553     | 0.01 *     |               |         |         |             |       |
| MTu1             |                  |           |          |          |          |            | 0.0045        | 0.0001  | 0.00004 | 0.01        | 0.015 |
|                  | (Intercept)      | -0.1      | -0.2     | 0.1      | 1413     | 0.5        |               |         |         |             |       |

|                  |             |           |          |          |          |            |       |       |       |      |     |
|------------------|-------------|-----------|----------|----------|----------|------------|-------|-------|-------|------|-----|
|                  | seasonWET   | 0.1       | -0.1     | 0.3      | 1863     | 0.3        |       |       |       |      |     |
| MTu2             |             | post.mean | 1-95% CI | u-95% CI | eff.samp | pMCMC      | 0.01  | 0.002 | 0.003 | 0.1  | 0.1 |
|                  | (Intercept) | 0.1       | -0.1     | 0.3      | 1700     | 0.4        |       |       |       |      |     |
|                  | seasonWET   | -0.2      | -0.3     | 0.004    | 1700     | 0.1        |       |       |       |      |     |
| MTu3             |             | post.mean | 1-95% CI | u-95% CI | eff.samp | pMCMC      | 0.006 | 0.003 | 0.004 | 0.08 | 0.1 |
|                  | (Intercept) | 0.1       | -0.2     | 0.3      | 1700     | 0.5        |       |       |       |      |     |
|                  | seasonWET   | -0.1      | -0.3     | 0.03     | 1700     | 0.2        |       |       |       |      |     |
| $\alpha$ -Pinene |             | post.mean | 1-95% CI | u-95% CI | eff.samp | pMCMC      | 0.1   | 0.001 | 0.001 | 0.04 | 0.1 |
|                  | (Intercept) | 0.2       | -0.01    | 0.4      | 1700     | 0.1        |       |       |       |      |     |
|                  | seasonWET   | -0.4      | -0.6     | -0.3     | 1855     | <6e-04 *** |       |       |       |      |     |
| MTu4             |             | post.mean | 1-95% CI | u-95% CI | eff.samp | pMCMC      | 0.02  | 0.01  | 0.07  | 0.2  | 0.3 |
|                  | (Intercept) | 0.2       | -0.2     | 0.5      | 1700     | 0.2        |       |       |       |      |     |
|                  | seasonWET   | -0.3      | -0.4     | -0.1     | 1700     | 0.002 **   |       |       |       |      |     |
| MTu5             |             | post.mean | 1-95% CI | u-95% CI | eff.samp | pMCMC      | 0.03  | 0.002 | 0.003 | 0.1  | 0.1 |
|                  | (Intercept) | 0.1       | -0.1     | 0.3      | 1700     | 0.2        |       |       |       |      |     |
|                  | seasonWET   | -0.4      | -0.5     | -0.2     | 1700     | <6e-04 *** |       |       |       |      |     |
| MTu6             |             | post.mean | 1-95% CI | u-95% CI | eff.samp | pMCMC      | 0.01  | 0.005 | 0.004 | 0.1  | 0.1 |
|                  | (Intercept) | 0.1       | -0.2     | 0.3      | 1519     | 0.5        |       |       |       |      |     |
|                  | seasonWET   | -0.2      | -0.3     | -0.01    | 1700     | 0.05 *     |       |       |       |      |     |
| MTu7             |             | post.mean | 1-95% CI | u-95% CI | eff.samp | pMCMC      | 0.05  | 0.003 | 0.01  | 0.1  | 0.1 |
|                  | (Intercept) | 0.2       | -0.04    | 0.4      | 1824     | 0.1        |       |       |       |      |     |
|                  | seasonWET   | -0.4      | -0.6     | -0.3     | 1700     | <6e-04 *** |       |       |       |      |     |
| MTu8             |             | post.mean | 1-95% CI | u-95% CI | eff.samp | pMCMC      | 0.02  | 0.005 | 0.01  | 0.1  | 0.1 |

|                         |             |           |      |          |          |             |       |      |       |       |      |      |
|-------------------------|-------------|-----------|------|----------|----------|-------------|-------|------|-------|-------|------|------|
|                         | (Intercept) | 0.1       | -0.3 | 0.4      | 1463     | 0.6         |       |      |       |       |      |      |
|                         | seasonWET   | -0.2      | -0.4 | -0.05    | 1700     | 0.01 **     |       |      |       |       |      |      |
| Limonene                |             | post.mean |      | l-95% CI | u-95% CI | eff.samp    | pMCMC | 0.04 | 0.003 | 0.006 | 0.1  | 0.1  |
|                         | (Intercept) | 0.2       | -0.1 | 0.4      | 1700     | 0.1         |       |      |       |       |      |      |
|                         | seasonWET   | -0.4      | -0.6 | -0.2     | 1700     | < 6e-04 *** |       |      |       |       |      |      |
| Sabinene                |             | post.mean |      | l-95% CI | u-95% CI | eff.samp    |       | 0.01 | 0.001 | 0.002 | 0.05 | 0.06 |
|                         | pMCMC       |           |      |          |          |             |       |      |       |       |      |      |
|                         | (Intercept) | 0.04      | -0.1 | 0.2      | 1700     | 0.6         |       |      |       |       |      |      |
| Trans- $\beta$ -Ocimene |             | post.mean |      | l-95% CI | u-95% CI | eff.samp    |       | 0.03 | 0.02  | 0.1   | 0.2  | 0.3  |
|                         | pMCMC       |           |      |          |          |             |       |      |       |       |      |      |
|                         | (Intercept) | 0.1       | -0.2 | 0.5      | 1835     | 0.3         |       |      |       |       |      |      |
| MTu9                    |             | post.mean |      | l-95% CI | u-95% CI | eff.samp    |       | 0.01 | 0.02  | 0.03  | 0.2  | 0.2  |
|                         | pMCMC       |           |      |          |          |             |       |      |       |       |      |      |
|                         | (Intercept) | 0.1       | -0.3 | 0.5      | 1392     | 0.4         |       |      |       |       |      |      |
| MTu10                   |             | post.mean |      | l-95% CI | u-95% CI | eff.samp    | pMCMC | 0.02 | 0.02  | 0.1   | 0.2  | 0.3  |
|                         |             |           |      |          |          |             |       |      |       |       |      |      |
|                         | (Intercept) | 0.1       | -0.2 | 0.5      | 2087     | 0.3         |       |      |       |       |      |      |
| MTu11                   |             | post.mean |      | l-95% CI | u-95% CI | eff.samp    |       | 0.01 | 0.01  | 0.01  | 0.1  | 0.1  |
|                         | pMCMC       |           |      |          |          |             |       |      |       |       |      |      |
|                         | (Intercept) | 0.1       | -0.3 | 0.4      | 2120     | 0.6         |       |      |       |       |      |      |
| MTu12                   |             | post.mean |      | l-95% CI | u-95% CI | eff.samp    |       | 0.01 | 0.002 | 0.01  | 0.1  | 0.2  |
|                         |             |           |      |          |          |             |       |      |       |       |      |      |

| pMCMC                   |             |           |          |          |          |          |      |        |       |      |      |
|-------------------------|-------------|-----------|----------|----------|----------|----------|------|--------|-------|------|------|
| $\alpha$ -Terpinolene   | (Intercept) | 0.1       | -0.3     | 0.4      | 1700     | 0.6      | 0.02 | 0.02   | 0.1   | 0.2  | 0.4  |
|                         | seasonWET   | -0.1      | -0.3     | 0.04     | 1700     | 0.2      |      |        |       |      |      |
| $\alpha$ -Terpinolene   |             | post.mean | 1-95% CI | u-95% CI | eff.samp |          |      |        |       |      |      |
|                         | pMCMC       |           |          |          |          |          |      |        |       |      |      |
| MTu13                   | (Intercept) | 0.1       | -0.2     | 0.5      | 1700     | 0.3      | 0.01 | 0.0004 | 0.001 | 0.03 | 0.04 |
|                         | seasonWET   | -0.3      | -0.5     | -0.1     | 2067     | 0.001 ** |      |        |       |      |      |
| MTu14                   |             | post.mean | 1-95% CI | u-95% CI | eff.samp |          |      |        |       |      |      |
|                         | pMCMC       |           |          |          |          |          |      |        |       |      |      |
| $\alpha$ -Copaene       | (Intercept) | 0.04      | -0.1     | 0.2      | 1700     | 0.6      | 0.01 | 0.0003 | 0.001 | 0.03 | 0.04 |
|                         | seasonWET   | -0.1      | -0.3     | 0.1      | 1333     | 0.2      |      |        |       |      |      |
| $\alpha$ -Caryophyllene |             | post.mean | 1-95% CI | u-95% CI | eff.samp |          |      |        |       |      |      |
|                         | pMCMC       |           |          |          |          |          |      |        |       |      |      |
| SQTsu1                  | (Intercept) | 0.002     | -0.4     | 0.3      | 1700     | 1        | 0.01 | 0.01   | 0.01  | 0.1  | 0.1  |
|                         | seasonWET   | -0.2      | -0.3     | 0.01     | 1517     | 0.05 *   |      |        |       |      |      |
| SQTsu1                  |             | post.mean | 1-95% CI | u-95% CI | eff.samp |          |      |        |       |      |      |
|                         | pMCMC       |           |          |          |          |          |      |        |       |      |      |
| SQTsu1                  | (Intercept) | 0.2       | -0.1     | 0.5      | 1700     | 0.2      | 0.05 | 0.01   | 0.06  | 0.2  | 0.3  |

|                      |             |           |          |          |          |            |       |       |      |     |  |
|----------------------|-------------|-----------|----------|----------|----------|------------|-------|-------|------|-----|--|
|                      | seasonWET   | -0.5      | -0.6     | -0.3     | 1700     | <6e-04 *** |       |       |      |     |  |
| Isoprene             |             | post.mean | l-95% CI | u-95% CI | eff.samp | 0.04       | 0.003 | 0.001 | 0.06 | 0.1 |  |
|                      | pMCMC       |           |          |          |          |            |       |       |      |     |  |
|                      | (Intercept) | -0.03     | -0.3     | 0.3      | 1700     | 0.8        |       |       |      |     |  |
|                      | seasonWET   | 0.1       | -0.04    | 0.3      | 1700     | 0.2        |       |       |      |     |  |
| Total Monoterpene    |             | post.mean | l-95% CI | u-95% CI | eff.samp | 0.07       | 0.01  | 0.04  | 0.2  | 0.3 |  |
|                      | pMCMC       |           |          |          |          |            |       |       |      |     |  |
|                      | (Intercept) | 0.3       | 0.001    | 0.5      | 1700     | 0.1        |       |       |      |     |  |
|                      | seasonWET   | -0.5      | -0.7     | -0.4     | 1700     | <6e-04 *** |       |       |      |     |  |
| Total Sesquiterpenes |             | post.mean | l-95% CI | u-95% CI | eff.samp | 0.03       | 0.01  | 0.002 | 0.1  | 0.1 |  |
|                      | pMCMC       |           |          |          |          |            |       |       |      |     |  |
|                      | (Intercept) | 0.1       | -0.2     | 0.4      | 1700     | 0.6        |       |       |      |     |  |
|                      | seasonWET   | -0.3      | -0.5     | -0.2     | 1574     | <6e-04 *** |       |       |      |     |  |

**Table S7.** Number of mature trees sampled per species at each topographic level and weather station. Phenology indicates if trees are evergreen or deciduous in each season. For more information, see Verryck et al. (2022).

| Species                             | Topographic level | Number of trees sampled per species |     |
|-------------------------------------|-------------------|-------------------------------------|-----|
|                                     |                   | Season                              |     |
|                                     |                   | Dry                                 | Wet |
| <i>Aniba rosaeodora</i>             | Slope             | 1                                   | 1   |
| <i>Brosimum guianense</i>           | Bottom            | 1                                   | 1   |
| <i>Carapa surinamensis</i>          | Bottom            |                                     | 1   |
| <i>Catostemma fragrans</i>          | Bottom            | 1                                   | 1   |
| <i>Chaetocarpus schomburgkianus</i> | Top               | 1                                   | 1   |
| <i>Chimarrhis turbinata</i>         | Top               | 1                                   | 1   |
| <i>Chrysophyllum argenteum</i>      | Top               | 1                                   | 1   |
| <i>Chrysophyllum pomiferum</i>      | Top               | 1                                   | 1   |
| <i>Couepia caryophylloides</i>      | Slope             | 1                                   | 1   |
| <i>Dicorynia guianensis</i>         | Bottom            | 1                                   | 1   |
| <i>Dipteryx odorata</i>             | Bottom            |                                     | 1   |
| <i>Drypetes variabilis</i>          | Bottom            | 1                                   | 1   |
| <i>Eperua falcata</i>               | Bottom            | 3                                   | 4   |
| <i>Eperua grandiflora</i>           | Slope             | 2                                   | 1   |
| <i>Eschweilera sp</i>               | Bottom            | 1                                   | 1   |
| <i>Eschweilera coriacea</i>         | Top               | 1                                   | 1   |
| <i>Eschweilera decolorans</i>       | Bottom            | 1                                   | 1   |
| <i>Eschweilera sagotiana</i>        | Slope             | 1                                   |     |
| <i>Eugenia NA</i>                   | Top               | 1                                   | 1   |
| <i>Ferdinandusa paraensis</i>       | Slope             | 1                                   | 1   |
| <i>Gustavia hexapetala</i>          | Bottom            | 1                                   | 1   |
| <i>Hebepetalum humiriifolium</i>    | Slope             | 1                                   |     |
| <i>Inga nouraguensis</i>            | Slope             | 1                                   | 1   |
| <i>Licania alba</i>                 | Bottom            | 2                                   | 3   |
| <i>Moronobea coccinea</i>           | Top               | 1                                   | 1   |
| <i>Paloue guianensis</i>            | Bottom            | 1                                   | 1   |
| <i>Pouteria eugeniifolia</i>        | Top               |                                     | 1   |
| <i>Pouteria retinervis</i>          | Slope             | 1                                   | 1   |
| <i>Pradosia ptychandra</i>          | Bottom            | 1                                   | 1   |
| <i>Protium decandrum</i>            | Slope             | 1                                   | 1   |
| <i>Sextonia rubra</i>               | Top               | 1                                   | 1   |
| <i>Symphonia globulifera</i>        | Bottom            | 1                                   |     |
| <i>Talisia praearcta</i>            | Top               | 1                                   | 1   |
| <i>Tetragastris panamensis</i>      | Slope             | 1                                   |     |
| <i>Vochysia sabatieri</i>           | Top               |                                     | 1   |
| <i>Vouacapoua americana</i>         | Bottom            | 1                                   | 1   |

**Table S8.** List of species sampled in this work and sampled by other authors previously. We want to show that in the present work there are tree species not previously sampled for BVOCs. In the case of Jardine et al. 2020 only gives information about gender.

| Species                                     | Present work | Courtois et al. 2009 | Courtois et al. 2016 | Jardine et al. 2020 |
|---------------------------------------------|--------------|----------------------|----------------------|---------------------|
| <i>Aniba rosaeodora</i> <sup>a</sup>        | x            |                      |                      |                     |
| <i>Brosimum guianense</i>                   | x            | x                    | x                    |                     |
| <i>Carapa surinamensis</i>                  | x            |                      |                      |                     |
| <i>Catostemma fragrans</i>                  | x            |                      | x                    |                     |
| <i>Chaetocarpus schomburgkianus</i>         | x            |                      |                      |                     |
| <i>Chimarrhis turbinata</i>                 | x            | x                    | x                    |                     |
| <i>Chrysophyllum argenteum</i>              | x            | x                    | x                    |                     |
| <i>Chrysophyllum pomiferum</i>              | x            |                      |                      |                     |
| <i>Couepia caryophylloides</i>              | x            |                      |                      |                     |
| <i>Dicorynia guianensis</i>                 | x            |                      | x                    |                     |
| <i>Dipteryx odorata</i>                     | x            |                      | x                    |                     |
| <i>Drypetes variabilis</i>                  | x            |                      | x                    |                     |
| <i>Eperua falcata</i>                       | x            |                      | x                    |                     |
| <i>Eperua grandiflora</i>                   | x            |                      |                      |                     |
| <i>Eschweilera coriacea</i>                 | x            | x                    | x                    |                     |
| <i>Eschweilera decolorans</i>               | x            |                      | x                    |                     |
| <i>Eschweilera sagotiana</i>                | x            |                      | x                    |                     |
| <i>Eschweilera sp</i>                       | x            |                      |                      | x                   |
| <i>Eugenia culcullata</i> <sup>b</sup>      | x            |                      | x                    |                     |
| <i>Ferdinandusa paraensis</i>               | x            |                      |                      |                     |
| <i>Gustavia hexapetala</i>                  | x            |                      | x                    |                     |
| <i>Hebepetalum humiriifolium</i>            | x            |                      | x                    |                     |
| <i>Inga nouraguensis</i>                    | x            |                      |                      | x                   |
| <i>Licania alba</i>                         | x            |                      |                      | x                   |
| <i>Moronobea coccinea</i>                   | x            |                      | x                    |                     |
| <i>Paloue guianensis</i>                    | x            |                      |                      |                     |
| <i>Pouteria eugeniifolia</i>                | x            |                      |                      | x                   |
| <i>Pouteria retinervis</i>                  | x            |                      |                      | x                   |
| <i>Pradosia ptychandra</i>                  | x            |                      | x                    |                     |
| <i>Protium decandrum</i>                    | x            | x                    | x                    | x                   |
| <i>Sextonia rubra</i>                       | x            | x                    | x                    |                     |
| <i>Sympmania globulifera</i>                | x            |                      | x                    |                     |
| <i>Talisia praealta</i>                     | x            |                      |                      |                     |
| <i>Tetragastris panamensis</i> <sup>c</sup> | x            | x                    | x                    |                     |
| <i>Vochysia sabatieri</i>                   | x            |                      |                      |                     |
| <i>Vouacapoua americana</i>                 | x            | x                    | x                    |                     |

All names verified in Steege et al. 2019, except for **a**: which appears as *Aniba rosiodora*; **b**: *Eugenia cucullata*; **c**: Does not appear in the list.