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Abstract
Key message Inventory and Seasonal Variation of Terpene Emissions from Tropical Trees in French Guiana:

Implications for Environmental and Ecological Roles.

Abstract A limited understanding of foliar terpene emissions from different tree species is prominent in diverse tropical
forests. We conducted a study in French Guiana, screening BVOC emissions from 36 tropical woody species. We focused
on 32 species in the dry season and 33 in the wet season, documenting terpene emissions for the first time in some of these
tree species. Our findings show that 93.8% emitted terpenes in the dry season, while only 33.3% did so in the wet season.
Terpene emissions ranged from 0.01-80.9 ug g-1 h-1 in the dry season and 0-11.7 ug g-1 h-1 in the wet season, consistent
with previous reports. We identified and quantified 23 terpene compounds, including 19 monoterpenes and 4
sesquiterpenes. Additionally, 2 non-terpenoid compounds were detected: 2,2,4,6,6-pentamethylheptane (with no detected
emissions in the dry season) and toluene. Among the monoterpenes, the most abundant were a-terpinolene, limonene, o-
pinene, B-ocimene, and sabinene. As for sesquiterpenes, 3-caryophyllene, a-caryophyllene, and a-copaene were observed
during the dry season, while during the wet season, a-terpinolene predominated, followed by limonene, a-pinene, sabinene,

B-caryophyllene, and a-copaene. Isoprene was detected in most of the species studied in both seasons.
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Sesquiterpene emissions displayed a notable phylogenetic pattern, whereas total terpenes and monoterpenes did not;
however, total terpenes and monoterpenes exhibited a significant seasonal influence.

Our study demonstrates that seasonality strongly influences BVOC production in tropical trees, with higher emissions in
the dry season. These findings imply that various factors and conditions influence tree emissions in this tropical forest,
affecting their ecological, environmental, and climatic roles, as well as the implementation of atmospheric chemistry

models.

Keywords biogenic volatile organic compounds (BVOCs) emissions - chemical diversity - monoterpenes - sesquiterpenes -

tropical forest - seasonality

Introduction

Biogenic Volatile Organic Compounds (BVOCs), which include a variety of organic compounds, are emitted by various
organisms such as bacteria, fungi, marine life, plants, and even humans (Wheatley 2002; Morath et al. 2012; Bourtsoukidis
et al. 2018; Lawson et al. 2020; Edtbauer et al. 2021). On the other hand, phyllospheric emissions, originating from the leaf
surface, also contribute to BVOC emissions, with processes like oxidation and adsorption/desorption playing significant
roles (Kembel et al. 2014; Koskella 2020; Farré-Armengol et al. 2016; Kesselmeier et al. 1999; Rundell et al. 2015). These
compounds range from short-chain methanol (with C1) to longer-chain hemiterpenes like isoprene (with C5), terpenes like
monoterpenes (MTs, with C10), sesquiterpenes (SQTs, with C15), and diterpenes (DTs, with C20) exhibiting a wide array
of functional groups (Kesselmeier and Staudt 1999; Heiden et al. 1999; Guenther 2013; Yafiez-Serrano et al. 2020). Among
BVOCs, terpenoids, including hemiterpenes, have garnered considerable attention in ecophysiology studies (Llusia and
Pefiuelas 2000; Pefiuelas et al. 2005; Owen and Pefiuelas 2005; Yé&fiez-Serrano et al. 2018; Misztal et al. 2015).

The production and release of BVOCs are influenced by both biotic and abiotic factors. Biotic factors involve
interactions with other organisms (Kegge and Pierik 2010), while abiotic factors include environmental conditions like air
temperature, humidity, light intensity, water availability, and seasonal variations (Dement et al. 1975; Tingey et al. 1980;
Hansted et al. 1994; Llusia and Pefiuelas 1999; Staudt and Seufert 1995; Loreto et al. 1996; Seufert 1997; Jardine et al.
2020; Pefiuelas and Llusia 1997, 1999). Air temperature, particularly crucial for regulating BVOC emissions, affects
enzymatic reactions involved in BVOC biosynthesis and their diffusion in biological tissues (Llusia and Pefiuelas 2000).
Temperature not only influences the emission rates of MTs but also affects their composition, acting as a "thermometer" to
measure these changes. Changes in monoterpene composition, especially the increase in f-ocimenes and the decrease in -
pinene, may reflect the response of plants to thermal stress and their ability to adapt to warmer conditions (Jardine et al.
2017). Additionally, air humidity, light intensity and quality, water availability, and seasonal changes contribute to the

complex dynamics of BVOC production and emission (Kuhn et al. 2002; Holzinger et al. 2000; Jardine et al. 2015, 2020).
2
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The impacts of these factors on BVOCs can vary depending on the specific climatic zone and the plant species present.
Notably, even within the same plant species, different populations or individuals can display adaptations to thrive in diverse
climatic conditions, showcasing their capacity to adjust BVOC production and emission in response to environmental
changes (Kigathi et al., 2019; Picazo-Aragonés et al., 2020).

BVOCs play essential ecological roles, including plant defense mechanisms, plant-insect interactions, and ecosystem
biodiversity maintenance (Raguso 2008; Farré-Armengol et al. 2015; Borges et al. 2008; Pefiuelas and Llusia 2001;
Pichersky and Gershenzon 2002; Vickers et al. 2009). They can act as antioxidants, protect against oxidative stress, and aid
in coping with environmental stressors like heat damage (Sharkey and Singsaas 1995; Pefiuelas and Llusia 2002; Loreto et
al. 2004; Munné-Bosch et al. 2004; Copolovici et al. 2005; Pefiuelas et al. 2005; Medori et al. 2012; Centrito et al. 2014;
Salomon et al. 2016; Dumanovic et al. 2021), protecting cell membranes from peroxidation and reactive oxygen species
(Loreto and Velikova 2001; Loreto et al. 2004; Munné-Bosch et al. 2004; Llusia et al. 2005; Pefiuelas and Munné-Bosch
2005; Salomon et al. 2016; Dumanovic et al. 2021), providing a competitive advantage in harsh environments. This
protective capacity of BVOCs would explain that, despite the adverse environmental conditions that negatively affect
photosynthesis and transpiration, it does not result in a reduction in the production and emission rates of BVOCs. Isoprene,
for instance, plays a crucial role in tropical forest survival under climatic stress (Taylor et al. 2018), underscoring the
ecological importance of BVOC emissions. The opportunistic emissions hypothesis sees these functions as evolved from
these volatile compounds once they are byproducts of primary metabolism (Pefiuelas and Llusia 2004; Owen and Pefiuelas
2005).

Moreover, BVOC emissions significantly affect atmospheric chemistry and climate by influencing aerosol formation,
cloud formation, precipitation patterns, and temperature regulation (Andreae and Crutzen 1997; Singh and Zimmerman
1992; Kulmala et al. 2009; Pefiuelas and Staudt 2010). They also have implications for air quality, reacting with other
pollutants to form secondary pollutants like tropospheric ozone formation and particulate matter (Laothawornkitkul et al.
2009).

In tropical forests such as French Guiana's, terpene production and emission rates are likely to vary seasonally in
response to temperature and water availability fluctuations. Considering their ecological significance in tropical forests and
their influence on atmospheric chemistry and climate, coupled with the scarcity of information regarding their emissions
from tropical plant species (Courtois et al., 2009, 2016; Alves et al., 2016; Mu et al., 2022; Bourtsoukidis et al., 2024), our
study was prompted.

Thus, our objective is twofold: (i) to analyze terpene emissions from various tree species in French Guiana, including
those that have not been previously studied (Table S8), and (ii) to investigate the influence of seasonality on the production

and emission rates of any BVOCs, specifically comparing the dry and wet seasons.
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Materials and methods

Site description and sampling

The screening campaign was conducted in French Guiana on the Guiana Shield, one of three South American cratons
(Gibbs and Barron 1993) (Fig. 1) and part of the Amazonian rainforest, one of the largest undisturbed areas of tropical
forest in the world (Hansen et al. 2013). This tropical region rests on a Precambrian geological substrate that is particularly
low in phosphorus content, especially if compared to the generally younger, nutrient-rich soils of western Amazonia
(Hammond 2005; Grau et al. 2017). Fieldwork was performed at two research stations, Nouragues (Bongers 2001)
(04°05°N, 52°40"W) and Paracou (Gourlet-Fleury et al. 2004) (05°18"N, 52°53"W) in well-conserved old-growth tropical
forests. Sampling was conducted in 2015 on May 28-June 11 in Paracou and June 14-July 1 in Nouragues (wet season),
and on October 5-22 in Paracou and October 24—November 8 in Nouragues (dry season).

Mean annual air temperature is 26°C (Bongers 2001; Gourlet-Fleury et al. 2004), and precipitation is similar, although
slightly lower in Paracou (annual average of 2990 and 3100 mm in Paracou and Nouragues, respectively; Bongers 2001;
Aguilos et al. 2019).

The tropical climate of French Guiana is characterized by important interannual variability in the short dry seasons,
with the amount of precipitation between August and November varying from 102.2 to 532.0 mm, and long wet seasons
lasting from December to July, with cumulative annual rainfall varying from 1900 to 2800 mm (Aguilos et al. 2018). This
is due to the north/south movement of the Inter-Tropical Convergence Zone (Aceituno et al. 2009).

Soil water content and nutrient availabilities vary with topographical position in this French Guianese tropical forests
(Epron et al. 2006; Ferry et al. 2010; Stahl et al. 2011; Allié et al. 2015). Local spatial variation (less than 200 m) creates
specific habitats that differ in terms of soil characteristics, aboveground vegetation (Sabatier et al. 1997) and forest
structure (Baraloto et al. 2007; Allié et al. 2015) and dynamics (Ferry et al. 2010; Courtois et al. 2018).

Nouragues has sandy soils of variable depth originating from weathered granite (van der Meer and Bongers 1996),
while Paracou has shale floors with pegmatite veins of a Precambrian metamorphic formation known as the Bonidoro
series (Epron et al. 2006). The soils of both sites are classified as nutrient-poor Acrisols (FAO-ISRIC-ISSS 1998)
(Nachtergaele et al. 2000).

The selected trees were among the most abundant and mature tree species in the two studied areas (Table S1, Verryckt
et al. 2022). We also used a fully resolved and dated Bayesian phylogeny, previously derived at the sampling sites
(Baraloto et al. 2012). In addition to the previously mentioned selection criteria, it was taken into account that they were
adult trees and of a similar diameter depending on the species. Thirty-six tree species were included in the sampling.
Among these, 32 species were sampled during the dry season, while 33 species were sampled during the wet season
(Figures 2 and 3; Table S1 and S7). The number of samples per species is indicated in Table S7. Certain species could not

be sampled during specific seasons. In the dry season, Carapa surinamensis, Dipteryx odorata, Pouteria eugeniifolia, and

4
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Vochysia sabatieri were not sampled. In the wet season, Tetragastris panamensis, Moronobea coccinea, and Symphonia
globulifera could not be sampled. This discrepancy arises because the leaves of these species were not in ideal conditions to
be sampled (Table S7). Additionally, the species names were verified based on the list published in Stegee et al. (2019) (see
Table S8). It should be noted that in this list, Aniba roseaodora appears as A. rosiodora, Eugenia culcullata as E. cucullata,
and Tetragastris panamensis is not included.

To obtain the branches that were used for perform gas exchange measurements and collect BVOC samples, we
collaborated with expert tree climbers to collect sunlit branches between 1 and 2 meters long. Two branches were cut from
each sampled tree. To avoid cavitation, we immediately immersed approximately 20 cm of the cut end in water, cutting
about 7 cm of the branch into the water. For transport to the laboratory, we carefully placed the harvested branches in
plastic bags with damp paper (Verryckt et al. 2020ab). Throughout the sampling process, the branches remained submerged
in water. Transport time from the forest to the laboratory varied depending on the location. In Nouragues it ranged between
20 and 30 minutes, while in Paracou it lasted between 1 and 2 hours. We studied the variation of the effects of branch
excision and transport among branches at the different heights in the canopy. When the branch had acclimated to its new
environmental conditions—which took on average 20 min—Ilight-saturated leaf net photosynthetic rates did not
significantly differ between the excised and intact branches. We therefore conclude that branch excision did not affect the
measurement of gas exchange, provided that the branch is recut under water and is allowed sufficient time to acclimate to
its new environmental conditions, as we did (Verryckt et al. 2020ab).

Upon arrival at the laboratory, we meticulously selected twigs with the seemingly healthiest leaves, following the
procedure mentioned earlier. Subsequently, these selected twigs were recut underwater at the base to prevent cavitation and
then immersed in plastic cups filled with water. To ensure stability during the acclimatization period, they were sealed

inside transparent plastic bags for approximately 24 hours at 23-25 °C (Niinemets et al. 2005, 2009; Llusia et al. 2010a,

2014). For VOC sampling, three twigs were collected from each branch as replicates. Thus, a total of 6 twigs per tree were
sampled. All leaf handling steps were carried out with utmost care to avoid causing wounds or other alterations that could
lead to artifacts in VOC emission determination. Tests were conducted to compare the response of leaves on cut branches
with those on uncut branches, and it was observed that the differences in photosynthetic activity and transpiration were not
significant (Verryckt et al. 2020a, 2021).

Furthermore, samples without leaves were taken, thus characterizing the contribution of VOCs from the sampling
system. These samples obtained from the system were used as blanks, subtracted from those obtained with leaves in the

calculations described later on.
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Soil water content and soil temperature

Soil water content and temperature were measured in the same BVOC sampling period, at a depth of 10 cm at five points in
the 50x50 m tree sample plots. Soil moisture was measured with an HH2 soil moisture meter connected to an ML2x soil
moisture sensor (Delta-T Devices Ltd, Cambridge, England), while soil temperature was measured with a digital soil

thermometer (TO 15, Jules Richard instruments, Argenteuil, France) (Table S2).

Sampling of BVOC emissions

Measurements of BVOC emissions were conducted in the laboratory on a pre-cut branch with attached leaves, as
previously mentioned. These measurements were carried out using a Licor-6400XT gas-exchange system coupled with a
leaf chamber equipped with environmental control capabilities.

All tubes and accessories used for BVOC sampling were constructed of PFA Teflon (Cole Parmer, USA).
Hydrocarbon-free ambient air was delivered to the gas inlet of the LI-6400XT using a capillary-grade hydrocarbon trap
(Restek, USA). BVOC emissions were measured at a quantum flux density of 1000 umol m2 s under standard
temperature conditions (30°C) with controlled CO, concentrations of 400 ppm. Given that, all tree species had leaves with a
surface area greater than that of the chamber surface; the leaves were clamped on an area of the limb without prominent
ribs. The 6400-40 is designed with a uniform, integrated LED light source and PAM fluorimeter that easily attaches to the
L1-6400XT sensor head, giving the user complete control of the environment surrounding the 2-cm? leaf area. The flow in
the cuvette was an average of 675 ml min in the two seasons.

The air exiting the cuvette was pumped through custom-made sampling tubes, comprised of stainless steel tubes (89
mm in length and 6.4 mm in external diameter), which were equipped with adsorbents (115 mg of Tenax® TA and 230 mg
of SulfiCarb®). These tubes were separated by sorbent-retaining springs, fixed using gauze-retaining springs, and sealed
with airtight caps (Markes International Inc., Wilmington, USA). Air samples were collected using a Qmax air-sampling
pump (Supelco, Bellefonte, Pennsylvania). The flow was measured with a Bios Defender 510 flowmeter (Bios International
Corporation, Butler, USA) and adjusted with a valve. The sampling time was 20 min and the flow was 360 + 3 mL min-'.
The hydrophobic properties of the activated adsorbents minimized any sample displacement by water. The terpenes were
not chemically transformed in these tubes, as demonstrated by reference to trapped standards (c.-pinene, B-pinene,
camphene, myrcene, p-cymene, limonene, sabinene, camphor, a-humulene and dodecane). Prior to terpene sampling, the
tubes were conditioned twice for 30 min at 350°C with a stream of 100 mL min of purified helium. The trapping and
desorption efficiency of standards such as a-pinene, B-pinene and limonene was 99%. Blank samples of air with no plants
in the cuvette were collected in the tubes for 20 min immediately before each measurement. The terpene content of the

blank samples was subtracted from the samples collected from plants in order to calculate the rates of terpene emission.
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All the leaves used for VOC sampling were collected and the specific leaf area (SLA) was obtained by dividing the
fresh leaf area by its dry weight. Leaf area was measured with the L1-3100C Leaf Area Meter (LI-COR, Lincoln, NE,

USA), after which the leaves were dried for at least 48 h and weighed.

BVOC analysis

The emitted BVOCs trapped in the sorbent tubes were sampled using an automatic sample processor (TD Auto sampler,
Series 2 Ultra, Markes International Inc. Wilmington, USA) and thermally desorbed using a coupled injector with a
cryotrap (Unity, Series 2, Markes International Inc. Wilmington, USA) connected to a Gas Chromatograph (7890A, Agilent
Technologies, Santa Clara, USA) with a mass spectrometer detector (5975C inert MSD with Triple-Axis Detector, Agilent
Technologies). A full-scan (between 35 to 350 m/z) method was used in the chromatographic analyses.

Pre-desorption conditions consisted of a pre-purge time of 0.1 min, with a split of 20 mL min~, and a dry purge of 2
min. Then, BVOCs were desorbed with a flow path temperature of 200 °C, minimum carrier pressure of 0.5 KPa, and a GC
cycle time of 30 min, optimal time to recover maximum sample; the standby split was 25 mL min. Sample desorption
time was 30 min at 320 °C with the trap maintained in-line, with a flow rate of 50 mL min* and a split of 2 mL min; the
cryotrap low temperature was -25 °C. Prior to heating, traps were held in a pre-cryotrap fire purge for 2 min. The cryotrap
flow rate was 50 mL min, with a split of 10 mL min, and the heating rate was 40 °C s to a cryotrap high of 320 °C

maintained for 7 min, with a split of 5 mL min™.

Then, the cryofocused desorbed samples were injected into a GC column (Agilent Tech., HP 5MS, 30 m x 0.25 pm x
0.25 mm) using a transfer line at 250°C. Following sample injection at 35 °C (initial time: 3 min), the column temperature
was increased stepwise by 15 °C min to 150 °C, by 50 °C min to 250 °C for 5 min, and by 30 °C min! to 280 °C for 5
min, and was maintained at each time for 5 min. The total run time was 30 min, the helium column flow rate was 1 mL

mint,

Terpene identification and quantification

Terpene identification was performed by comparing the derived mass spectra with published results (Wiley275 and NistO5a
libraries) and known standards such as those mentioned below for quantification. Quantification of peaks was conducted
using the fragmentation product with mass 93 (Blanch et al. 2012; Llusia et al. 2012; Hellén et al. 2024), while calibration
curves were prepared using commercial standards for some of the most abundant recorded compounds: four monoterpenes
(a-pinene, 3-carene, B-pinene and limonene) and one sesquiterpene (a-caryophyllene) (Fluka Chemie AG, Buchs,
Switzerland). These standards were adsorbed on cartridges similar to those used for the samples by means of a valve

coupled to the chromatograph and a flow of Helium 5.0 like the one used for the flows generated by the Qmax pump. They



228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

were then desorbed and analysed following the same protocol as used for the samples. Terpene calibration curves for
signals and concentrations were always highly correlated (r2 > 0.95) and the sensitivity of the most abundant terpenes were
similar (differences were < 5%). The response factor for the MTs was an average of the standard MTs and only that of the
a-caryophyllene for the sesquiterpenes. We estimate a 5% error in the quantification given by the response variation of
each standard with respect to each other. For isoprene, we used a Linde gas standard (1 ppm) of which we made three
dilutions to obtain its calibration curve.

To prepare the liquid standards, three different dilutions were made: 1 pL of the pure standard was diluted in 1000 pL
of pentane and then 100 pL of this standard were taken and diluted in another 1000 pL of pentane. From this second
dilution another 100 uL were taken and diluted in 1000 pL of pentane.

In addition, we also prepared standards from a standard at 500 ppb of a 50-L bottle (Reimer Environmental, Inc.,
Miami, USA). We injected 15, 25 and 35 mL into three sampling tubes using the same valve as mentioned above. In each
sequence (of 30 tubes) of analysis, a series of three standards (one for each concentration) of the gas standard were added at
the beginning, and at the end of series 3 (one for each concentration) of the liquid standard (previously gassed). To avoid
interference in samples due to contamination, the standards were arranged from lowest to highest concentrations. In
addition, the analysis of the sequences always started with an empty tube followed by a tube with the same adsorbents
taken from the field but not sampled to test for possible contamination during the process.

To calculate the micrograms (ug) of terpenes per gram (g) of dry matter and per hour, we used the following formula:

[(AUs / svs) — (AUb / svb)] x [(rf x Fch x 60 min) / (AUrf x g d.m. x st)] Equ. 1.
In this equation, the variables represent the following:
e AUs and Aub: Arbitrary units of area of the air sampled from the cuvette and of the blank air sample (area units).
e Svsand svh: Volume of air sampled from the cuvette with leaves and as blank (milliliters, mL).
o rf: Response factor calculated from the calibration curves (micrograms, ug).
e Fch: Flow rate in the sampling chamber (milliliters per minute, mL min?).
e  AUTrf: Arbitrary units of area corresponding to the response factor (arbitrary units).
e g d.m.: Grams of dry matter (g).

e st: Sampling time (minutes, min).

The Shapiro-Wilk test (N > 30) showed that the data of the variables (i.e. emissions of total BVOCs, monoterpenes and
sesquiterpenes) were normally distributed (P > 0.05).
We used Bayesian phylogenetic linear mixed-effects models implemented in the MCMCglmm R package (Hadfield

2010) (Table S6) to test for the effects of season while controlling for the potential effects of intraspecific plasticity and
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phylogenetic ancestry on the foliar variables. In these analyses season was included as a fixed factor, and phylogenetic
relationships and species identities as random factors. The phylogenetic term accounted for the variability related with
shared ancestry, while the species term accounted for species-specific traits independent of shared ancestry. Thus, both
random factors accounted for the variance explained by heritability and by the plastic expression of species’ emission
capacities.

We computed the phylogenetic signal as Pagel’s A to assess the importance of phylogenetic ancestry on the emission of
BVOCs. The corresponding P-values were based on the variance in phylogenetically independent contrasts relative to tip-
shuffling randomization, as implemented in the phylosig function in the R phytools package (Revell 2012). Pagel's A (1999)
provides a quantitative phylogenetic measure in which X is a scaling parameter for the correlations between species in
relation to the correlation expected under Brownian evolution. A has a natural scale between zero (no correlation between
species) and 1.0 (correlation between species equal to the expected Brownian correlation). A itself is not a correlation but,
rather, a scaling factor for a correlation, so A > 1.0 is theoretically possible. However, depending on the structure of the
tree, A >> 1.0 is not usually defined.

Terpene emission rates were expressed as pug g* d.m. h',

Results
Environmental conditions
The French Guiana monthly average rainfall in 2015 was 237 + 44 mm during the wet season (December—August) and 47.5
+ 11.1 mm during the dry season (September—November), with the maximum rainfall falling in May (532 mm) and the
minimum in October (33 mm). The field campaign during the dry season was conducted with 32.8 mm of rainfall. Mean air
temperature during the rainy season was 27-28°C, with a maximum of 28°C in December. During the dry season the
maximum temperatures were 28-28.5°C, with minimum temperatures recorded in February (26.5°C). The overall air
temperature remains steady throughout the year in French Guiana.

Soil water content and temperature values correspond to measurements made in the experimental plots. The average soil
water content was 20.2 + 0.3% in the dry season and 32.3 = 0.2% in the wet season (Fig. 1 and Table S2). The average soil

temperature in the dry season was 26.5 + 0.1°C and in wet season 23.7 + 0.01°C (Fig. 1 and Table S2).

BVOC emission rates

Total BVOC emissions varied from 0.01 to 80.9 pug g d.m. h'* in the dry season and from 0 to 11.7 ug g* d.m. h'* in
the wet season, indicating considerable variation based on environmental conditions (Fig. 2, 3, 4, and S1, and Table S3 and
S4). The values for total BVOCs they were 5.7 + 0.6 and 1.3 + 0.7 pg g* d.m. h'* while, for total terpenes were 5.4 + 0.6

and 0.5 £ 0.7 ug g-1 d.m. h-1, in dry and wet season respectively. The majority of both total BVOCs and terpenes were
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mainly emitted during the dry season (see Figs. 4 and S1). These differences were statistically significant, with ANOVA
analysis showing P < 0.0001. Sample sizes were 285 in the dry season and 219 in the wet season. Of the monoterpenes, the
most abundant were o-terpinolene, limonene, a-pinene, t-B-ocimene and sabinene. Of the sesquiterpenes, B-caryophyllene,
o-caryophyllene and o-copaene were observed during the dry season, while during the wet season, o-terpinolene
predominated, followed by limonene, a-pinene, sabinene, B-caryophyllene and a-copaene (Figs. 3A, 4 and Table S3).
Isoprene was detected in most of the species studied in both seasons (Figs. 3B, 4 and S1, and Table S3). However, in three
tree species (Gustavia hexapétala (1.8 + 1.6 vs 0 = 0 ug g* d.m. h'), Eugenia culcullata (3.1 £+ 1.1vs 0.4 £ 0.1 pg g* d.m.
h') and Dycorinia guianensis (1.2 + 0.8 vs 0 + 0 pg g* d.m. h'')) was significantly higher in the wet season than in the dry
season (P < 0.01). Only Aniba rosaeodora emitted more isoprene in the dry season than in the wet season (2.2 £+2.0vs0 +
0 png gt d.m. h'Y) (Fig. 3B).

Among the BVOCs detected, the main non-terpenoid compounds were 2,2,4,6,6-pentamethyl heptane (with no detected
emissions in the dry season and 0.3 + 0.1 pg g* d.m. h't in the wet season) and toluene (0.1 + 0.02 pg g* d.m. h in the dry
season and 0.012 + 0.007 pg g* d.m. h! in the wet season) (Fig. 4 and Table S4). Notably, 2,2,4,6,6-pentamethyl heptane
exhibited a strong correlation with isoprene during the wet season (r? = 0.23, P < 0.0001, N = 219), while toluene showed a
correlation with a-pinene during the dry season (r? = 0.15, P < 0.01, N = 285).

The emission rates of the terpenes and toluene followed a similar pattern to the total BVOCs, except for 2,2,4,6,6-
pentamethyl heptane, which was primarily emitted during the wet season (Fig. 4 and Table S4). Among the emitted
BVOCs, a-terpinolene, limonene, a-pinene, t-B-ocimene (MT), B-caryophyllene, and a-caryophyllene (SQT) were the most
abundant, especially in the dry season (Fig. 3A and 4). Additionally, there was a group of unidentified sesquiterpenes
emitted, collectively surpassing the previously mentioned BVOCs, also in the dry season (Fig. 3A).

Figure 2 displays all the tree species studied along with their average terpene emissions during both the dry and wet
seasons. Among these species, 27.6% were classified as high terpene emitters, 51.7% as intermediate emitters, and 20.7%
as low emitters. The remaining species were categorized as very low emitters (Fig. 2A). Notably, 90.6% of the species
emitted terpenes during the dry season, whereas only 36.4% emitted terpenes during the wet season. The percentages for
monoterpenes mirrored those of the total terpenes. However, sesquiterpenes were emitted by 75% of the species in the dry
season and only by 15.6% in the wet season (Figs. 2 and 3).

Specifically, 2,2,4,6,6-pentamethyl heptane was emitted by 31.3% of the tree species exclusively during the wet season,
while toluene was emitted by 37.5% of the species during the dry season and by 6.3% of the species during the wet season
(Table S4). Monoterpenes generally predominated over sesquiterpenes, except in the case of the tree species Eperua
grandiflora (Fig. 2B, C). Notably, a significant phylogenetic signal, as assessed by Pagel's A, was observed only for

sesquiterpenes (Table S5).
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Discussion

Our results emphasized the species-specificity of BVOC emissions and the varying tree species responses to seasonal and
environmental conditions (Gomes-Alves et al. 2022; Khun et al. 2002; Mishra and Sinha 2020). The majority of the species
emitted terpenes, isoprene, and other BVOCs (Figs. 2 and 3; Table S3). However, the emitted quantities were relatively low
compared to similar studies in other ecosystems such as the Mediterranean forests (Llusia et al. 2013) but comparable to
those observed in analogous tropical environments (Llusia et al. 2010a, 2014). In the Amazon rainforest, various studies
have explored BVOC emissions and their fluctuations. Jardine et al. (2015) studied the speciation of 12 monoterpenes and
their vertically resolved ambient air mixing ratios in a central Amazon rainforest and their reactive potential of some of
them. Specifically, they observed the highly reactive cis-p-ocimene (160 ppt), trans-B-ocimene (79 ppt) and terpinolene (32
ppt), which represented approximately 21% of the total monoterpene composition and 55% of the rate of ozonolysis of
monoterpenes from the upper part of the canopy. Leaf-level emissions of highly reactive monoterpenes accounted for up to
1.9% of photosynthesis, confirming light-dependent emissions in several genera of Amazonian trees, corroborating the
present study accounting the qualitatively results. Jardine et al. (2017) utilized monoterpenes as an indicator to gauge the
central Amazon rainforest's response to climate warming and found that monoterpene emissions increase with temperature,
especially B-ocymene, corroborating our results of higher emissions in the dry season (Figs. 3A, 4, S1 and Tables S3 and
S4). And in another study (Yéafiez-Serrano et al., 2018), conducted in the Amazon rainforest, the chemical speciation of
monoterpenes, was investigated using samples collected during the dry season of October 2015 at the Amazon Tall Tower
Observatory (ATTO). A distinct differentiation in chemical composition between day and night was found, with a-pinene
being more abundant during the day and limonene predominating at night. Reactivity calculations revealed that higher
abundance does not always correlate with greater reactivity, and modeling simulations indicated the need for further
research to fully understand the processes of monoterpene exchange in the tropical forest canopy. This study highlights the
importance of chemical speciation in understanding the role of monoterpenes in atmospheric chemistry and the carbon
cycle in tropical forest ecosystems. Furthermore, Byron et al. (2022) investigated the chemical speciation of chiral
monoterpenes in a tropical rainforest ecosystem, revealing distinct diel emission peaks and shifts in emissions in response
to drought conditions. Their findings emphasize the importance of considering enantiomeric distribution in understanding
monoterpene emission mechanisms and predicting atmospheric feedbacks in forest ecosystems, which complements our
understanding of BVOC emissions.

Gomes-Alves et al. (2022) investigated the variability of isoprenoid emission patterns, including isoprene, in
Amazonian ecosystems in response to ecophysiological and environmental factors. They conducted measurements of
isoprenoid emission capacities across seasons and environmental gradients for three dominant tree species in the central
Amazon. Contrary to the common perception that isoprene emissions predominantly occur under water stress and high

temperatures, their results align with those of Gomes-Alves et al. (2022), who documented higher isoprene emissions
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during the wet season, challenging previous assumptions (Taylor et al. 2018) across all tree species. They suggested that
the decreased emissions during the dry season could represent a plastic response to escalating abiotic stress, such as heat
and drought, coupled with reduced substrate availability for isoprenoid synthesis. The study proposed that shifts in
emission composition, characterized by elevated isoprene emissions during the wet season, might serve as a physiological
adaptation to optimize plant performance under prevailing wet season conditions. These findings contrast with the higher
terpene emissions observed in the driest and hottest seasons, indicating potential differences in emission behavior between
isoprene and other isoprenoids, necessitating separate consideration in seasonal emission studies.

In their study, Gomes-Alves et al. (2022) noted a significant decrease in isoprenoid emission capacity during the
transition from the wet to the dry season, coinciding with heightened abiotic stress due to heat and drought in the Amazon
rainforest. Moreover, they observed an increase in emissions of heavier isoprenoids, such as monoterpenes and
sesquiterpenes, during this seasonal transition, suggesting a plastic response of plants to changing conditions. This
adaptation in the composition of isoprenoid emissions may represent a strategy to mitigate abiotic stress and sustain
essential plant functions. Additionally, previous research has demonstrated the variability of plant responses in isoprenoid
emission rates in relation to climatic and ecological factors (Staudt et al. 2017). It has also been observed that moderate
drought can lead to an increase in isoprenoid emission rates as plants adapt to water stress (Dani et al., 2014). However,
under conditions of extreme drought, these rates have been shown to decline substantially (Llusia and Pefiuelas, 1998).

Furthermore, the study by Byron et al. (2022) examined the response of monoterpene emissions to drought in a tropical
rainforest ecosystem. They found that, during a controlled drought experiment, monoterpene emissions exhibited distinct
diurnal peaks and changes in the composition of a-pinene enantiomers. Additionally, as drought progressed, the emission
source of (-)-a-pinene shifted towards storage pools, promoting cloud formation. This alteration in monoterpene emission
composition may be linked to the plant's ability to adapt to water and thermal stress, supporting the hypothesis of a plastic
response to drought.

In summary, these findings suggest that plants can adjust their terpene emissions, including isoprenoids, as an adaptive
strategy to cope with abiotic stress during the dry season in tropical rainforests. The ability to modulate the composition of
terpene emissions could have significant implications for atmospheric chemistry and climate feedback processes in these
ecosystems.

Given the present climate change scenario with altered rainfall patterns (Dore 2005), and recognizing that moderate
drought conditions amplify BVOC emissions (Niinemets 2010), a negative feedback effect might occur, particularly
regarding increased aridity. During moderate drought conditions, heightened terpenes in the atmosphere could potentially
enhance rainfall, alleviating, to some degree, the detrimental impacts of climate change in these areas (Llusia and Pefiuelas

1998; Llusia et al. 2006, 2008, 2010b; Blanch et al. 2007, 2009).
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It is noteworthy that non-terpene compounds like toluene and 2,2,4,6,6-pentamethyl heptane were detected (Heiden et
al. 1999; Zhiqun et al. 2017; Misztal et al. 2015). o-Pinene emission rates also showed a correlation with these factors,
especially during the dry season (Fig. 4). This study also presents the first report of 2,2,4,6,6-pentamethyl heptane emission
from the leaves of several tropical tree species (Khun et al. 2002; Courtois et al. 2009). This BVOC is known to have
allopathic effects, implying a role in plant defense (Zhiqun et al. 2017).

BVOC emissions are thus sensitive to taxonomy and environmental factors, including temperature, light, and moisture
availability. Considering the increasing occurrence of drought periods in tropical areas due to climate change,
understanding the potential implications for BVOC emissions is crucial. Drought stress can significantly affect plant
physiology and metabolism, potentially altering the quantity and compaosition of BVOC emissions.

The findings of this study contribute to the characterization of BVOC emissions from some tropical tree species and,
therefore, to our understanding of the complex interactions between climate change, drought, tree species and BVOC
emissions. By considering the potential effects of drought on BVOC emissions and their implications for atmospheric
chemistry and climate processes, we can develop a more comprehensive understanding of the role of BVOCs in the context

of climate change and its impact on drought periods in tropical areas (Dore 2005; Fubao et al. 2018).

Conclusions and final remarks
This study reports the results of the emissions of different BVOCs by 36 tree species in the tropical forests of French
Guiana and confirms that there are significant seasonal differences, on average, for BVOCs emitted. On average, emissions
in the dry season were higher than in the wet season; as well, the proportion of each type of BVOCs in each season was
found to be different. Species’ shared ancestry had a significant effect on sesquiterpene (Liang et al. 2021) emissions but
not on the total terpenes or monoterpenes.

This study provides strong evidence of higher rates of foliar terpene emissions from tropical trees in the dry season than
in the wet season. Our results underscore the potential role of this variation in the capacity of terpene emissions to act as a
buffer effect on climate change (Engelhart et al. 2008). More BVOC emissions under increased drought could partly
counteract the severity of droughts by favoring cloud formation and precipitation (Jardine et al. 2020).

As these compounds have important roles in atmospheric chemistry, aerosol formation, and plant-atmosphere
interaction, further research in this field will help improve our understanding of biogeochemical processes and address

important issues related to climate change and air quality.
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species in French Guiana. Asterisks indicate significant differences between seasons, * P < 0.01, ** P < 0.001, *** P <

742

285 and 219 in the dry and wet season, respectively. "N" refers to the sample size, representing the number of

0.00001; N

743

observations available in each season. "Nda" stands for no data available.
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Fig. 4. Mean biogenic volatile organic compound (BVOC) emissions (t standard error) from 36 tropical tree species in
French Guiana. Asterisks indicate significant differences between seasons: * P < 0.01, ** P < 0.001, *** P < 0.00001; N =

285 and 219 in the dry and wet seasons, respectively. In this context, "N" represents the sample size, indicating the number
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Fig. S1. Means of the different types of BVOCs emitted by 36 tropical tree species in French Guiana. MT: monoterpenes;

SQT: sesquiterpenes.
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Table S1. List of the different tropical tree species studied in the dry and wet seasons in the Nouragues Ecological

Research Station and Paracou Experimental Field Station in French Guiana.

Season
Dry

Wet

Site
Nouragues

Paracou

Nouragues

Species

Aniba rosaeodora
Brosimum guianense
Chimarrhis turbinata
Chrysophyllum argenteum
Couepia caryophylloides
Dicorynia guianensis
Eperua falcata
Eschweilera coriacea
Eschweilera decolorans
Eugenia culcullata
Ferdinandusa paraensis
Inga nouraguensis
Licania alba

Paloue guianensis
Pouteria retinervis
Pradosia ptychandra
Protium decandrum
Sextonia rubra

Talisia praealta
Vochysia sabatieri
Vouacapoua americana
Carapa surinamensis
Catostemma fragrans
Chaetocarpus schomburgkianus
Chrysophyllum pomiferum
Dipteryx odorata
Drypetes variabilis
Eperua falcata

Eperua grandiflora
Eschweilera sagotiana
Eschweilera sp

Gustavia hexapetala
Hebepetalum humiriifolium
Licania alba

Moronobea coccinea
Pouteria eugeniifolia
Symphonia globulifera
Tetragastris panamensis
Vouacapoua americana
Aniba rosaeodora
Agonandra silvatica
Brosimum guianense
Chimarrhis turbinata

Family
Lauraceae
Moraceae
Rubiaceae
Sapotaceae
Chrysobalanaceae
Fabaceae
Fabaceae
Lecythidaceae
Lecythidaceae
Myrtaceae
Rubiaceae
Fabaceae
Chrysobalanaceae
Fabaceae
Sapotaceae
Sapotaceae
Burseraceae
Lauraceae
Sapindaceae
Vochysiaceae
Fabaceae
Meliaceae
Malvaceae
Euphorbiaceae
Sapotaceae
Fabaceae
Putranjivaceae

Fabaceae
Lecythidaceae
Lecythidaceae
Lecythidaceae
Linaceae

Clusiaceae
Sapotaceae
Clusiaceae
Burseraceae

Lauraceae

Moraceae
Rubiaceae
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Paracou

Chrysophyllum argenteum
Couepia caryophylloides
Dicorynia guianensis
Eperua falcata
Eschweilera coriacea
Eschweilera decolorans
Eugenia culcullata
Ferdinandusa paraensis
Inga nouraguensis
Licania alba

Paloue guianensis
Pouteria retinervis
Pradosia ptychandra
Protium decandrum
Sextonia rubra

Talisia praealta

Vochysia sabatieri
Vouacapoua americana
Carapa surinamensis
Catostemma fragrans
Chaetocarpus schomburgkianus
Chrysophyllum argenteum
Chrysophyllum pomiferum
Dipteryx odorata
Drypetes variabilis
Eperua falcata

Eperua grandiflora
Eschweilera sagotiana
Eschweilera sp

Gustavia hexapetala
Hebepetalum humiriifolium
Licania alba

Moronobea coccinea
Pouteria eugeniifolia
Symphonia globulifera
Tetragastris panamensis
Vouacapoua americana

Sapotaceae
Chrysobalanaceae
Fabaceae
Fabaceae
Lecythidaceae
Lecythidaceae
Myrtaceae
Rubiaceae
Fabaceae
Chrysobalanaceae
Fabaceae
Sapotaceae
Sapotaceae
Burseraceae
Lauraceae
Sapindaceae
Vochysiaceae
Fabaceae
Meliaceae
Malvaceae
Euphorbiaceae

Sapotaceae
Fabaceae
Putranjivaceae

Fabaceae
Lecythidaceae
Lecythidaceae
Lecythidaceae
Linaceae

Clusiaceae
Sapotaceae
Clusiaceae
Burseraceae
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Table S2. Mean (+ STD) soil water content (%) and soil temperature (°C) around the 36 tropical tree species in French

Guiana. Letters indicate significant differences between seasons. N indicates the number of measurements.

Specific name

Protium
decandrum

Inga
nouraguensis

Eperua

grandiflora

Eperua falcata

Eschweilera
coriacea

Gustavia
hexapetala

Brosimum
guianense

Couepia
caryophylloides

Eschweilera
sagotiana

Pradosia
ptychandra

Chrysophyllum
pomiferum

Vouacapoua
americana

Sextonia rubra

Season

Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet

Dry

Wet

Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet

Dry

Wet

Soil water
content (%)

23.6 £ 0a

33.1+0b
23.6 + 0a

33.1+0b
156 +1.1a

28.8+1.5b
20.3 +0.6a

34.2£0.7b
20.2 £ 0a

35.8+0.3b
21.3+0a

30.7x0b

18.7 £ 0a

35+ 0b

23.4 +0a

31.5+0b
199+ 1.6a

32.8x0b
20.3+£0.5a

36.4 +0b
2050

nda
22.6 +0.5a

321+1b

25.4 +0a

33.4x0b

Soil
temperature
(°C)

26.3 £ 0a

23.7+0b
26.3 + 0a

23.7+0b
26+0.4

nda
25 +0.07a

23.7x0b
26.2 + 0a

23.9+0.05b
246+0

nda

28 +0a

23.7x0b

29.6 + 0a

23.7x0b
27%0.6

nda
28 £ 0a

23.6 = 0b
2510

nda
25.4 +0.1a

23.7+0.03b

28.5 + 0a

23.7x0b

N

20

32

18

17
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Chrysophyllum

argenteum

Ferdinandusa
paraensis

Talisia praealta

Licania alba

Chimarrhis
turbinata

Eschweilera sp

Paloue
guianensis

Eugenia
culcullata

Tetragastris
panamensis

Dicorynia
guianensis

Drypetes
variabilis

Pouteria
retinervis

Aniba
rosaeodora

Chaetocarpus

schomburgkianus

Catostemma
fragrans

Hebepetalum
humiriifolium

Moronobea
coccinea

Symphonia
globulifera

Dry

Wet

Dry

Wet
Dry
Wet
Dry
Wet

Dry

Wet
Dry
Wet
Dry

Wet

Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet

20.2 + 0a

32.7+£1.3b

24.2 +0a

31.4+0b
25.4 + 0a
36.3+0b
22.5+0.7a
33+0.5b

25.2 +0a

38.1+0b
12.8 £ 0a
27.9+0b
218 +0a

36.4x0b

9+ 0a

25.3x0b
2530

nda
19 + Oa

34.4+0.5b
22.2 +0a

29.7+0b
9+ 0a

25.3+0Db
24.2 + 0a

31.4+0b
13.7 £ 0a

27.8+0Db
21.3+0a

30.7 £ 0b
15+0

nda
9.9+ 0a

26.2 +0b
194+0

nda

26.2 + 0a

23.9+0b

27.5*0a

23.3+0b
29+ 0a
235+ 0b
27.7+£0.3a
23.7+£0.02b

27.6 + 0a

23.4+0b
2450
nda

28 £ 0a

23.6x0b

28.9 + 0a

23.5x0b
25%0

nda
28 £ 0a

23.8+0.02b
2480

nda
29 +0a

23.5+0Db
275+ 0a

23.3+0b
2540

nda
246+0

nda
247 +0

nda
249+0

nda
246+0

nda

40
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Eschweilera
decolorans

Capirona
decorticans

Caryocar
glabrum

Chrysophyllum
sanguinolentum

Helicostylis
pedunculata

Hirtella bicornis

Hymanea
courbaril

Lecythis poiteaui

Myrcia
splendens

Protium opacum

Sloanea sp

Sterculia
pruriens

Pouteria
eugeniifolia

Carapa
surinamensis

Dipteryx odorata

Vochysia
sabatieri

Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry
Wet
Dry

Wet
Dry
Wet
Dry

Wet
Dry
Wet
Dry
Wet
Dry

Wet
Dry

Wet
Dry

Wet
Dry
Wet
Dry

Wet

22.9 +0a

37.6+0Db
nda

3150
nda

334+0
nda

315+0
nda

36.4+0
nda
334+0
nda

355+0
nda
38.1+0
nda

2530
nda
36.4+0
nda
nda
nda

30.7+0
nda

278+0
nda

29.7+0
nda
30.7+0
nda

3340

27.3 = 0a

23.9+0b
nda

23.7+0
nda

23.7+0
nda

23.7+0
nda

2360
nda
23.7+0
nda

239+0
nda
234+0
nda

2350
nda
2360
nda
nda
nda

nda
nda

nda
nda

nda
nda
nda
nda

23.7x0
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Table S3. Mean (minimum, maximum = standard deviation and standard error, in pg g d.m. h) biogenic volatile organic
compounds (BVOCs) and P-value of the 36 tropical tree species studied in the dry and wet seasons in French Guiana. N =
285 and 219 for the dry and wet seasons, respectively. MTu: monoterpene unidentified; SQTsu: Sum of unidentified

sesquiterpenes.

Season Dry Wet

BVOCs Mean Min. Max. Std Ste | Mean Min. Max. Std Ste P-value
Total BVOCs 5,5 0 80,9 128 08 |08 0 11,7 1,9 0,1 0.000010
Total terpenes 5,4 0 80,9 128 0,8 |0,5 0 10,3 1,5 0,1 0.000010
Total monoterpenes 2,5 0 39,6 5,7 03 |04 0 6,6 1 0,1 0.000010
Other monoterpenes 0,2 0 4,5 0,6 0 0 0 2 02 O 0.000010
Total sesquiterpenes 3 0 79,9 103 0,6 |01 0 4,4 06 0 0.000100
Other sesquiterpenes 0,8 0 16,7 2,3 01 |01 0 4,4 06 O 0.000010
Isoprene 0,3 0 13 1,2 01 |05 0 229 21 01 ns
Seenpt?:];ﬁjA.G.G- 0 0 0 0 0 03 0 5,7 08 01 0.000010
Toluene 01 0 32 03 O 0 0 14 01 O 0.010000
MTul 0 0 0 0 0 0 0 0,3 0 0 ns

MTu2 0 0 0,4 0 0 0 0 0 0 0 ns

MTu3 0 0 0 0 0 0 0 0 0 0 ns
a-Pinene 0,6 0 154 1,5 01 [01 0 2,5 02 0 0.000010
MTu4 0 0 09 01 O 0 0 07 01 O 0.020000
MTu5 0 0 06 01 0 0 0 02 O 0 0.000026
MTu6 0 0 0,2 0 0 0 0 0 0 0 ns

MTu7 0,1 0 2 0,2 0 0 0 0,4 0 0 0.000010
MTu8 01 0 1,8 02 0 0 0 1,6 01 O 0.010000
Limonene 06 0 137 1,7 01 |01 O 49 04 0 0.000010
Sabinene 0,1 0 24 03 0 0 0 22 02 0 ns
trans-B-Ocimene 04 0 198 1,8 01 |0 0 1,8 02 0 0.010000
MTu9 0 0 08 01 0 0 0 0 0 0 0.010000
MTul0 0 0 0,7 0,1 0 0 0 0 0 0 0.001000
MTull 0 0 0,5 0 0 0 0 0 0 0 ns
MTul2 0 0 1,7 0,1 0 0 0 0 0 0 ns
a-Terpinolene 06 0 197 26 02 |01 O 36 05 0 0.010000
MTul3 0 0 04 O 0 0 0 0 0 0 ns
MTul4 0 0 0,5 0 0 0 0 0 0 0 ns
a-Copaene 0,2 0 8,8 0,9 01 |0 0 0 0 0 0.002500
-Caryophyllene 1,4 0 546 6,7 04 |0 0 1,3 01 O 0.002000
o-Caryophyllene 0,5 0 193 24 01 |0 0 0 0 0 0.001000
SQTsu 08 O 167 23 01 |01 O 44 06 O 0.0001
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Table S4. Mean emissions (+ standard error) of the two main non-terpenic volatile compounds emitted by some tropical

tree species in French Guiana. Letters indicate significant differences between seasons (P < 0.05).

Specific name

Protium decandrum

Inga nouraguensis

Eperua grandiflora

Eperua falcata

Eschweilera coriacea

Gustavia hexapetala

Brosimum guianense

Couepia caryophylloides

Eschweilera sagotiana

Pradosia ptychandra

Chrysophyllum pomiferum

Vouacapoua americana

Sextonia rubra

Chrysophyllum argenteum

Ferdinandusa paraensis

Talisia praealta

Licania alba

Chimarrhis turbinata

Eschweilera sp

Paloue guianensis

Eugenia culcullata

Season

Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry

Heptane-2.2.4.6.6-

pentamethyl
0+0

00
00
00
00
00

0+ 0a
1.1£0.3b
0+ 0a
1+£0.3b
00
00

0+ 0a
41+0.4b
00
00
00
00

0+ 0a
0.7+0.2b
00
nda
00
00
00
00

0+ 0a
0.6+0.3b
00
00
00
00

0+ 0a
0.3%£0.1b
00
00
00
00

0+ 0a
06+0.2b
00

Toluene

0.1+0.1a
0+0a
0+0

00
0.04 £ 0.02a
0+0a
0+0

00

0.03 +0.02a
0+0a
0.5+0.3a
0+0b
0+0

00

0+0

00

0.03 +0.02a
0+0a
0.2+0.1a
0.1+£0.04a
0.04 +0.03
nda

0+0a
0.1+0.1a
0.1£0.1a
0+0a
0.01£0.01a
0+0a
0.1£0.1a
0+0a
0+0

00
0.2+0.1a
0+0b
0.3+0.3a
0+0b
0+0

00

0+0

00

0+0
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Tetragastris panamensis

Dicorynia guianensis

Drypetes variabilis

Pouteria retinervis

Aniba rosaeodora

Chaetocarpus
schomburgkianus

Catostemma fragrans

Hebepetalum humiriifolium

Moronobea coccinea

Symphonia globulifera

Eschweilera decolorans

Pouteria eugeniifolia

Carapa surinamensis

Dipteryx odorata

Vochysia sabatieri

Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry

Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet
Dry
Wet

nda

0+ 0a
0.7+0.1b
00
00
00
00
00
00
0+ 0a

0.2+0.1b
00
00
00
nda
00
00
00
nda
00
00
nda
05+0.3
nda
00
nda
00
nda
00

nda

0£0
0£0
0£0
0£0
0£0
0£0
0£0
0£0
0£0

00
0+0
00
0+0
nda
0+0
00
0+0
nda
0+0
00
nda
00
nda
00
nda
00
nda
00
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Table S5. Results of the phylogenetic analyses using Pagel’s 4 and the corresponding P values. Significant values (P <

0.05) are shown in bold.

Total Total Total Total

BVOCs terpenes monoterpenes sesquiterpenes
Phylogenetic signal lambda 0.2 0.2 6.6 0.8
logL (lambda) -104 -103 -825 -827
LR(lambda=0) 0.1 0.1 -0.001 673
P-value (based on LR test) 0.7 0.8 1 0.01
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Table S6. Results of the Bayesian phylogenetic linear mixed models with season as fixed factor and phylogeny and species as random factors obtained with the R package

MCMCglmm. The phylogeny term accounted for variability in the shared ancestry, while the species term accounted for species-specific traits independently of the shared

ancestry. Significant values of fixed independent variables (P < 0.05) are shown in bold.

Variables

Total terpenes

MTul

Hept-6en-3yn-1ol

Toluene

MTul

Fixed factors

Statistics Table

eff.samp pMCMC

seasonWET 0.1
eff.samp pMCMC
(Intercept) -0.03
seasonWET 0.1

eff.samp pMCMC

seasonWET -0.2

eff.samp pMCMC

RZ

Fixed
factors

0.1

0.01

0.02

0.01

0.0045

RZ%
0.01

0.00004

0.0004

0.0003

0.00004

RZ
0.1

0.01

0.1

0.02

0.01

Total model

0.2

0.02

0.1

0.04

0.015
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MTu2

MTu3

a-Pinene

MTu4

MTu5

MTu6

MTu7

MTu8

seasonWET 0.1 -0.1

post.mean

0.3 1863 0.3
1-95% CI  u-95% Cl eff.samp pMCMC

(Intercept) 0.1 -0.1 0.3 1700 0.4

seasonWET -0.2 -03 0
post.mean

(Intercept) 0.1  -0.2

seasonWET -0.1  -0.3

post.mean

.004 1700 0.1

1-95% ClI  u-95% Cl eff.samp pMCMC
0.3 1700 0.5
0.03 1700 0.2

1-95% CI  u-95% CI eff.samp pMCMC

(Intercept) 0.2 -0.01 0.4 1700 0.1

seasonWET -0.4 -0.6 -0.3 1855 <6e-04 ***

post.mean

1-95% CI  u-95% CI eff.samp pMCMC

(Intercept) 0.2 -0.2 05 1700 0.2

seasonWET -0.3 -0.4 -0.1 1700 0.002 **

post.mean
(Intercept) 0.1 -0.1
seasonWET -0.4 -0.5

post.mean
(Intercept) 0.1 -0.2
seasonWET -0.2 -0.3

post.mean
(Intercept) 0.2-0.04 0.4
seasonWET -0.4-0.6-0.3

post.mean |

1-95% CI  u-95% CI eff.samp pMCMC

0.3 1700 0.2

-0.2 1700 <6e-04 ***

1-95% CI  u-95% CI eff.samp pMCMC
0.3 1519 0.5

-0.01 1700 0.05 *

1-95% CI  u-95% Cl eff.samp pMCMC
1824 0.1

1700 < 6e-04 ***

-95% Cl  u-95% CI eff.samp pMCMC

0.01

0.006

0.02

0.03

0.01

0.05

0.02

0.002

0.003

0.001

0.01

0.002

0.005

0.003

0.005

0.003

0.004

0.001

0.07

0.003

0.004

0.01

0.01

0.1

0.08

0.04

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.3

0.1

0.1

0.1

0.1
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Limonene

Sabinene

Trans-pB-Ocimene

MTu9

MTul0

MTull

MTul2

(Intercept)
seasonWET

(Intercept)
seasonWET

pMCMC
(Intercept)
seasonWET

pMCMC
(Intercept)
seasonWET

pMCMC
(Intercept)
seasonWET

(Intercept)
seasonWET

pMCMC
(Intercept)

seasonWET

01 -03 04 1463 0.6
-0.2 -0.4 -0.05 1700 0.01 **
post.mean 1-95% CI u-95% ClI effsamp pMCMC 0.04
0.2 -0.1 04 1700 0.1
-04 -06 -0.2 1700 < 6e-04 ***
postmean 1-95% ClI u-95% Cl  eff.samp 0.01
0.04 -0.1 0.2 1700 0.6
-0.1 -03 01 1700 0.2
post.mean 1-95% CI  u-95% CI  eff.samp 0.03
0.1 -0.2 0.5 1835 0.3
-0.3 -0.4 -0.1 1700 0.001 **
postmean 1-95% ClI  u-95% CI eff.samp 0.01
0.1 -0.3 0.5 1392 0.4
-0.2 -04 -0.04 1700 0.01*
post.mean 1-95% CI u-95% CI eff.samp pMCMC  0.02
0.1 -0.2 0.5 2087 0.3
-0.3 -0.4 -0.1 1700 0.005 **
post.mean 1-95% CI u-95% CI eff.samp 0.01
0.1 -0.3 04 2120 0.6
-01 03 0.05 1700 0.1
post.mean 1-95% CI u-95% Cl  eff.samp 0.01

0.003

0.001

0.02

0.02

0.02

0.01

0.002

0.006

0.002

0.1

0.03

0.1

0.01

0.01

0.1

0.05

0.2

0.2

0.2

0.1

0.1

0.1

0.06

0.3

0.2

0.3

0.1

0.2
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a-Terpinolene

MTul3

MTul4d

a-Copaene

a-Caryophyllene

SQTsul

pMCMC
(Intercept)
seasonWET

pMCMC
(Intercept)
seasonWET

pMCMC
(Intercept)
seasonWET

pMCMC
(Intercept)

seasonWET

pMCMC
(Intercept)

seasonWET

pMCMC
(Intercept)

seasonWET

pPMCMC

(Intercept)

01 -03 0.4 1700 0.6

0.1 -0.3 0.04 1700 0.2

post.mean 1-95% CI u-95% ClI

eff.samp

0.1 -0.2 0.5 1700 0.3

-0.3 -0.5 -0.1 2067
post.mean 1-95% CI u-95% CI

0.1 -01 03 1700 0.3
-0.2 -04 -001 1700 0.1
post.mean 1-95% CI u-95% ClI

0.04 -01 0.2 1700 0.6
-01 -03 01 1333 0.2

postmean  1-95% ClI u-95% ClI

0.002 -04 03 1700 1

-02 -03 0.01 1517 0.05*

post.mean 1-95% CI u-95% ClI

-0.001 -0.3 0.3 1700 1
-0.2 -04 -0.01 1806 0.02*
post.mean 1-95% CI u-95% ClI

0.2 -0.1 0.5 1700

0.001 **

eff.samp

eff.samp

eff.samp

eff.samp

eff.samp

0.2

0.02

0.01

0.01

0.01

0.01

0.05

0.02

0.0004

0.0003

0.01

0.01

0.01

0.1

0.001

0.001

0.01

0.003

0.06

0.2

0.03

0.03

0.1

0.1

0.2

0.4

0.04

0.04

0.1

0.1

0.3
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Isoprene

Total Monoterpenes

Total Sesquiterpenes

seasonWET -0.5 -0.6 -0.3 1700 <6e-04 ***

post.mean 1-95% CI u-95% CI  eff.samp

pMCMC
(Intercept) -0.03 -0.3 0.3 1700 0.8
seasonWET 0.1 -0.04 03 1700 0.2

post.mean  1-95% ClI u-95% CI eff.samp

pMCMC
(Intercept) 0.3 0.001 0.5 1700 0.1
seasonWET -05 -0.7 -04 1700 <Be-04 ***

postmean 1-95% CI  u-95% CI  eff.samp
pMCMC

(Intercept) 0.1 -0.2 0.4 1700 0.6

seasonWET -0.3 -0.5 -0.2 1574 <6e-04 ***

0.04

0.07

0.03

0.003

0.01

0.01

0.001

0.04

0.002

0.06

0.2

0.1

0.1

0.3

0.1
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Table S7. Number of mature trees sampled per species at each topographic level and weather station. Phenology indicates

if trees are evergreen or deciduous in each season. For more information, see Verryckt et al. (2022).

Species

Aniba rosaeodora
Brosimum guianense
Carapa surinamensis
Catostemma fragrans

Chaetocarpus schomburgkianus

Chimarrhis turbinata
Chrysophyllum argenteum
Chrysophyllum pomiferum
Couepia caryophylloides
Dicorynia guianensis
Dipteryx odorata
Drypetes variabilis
Eperua falcata

Eperua grandiflora
Eschweilera sp
Eschweilera coriacea
Eschweilera decolorans
Eschweilera sagotiana
Eugenia NA
Ferdinandusa paraensis
Gustavia hexapetala
Hebepetalum humiriifolium
Inga nouraguensis
Licania alba
Moronobea coccinea
Paloue guianensis
Pouteria eugeniifolia
Pouteria retinervis
Pradosia ptychandra
Protium decandrum
Sextonia rubra
Symphonia globulifera
Talisia praealta
Tetragastris panamensis
Vochysia sabatieri
Vouacapoua americana

Topographic level

Slope
Bottom
Bottom
Bottom
Top
Top
Top
Top
Slope
Bottom
Bottom
Bottom
Bottom
Slope
Bottom
Top
Bottom
Slope
Top
Slope
Bottom
Slope
Slope
Bottom
Top
Bottom
Top
Slope
Bottom
Slope
Top
Bottom
Top
Slope
Top
Bottom

Number of trees sampled

per species
Season
Dry Wet
1 1
1 1
1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1
1 1
3 4
2 1
1 1
1 1
1 1
1
1 1
1 1
1 1
1
1 1
2 3
1 1
1 1
1
1 1
1 1
1 1
1 1
1
1 1
1
1
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Table S8. List of species sampled in this work and sampled by other authors previously. We want to show that in the
present work there are tree species not previously sampled for BVOCs. In the case of Jardine et al. 2020 only gives

information about gender.

Species Present Courtoiset Courtoiset Jardine et
work al. 2009 al. 2016 al. 2020
Aniba rosaeodora ?

Brosimum guianense
Carapa surinamensis
Catostemma fragrans

Chaetocarpus
schomburgkianus
Chimarrhis turbinata

Chrysophyllum argenteum
Chrysophyllum pomiferum
Couepia caryophylloides
Dicorynia guianensis
Dipteryx odorata

Drypetes variabilis

Eperua falcata

Eperua grandiflora
Eschweilera coriacea
Eschweilera decolorans
Eschweilera sagotiana
Eschweilera sp

Eugenia culcullata ®
Ferdinandusa paraensis
Gustavia hexapetala
Hebepetalum humiriifolium
Inga nouraguensis
Licania alba

Moronobea coccinea
Paloue guianensis
Pouteria eugeniifolia
Pouteria retinervis
Pradosia ptychandra
Protium decandrum
Sextonia rubra
Symphonia globulifera
Talisia praealta
Tetragastris panamensis ©
Vochysia sabatieri
Vouacapoua americana

All names verified in Steege et al. 2019, except for a: which appears as Aniba rosiodora; b: Eugenia cucullata; c: Does not
appear in the list.

X X X X X

X X X X

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
X X X X

X X
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