
HAL Id: hal-04904648
https://hal.inrae.fr/hal-04904648v1

Submitted on 21 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Satellite-based mapping of canopy fuels at the
pan-European scale

Erico Kutchartt, José Ramón González-Olabarria, Antoni Trasobares, Núria
Aquilué, Juan Guerra-Hernández, Leónia Nunes, Ana Catarina Sequeira,

Brigite Botequim, Marius Hauglin, Palaiologos Palaiologou, et al.

To cite this version:
Erico Kutchartt, José Ramón González-Olabarria, Antoni Trasobares, Núria Aquilué, Juan Guerra-
Hernández, et al.. Satellite-based mapping of canopy fuels at the pan-European scale. Geo-spatial
Information Science, 2024, pp.1-29. �10.1080/10095020.2024.2429376�. �hal-04904648�

https://hal.inrae.fr/hal-04904648v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Geo-spatial Information Science

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/tgsi20

Satellite-based mapping of canopy fuels at the
pan-European scale

Erico Kutchartt, José Ramón González-Olabarria, Antoni Trasobares, Núria
Aquilué, Juan Guerra-Hernández, Leónia Nunes, Ana Catarina Sequeira,
Brigite Botequim, Marius Hauglin, Palaiologos Palaiologou, Adrian Cardil,
Martino Rogai, Vassil Vassilev, Francois Pimont, Olivier Martin-Ducup &
Francesco Pirotti

To cite this article: Erico Kutchartt, José Ramón González-Olabarria, Antoni Trasobares, Núria
Aquilué, Juan Guerra-Hernández, Leónia Nunes, Ana Catarina Sequeira, Brigite Botequim,
Marius Hauglin, Palaiologos Palaiologou, Adrian Cardil, Martino Rogai, Vassil Vassilev,
Francois Pimont, Olivier Martin-Ducup & Francesco Pirotti (20 Dec 2024): Satellite-based
mapping of canopy fuels at the pan-European scale, Geo-spatial Information Science, DOI:
10.1080/10095020.2024.2429376

To link to this article:  https://doi.org/10.1080/10095020.2024.2429376

© 2024 Wuhan University. Published by
Informa UK Limited, trading as Taylor &
Francis Group.

Published online: 20 Dec 2024.

Submit your article to this journal 

Article views: 657

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20

https://www.tandfonline.com/journals/tgsi20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10095020.2024.2429376
https://doi.org/10.1080/10095020.2024.2429376
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tgsi20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2024.2429376?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10095020.2024.2429376?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2024.2429376&domain=pdf&date_stamp=20%20Dec%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2024.2429376&domain=pdf&date_stamp=20%20Dec%202024
https://www.tandfonline.com/action/journalInformation?journalCode=tgsi20


Satellite-based mapping of canopy fuels at the pan-European scale
Erico Kutchartt a,b, José Ramón González-Olabarria a,c, Antoni Trasobares a, Núria Aquilué a,c, 
Juan Guerra-Hernández d, Leónia Nunes e, Ana Catarina Sequeira e, Brigite Botequim f, 
Marius Hauglin g, Palaiologos Palaiologou h, Adrian Cardil a,i, Martino Rogai j, Vassil Vassilev k, 
Francois Pimont l, Olivier Martin-Ducup l and Francesco Pirotti b,m

aForest Science and Technology Centre of Catalonia (CTFC), Carretera de Sant Llorenç de Morunys, Solsona, Spain; bDepartment of Land, 
Environment, Agriculture and Forestry (TESAF), University of Padova, Legnaro (PD), Italy; cJoint Research Unit CTFC - AGROTECNIO, 
Carretera de Sant Llorenç de Morunys, Solsona, Spain; dForest Research Centre, Associate Laboratory TERRA, School of Agriculture (ISA), 
University of Lisbon, Lisbon, Portugal; eCentre for Applied Ecology “Professor Baeta Neves” (CEABN), InBIO, School of Agriculture (ISA), 
University of Lisbon, Lisbon, Portugal; fForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 
Vila Real, Portugal; gDivision of Forestry and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), As, Norway; 
hDepartment of Forestry and Natural Environment Management, Agricultural University of Athens (AUA), Karpenisi, Greece; iTechnosylva, 
Parque Tecnológico de León, León, Spain; jConsiglio Nazionale delle Ricerche (CNR), Istituto per la BioEconomia, Sesto Fiorentino (FI), Italy; 
kSpace Research and Technology Institute, Bulgarian Academy of Sciences, Sofia, Bulgaria; lEcologie des Forêts Méditerranéennes (URFM), 
INRAE, Avignon, France; mInterdepartmental Research Center of Geomatics (CIRGEO), University of Padova, Legnaro (PD), Italy

ABSTRACT
Canopy base height (CBH) and canopy bulk density (CBD) are forest canopy fuel parameters 
that are key for modeling the behavior of crown wildfires. In this work, we map them at a pan- 
European scale for the year 2020, producing a new dataset consisting of two raster layers 
containing both variables at an approximate resolution of 100 m. Spatial data from Earth 
observation missions and derived down-stream products were retrieved and processed using 
artificial intelligence to first estimate a map of aboveground biomass (AGB). Allometric models 
were then used to estimate the spatial distribution of CBH using the canopy height values as 
explanatory variables and CBD using AGB values. Ad-hoc allometric models were defined for 
this study. Data provided by FIRE-RES project partners and acquired through field inventories 
was used for validating the final products using an independent dataset of 804 ground-truth 
sample plots. The CBH and CBD raster maps have, respectively, the following accuracy regard-
ing specific metrics reported from the modeling procedures: (i) coefficient of correlation (R) of 
0.445 and 0.330 (p-value < 0.001); (ii) root mean square of error (RMSE) of 3.9 m and 0.099  
kg m−3; and (iii) a mean absolute percentage error (MAPE) of 61% and 76%. Regarding CBD, the 
accuracy metrics improved in closed canopies (canopy cover > 80%) to R = 0.457, RMSE = 0.085, 
and MAPE = 59%. In short, we believe that the degree of accuracy is reasonable in the resulting 
maps, producing CBH and CBD datasets at the pan-European scale to support fire mitigation 
and crown fire simulations.
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1. Introduction

There are more than two million wildfire events 
recorded every year worldwide, causing substantial eco-
nomic, social, and environmental impacts (Bowman 
et al. 2017; Kalogiannidis et al. 2023; Tedim et al.  
2018). In Europe, around 8,000 fires have occurred 
during 2022, which have affected 837,212 ha, including 
only the countries as part of the EU-27 (San-Miguel- 
Ayanz et al. 2023). The dangers related to wildfires are 
highly influenced by the spatial distribution of biophy-
sical variables such as weather conditions, fuel types 
(vegetation composition and structure), and topo-
graphic features, which determine the spatial patterns 
of fire spread and intensity, while influencing along 
with human-related drivers, when, where and if new 
ignitions can turn into large-scale events (Chuvieco 

et al. 2023; Ganteaume et al. 2013; García-Llamas 
et al. 2019; Ruffault and Mouillot 2017). In addition, 
higher temperatures, intense drought periods, and 
changing precipitation patterns, based on climate pro-
jections (Jones et al. 2022), could facilitate the frequency 
of fire ignitions and extreme fire spread rate and inten-
sity in the near future (Lozano et al. 2016; Molina- 
Terrén et al. 2019; San-Miguel-Ayanz, Moreno, and 
Camia 2013; Turco et al. 2018). Therefore, it is more 
evident than ever that suppression will frequently col-
lapse under the manifestation of the nature of wildfires 
occurring in overstocked areas under the influence of 
climate change, alternating the fire regime by 
modifying fire size, frequency and burn severity 
(Grüning, Seidl, and Senf 2023), causing not only severe 
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environmental damages and economic losses but also 
a high number of fatalities (Cardil, Delegu, and Molina- 
Terrén 2017; Diakakis, Xanthopoulos, and Gregos  
2016; Molina-Terrén et al. 2019).

It is widely assumed that active canopy fires repre-
sent a special challenge for foresters and fire managers, 
in terms of fire behavior such as rate of spread, flame 
length, burn probability and fireline intensity 
(Alexander and Cruz 2011; Finney and Grumstrup  
2023; Monedero, Ramirez, and Cardil 2019). 
A prerequisite for active canopy fire spread is a low 
canopy base height that will allow fire transition from 
the surface to the tree crown, and high canopy fine fuel 
availability, coupled with dense canopy cover, to allow 
the sustaining of flames and spreading through the 
canopy layer. Once a fire reaches the tree canopies 
and spreads through them, a faster spread and 
increased energy release rate are expected because it 
is strongly related to the fuel structure (Or et al. 2023; 
Rothermel 1983). Such behavior greatly affects the 
efficiency of suppression actions, often exceeding the 
conditions considered within the firefighter safety lim-
its (Tedim et al. 2018). Even modeling the initiation 
and spread of canopy fires is still considered a difficult 
task (Rodríguez et al. 2017).

Consequently, the structure and amount of fuel in 
tree canopies play a major role in defining how fire 
will behave if it transitions to the canopy (Scott and 
Reinhardt 2001), assessing wildfire hazards, potential 
fire severity, crown flame length and rate of spread 
(Marino et al. 2022). The availability of continuous 
and large-scale information on the spatial distribution 
of fuels (Rollins 2009), has shown its practicality in 
improving decision-making when dealing with fire 
suppression and fuel management problems (Moran, 
Kane, and Seielstad 2020). The necessity of an inte-
grated fire related European strategy is pushing for the 
production of European fuel maps (Aragoneses et al.  
2023), describing both the surface (understory) and 
overstory vegetation, that will solve the issue of a lack 
of harmonized forest geospatial data that will cover 
most of the European continent and all EU countries 
(Pucher, Neumann, and Hasenauer 2022). 
Consequently, canopy fuel maps need to be standar-
dized at pan-European level and produced at an 
operational scale, considering that most of the pre-
vious fuel maps were produced at coarse scales (1 km). 
Thus, the current coarse maps do not fulfil the needs 
of EU countries for high resolution canopy fuel maps 
for running forest fire simulation outputs. Therefore, 
an innovative method using satellite data combining 
allometric equations can be an alternative to countries 
with no information on canopy fuels.

Canopy fuels are described by two key parameters, 
that is, the canopy base height in meters (CBH) and 
the canopy bulk density in kilograms per cubic meter 
(CBD). The CBH expresses the vertical distance along 
the stem from the surface to the continuous live crown 
fuel, considering the lowest branch of the tree crown 
(Finney 2004; Maltamo et al. 2020; Stefanidou et al.  
2020), while the CBD describes the density between 
foliage biomass and canopy volume (Ruiz-González 
and Álvarez-González 2011; Scott and Reinhardt  
2001; Wang et al. 2022) across the whole volume of 
the stand, not being segmented by the tree canopies, 
thus covering the whole plot area. In addition, canopy 
cover (CC), expressed in percentage, and stand height 
(SH) are the other two variables that are important to 
describe and understand the vertical arrangement and 
horizontal continuity of canopy fuel (Rollins 2009). 
All four variables are required in most fire behavior 
modeling algorithms, representing the characteristics 
of canopy fuel (Cruz, Alexander, and Wakimoto 2003; 
Yurtgan, Baysal, and Küçük 2022). CBH and CBD can 
be used to evaluate crown fire hazards and simulate 
fire spread and behavior with simulators such as 
FARSITE (Finney 2004), FlamMap (Finney 2006), 
FSim (Finney et al. 2011), Wildfire Analyst 
(Monedero, Ramirez, and Cardil 2019), or 
Cell2Fire_SB (González-Olabarria et al. 2023), just to 
mention a few of them.

Mapping the quantity, distribution, and character-
istics of canopy fuels can be carried out with the 
support of remote sensing applications. Different sen-
sors, passive and active, have been applied to deter-
mine canopy fuels, such as Sentinel-2A (Arellano- 
Pérez et al. 2018), SAR imagery (Saatchi et al. 2007), 
active sensors that uses a waveform instrument, such 
as the global ecosystem dynamics investigation 
(GEDI) from NASA (Aragoneses et al. 2024; Hoffrén 
et al. 2023), and light detection and ranging technol-
ogy (LiDAR), in particular from airborne laser scan-
ning (ALS) data (Andersen, McGaughey, and 
Reutebuch 2005; Chamberlain, Sánchez Meador, and 
Thode 2021; Erdody and Moskal 2010), being the most 
accurate and efficient measurement over extensive 
areas. Nonetheless, variables such as CBH and CBD 
can be estimated by ALS or from unmanned aerial 
vehicle close-range sensing technologies at a more 
local scale. The pixel size of the CBH and CBD rasters 
from LiDAR data can be available at high spatial 
resolution, between 10 and 30 m (Engelstad et al.  
2019; Moran, Kane, and Seielstad 2020; Shin et al.  
2018). Integration of LiDAR data and field measure-
ments to run fire spread simulations in Spain has been 
successfully achieved by González-Olabarria et al. 

2 E. KUTCHARTT ET AL.



(2012) at the local scale and by Krsnik et al. (2020) at 
the regional scale. Nevertheless, this approach is not 
suitable to cover large areas on a continental or global 
scale. Remote sensing products at the European or 
global scale, such as the tree species map (Bonannella 
et al. 2022), the aboveground biomass (AGB) map 
(Pirotti et al. 2023b), the canopy cover (Hansen et al.  
2013), but especially the canopy height model (Lang 
et al. 2023; Potapov et al. 2021), are crucial inputs to 
develop CBH and CBD variables with an accurate and 
replicable procedure.

The spatial distribution of CBH and CBD is here 
derived from the latest open source, uniformized, and 
available data, which guarantees the accessibility to 
researchers and fire management-oriented technicians 
for two of the most relevant and challenging to spa-
tially quantify variables associated with crown fire 
hazards. Such applications have become paramount 
across Europe in the current context of extreme cli-
matic events e.g. summer heatwaves and prolonged 
droughts (Suarez-Gutierrez, Müller, and Marotzke  
2023), leading to the occurrence of large and severe 
wildfires not only in fire-prone regions such as the 
Mediterranean countries but also in Central and 
Northern Europe (El Garroussi et al. 2024; 
Kudláčková et al. 2023). Integrating a common data 
source for CBH and CBD, as the ones provided in this 
work, allows for co-learning between European fire 
management agencies and researchers, making it pos-
sible to design and adopt strategic fire prevention 
plans with similar specifications across Europe, and 
expanding the use of fire behavior models on coun-
tries with still little fire activity and fuel modeling 
experience.

Considering the above, we targeted applying a cost- 
effective methodology to produce CBH and CBD pro-
ducts at a fine spatial scale, harmonizing them at the 
pan-European level, and combining ground acquired 
forest biometric data with remote sensing to improve 
the accuracy of the derived datasets.

The current work builds on the use of a 2020 bio-
mass map, a tree species map, and the development of 
an allometric relationship to determine CBH on the 
one hand and extract the foliage biomass to quantify 
CBD on the other hand at 100 m spatial resolution. 
The specific steps followed, as described in the next 
sections of this paper, were: (i) mapping the CBH as 
a function of a global canopy height model, tree spe-
cies probabilistic model, and through allometric rela-
tionship between total stand height and the height of 
live branch insertion using allometric models based on 
national and local data for specific tree species; 
(ii) extracting the foliage biomass from previous pan- 

European models that estimated the AGB by tree 
components (e.g., stem, branches, foliage, etc.) based 
on the diameter at breast height (DBH) using the 
specific equation to predict foliage, and therefore, to 
compute the CBD model; and (iii) estimating error 
metrics from local studies, where the CBH and CBD 
were computed with LiDAR data and field measure-
ment from four countries (Portugal, Greece, Italy, and 
Norway) with a higher spatial resolution.

2. Materials

2.1. Study area

The study area covered all the pan-European terri-
tory, where the canopy fuel maps were produced. 
This area is notably varied as it goes from 
Mediterranean to Nordic climate. The vegetation 
follows the climate variability, and we see 
Mediterranean ecosystems with very mixed shrub 
and xerophilic species to single-species forest stands 
with species used to colder climates. The validation 
process was carried out through four countries that 
represent such variability and that had available for-
est inventory plots regarding CBH and CBD: 
Portugal, Greece, Italy, and Norway. The vegetation 
in Portugal was mostly occupied by resin pine (Pinus 
pinaster), eucalyptus (Eucalyptus spp.), stone pine 
(Pinus pinea), cork oak (Quercus suber), oaks 
(Quercus spp.) and other broadleaves. In Greece, the 
vegetation was mainly composed of Olea europaea 
var. Sylvestris, Pistacia lentiscus, Erica manipuliflora, 
and Myrtus communis, while in wetter locations we 
found Quercus coccifera, Rosa sempervirens, Smilax 
aspera, and Rubia peregrine. On slopes and southern 
aspects, we found plant communities of Erica manip-
uliflora and Erica arborea, while the relatively better 
ecological locations were dominated by Arbutus 
unedo, Calycotome villosa, and Spartum junceum, 
mostly mixed with sparse Pinus halepensis Mill. or 
Pinus pinea. The wetter locations and northern 
aspects were dominated by Quercus ilex, Fraxinus 
ornus, Phillyrea latifolia, and Quercus pubescens. In 
Italy, due to the country’s latitude gradient and 
extension over the Mediterranean, we see 
a situation that is similar to Greece and Portugal in 
the south, up to a tree species composition similar to 
Norway in the north. In Norway, the plots were 
located in boreal forests, being dominated mostly by 
species such as Norway spruce (Picea abies) and Scots 
pine (Pinus sylvestris), with the presence of some 
deciduous trees, typically by Birch (Betula pendula).
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2.2. Input rasters at pan European scale

To estimate CBH and CBD in raster format, we used as 
inputs several global rasters reprojected to the World 
Geodetic System WGS84 geographic coordinate refer-
ence grid with ~ 9×10−4 degree resolution, commonly 
referred to as ~100 m spatial resolution maps. Figure 1 
depicts the input layers and the intermediate and final 
maps, Table 1 also lists in a table the main input data 
with source, spatial resolution and date. The AGB map, 
a necessary precursor to derive CBD, was estimated in 
a previous work by the authors (see Pirotti et al. 2023b) 
and is detailed in the methods section.

As described in the next sections, CBH and CBD 
were derived from existing earth observation (EO) 

products. We used a canopy height map (CH) from 
Lang et al. (2023) that was based on deep learning with 
a convolutional neural network (CNN) using descrip-
tors extracted from ESA’s Sentinel-2 imagery. 
Training for this map was achieved by using vertical 
vegetation profiles from the GEDI data. GEDI is 
a photon-counting LiDAR instrument that collects 
data from April 2019 (Dubayah et al. 2020; Potapov 
et al. 2021), providing a high degree of accurate infor-
mation depending on terrain morphology (Kutchartt, 
Pedron, and Pirotti 2022). The CH raster was provided 
at global scale at a 10 m spatial resolution for the year 
2020. A raster of canopy cover (CC) from the work of 
Hansen et al. (2013) was also used, which is updated 

Figure 1. Workflow for combining multiple imagery sources to spatially quantify canopy base height (CBH) and canopy bulk 
density (CBD) using earth observation, AI, and allometric relationships.
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yearly. This map explains a significant degree of the 
variance in stand characteristics, both for the estima-
tion of the AGB precursor map and for the final CBD 
map. CC refers to the portion of the ground area 
covered by the vertical projection of the tree crowns. 
The canopy cover measurement is expressed in per-
centages with integer values from 0 to 100. The origi-
nal resolution of the canopy cover layer was 30 m and 
was resampled to 100 m. The percentage of the cell 
that is covered by high vegetation was determined by 
consensus, with updates based on annual cover loss 
and gain maps also provided by Hansen et al. (2013). 
The satellite data described in Figure 1 and Table 1 
were collected using the Google Earth Engine frame-
work (Gorelick et al. 2017) that is freely available for 
scientific research. The procedure workflow was car-
ried out in the R environment on a cloud computing 
cluster with 16 available cores for processing. Table 1 
below lists the reference layers that were used from 
earth observation products.

3. Methodology

As mentioned in the introduction, the aboveground bio-
mass 2020 map was created using a stacked ensemble of 
machine learners (Pirotti et al. 2023b) by combining 
multiple imagery sources such as canopy height, canopy 
cover, active sensors (radar backscatter median annual 
values from Sentinel-1 and ALOS-2), optical sensors 
(annual composite of Enhanced Vegetation Index (EVI) 
and Normalized Difference Vegetation Index (NDVI) 
obtained from Landsat-8), land cover maps, a digital 

elevation model (DEM), and 19 bioclimatic variables 
from Fick and Hijmans (2017). All input layers added 
up to 49 covariates that were used for training an artificial 
intelligence (AI) framework consisting of a stacked 
ensemble of machine learning algorithms. The AI frame-
work used is an H2O cluster (2022) accessed via the 
R environment. The training and testing data used for 
this approach comes from an existing 2018 AGB map 
(Santoro and Cartus 2021; Santoro et al. 2022). The 
distribution of AGB values is unbalanced with higher 
frequencies in lower values. To address this issue the 
training and testing data were sampled using stratified 
sampling after dividing possible AGB values in 7 strata, 
each with a range of 50 Mg ha−1 over the overall range 
from less than 50 Mg ha−1 to 300 Mg ha−1 or above.

The training dataset was used to train a stacked 
ensemble of machine learners in an AI framework 
over subdivisions of Europe. Europe was divided in 
tiles to limit the variability and make sure that the 
final models are more regional-oriented. Testing and 
training data were independent. Prediction of the 
test dataset resulted in an overall RMSE of 32.4 Mg 
ha−1. The full details are provided in the work by 
authors in (Pirotti et al. 2023b). This biomass map 
was used as key input for the canopy bulk density 
map as can be seen in the pipeline depicted in 
Figure 1.

3.1. Allometric models

Allometric equations were used to estimate and map 
both canopy fuel maps (CBH and CBD). Inputs for 

Table 1. Spatial data input – see also Figure 1. Resolution is the original pixel size, date is the date of validity.

Input data
Original resolution*  
and year of validity Reference

World Land Cover (LC)* 10 m 
2018

Zanaga et al. (2021)

DEM ALOS3D* 30 m 
2020

Tadono et al. (2016)

Optical Sentinel-2* 
Enhanced Vegetation Index (EVI) * 
Normalized Vegetation Index (NDVI)*

10 m 
2020

Main et al. (2011)

RADAR Sentinel-1 VV+VH pol.* 10 m 
2020

Pirotti et al. (2023a)

RADAR ALOS HH+HV pol.* 25 m 
2020

Shimada et al. (2014)

Climatic variables* 1000 m 
1990–2000

Hijmans et al. (2005)

Canopy Height (CH) 10 m 
2020

Lang et al. (2023)

Canopy Cover (CC) 30 m 
2000 (updated to 2020 with loss/gain mask)

Hansen et al. (2013)

Tree Species (sp) 30 m 
2000–2020

Bonannella et al. (2022)

*These layers were used for the AGB map for 2020 a precursor of the CBD map as described in (Pirotti et al. 2023b), but not for the CBH 
and CBD estimation.
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calculating CBH and CBD include tree heights, 
canopy volume, and the foliage fraction of the AGB 
(Figure 1). As mentioned, tree height was available 
from the work by Lang et al. (2023), while canopy 
volume and foliage fraction were estimated as pro-
ducts through allometric relations. These relations 
are species-dependent, in the sense that a different 
equation must be solved and applied for each tree 
species considered (see Figures S1 and S2 and Tables 
S1 and S2 in the appendix). To assess which equation 
to use at each cell, a 30 m resolution European tree 
species map was assigned and used just to compute the 
canopy fuels (Bonannella et al. 2022). This map repre-
sents the probability of the presence of the following 
16 tree species: Abies alba Mill., Castanea sativa Mill., 
Corylus avellana L., Fagus sylvatica L., Olea europea L., 
Picea abies L.H. Karst., Pinus halepensis Mill., Pinus 
nigra J.F Arnold, Pinus pinea L., Pinus sylvestris L., 
Prunus avium L., Quercus cerris L., Quercus ilex L., 
Quercus robur L., Quercus suber L., and Salix caprea 
L. This map provided the realized distribution of these 
16 tree species using 300 variables as independent 
covariates to feed an AI framework. The training was 
done using more than 2.5 million trees located in 
Europe and obtained from different open-access data-
bases. The Global Biodiversity Information Facility 
(GBIF) and data from national forest inventories 
from multiple EU member states published by 
Mauri, Strona, and San-Miguel-Ayanz (2017) were 
used.

Species-specific allometric equations were devel-
oped to estimate two specific variables: the CBH and 
the foliage fraction that is necessary for the CBD map. 
The rationale is that CBH depends on the silvicultural 
management, age, and biosocial status of the tree at 
a specific stand density (Maltamo et al. 2018). Foliage 
fraction is also correlated with the above-mentioned 
factors, with tree species explaining a lot of the var-
iance in the models as well, depending on the amount 
of overlapping between crowns in the vertical canopy 
profile, based on tree height and crown ratios (Ex et al.  
2016). Mapping microclimatic and local ecological 
factors are also partly correlated to foliage fraction, 
but mapping such values at the pan-European scale is 
out of the scope of this work. It would add unnecessary 
complexity and the foreseen improvement of the 
model is marginal. The model thus focuses on using 
solely tree species, which explain a large part of the 
variance of foliage fraction values.

The species maps provide a value of probability for 
each species to be present at a certain node. Naturally, 
the probabilities could add to values above 1, as any 

area can potentially have a high probability of hosting 
more than one tree species. The allometric models 
were therefore calculated for all species, and then the 
occurrence probability was used as a weight after 
normalization – i.e., the probability of all species add-
ing up to 1 for each cell.

3.2. Canopy base height (CBH) mapping

Canopy base height, also known as branch insertion 
height, is the vertical distance from the ground to the 
first branch of the tree (Figure 1 bottom sketch). To 
compute the CBH map, species-dependent allometric 
models were fitted with observed ground data of tree 
height and CBH across Europe for 16 tree species, as in 
equation 1: 

where CH is the canopy height, sp is the raster dataset 
depicting the tree species probability as described in 
the previous section, and ɛ is the error of the model. 
Species-specific relationships between the tree height 
and the branch insertion height were obtained 
through fitting models using more than 85,000 inven-
toried trees. These trees were distributed among dif-
ferent countries, at national scales or from local 
studies conducted in Spain, Portugal, Italy, Norway, 
and Germany (Alberdi et al. 2017; Mihajlovski et al.  
2023; Schindler et al. 2023). The least trimmed squares 
robust (LTS) regression algorithm was used for fitting 
the linear model. This specific procedure limited the 
impact of some outliers and other deviations from the 
standard linear regression model, minimizing the sum 
of squared residuals compared to classical least 
squares estimators (Pison, Van Aelst, and Willems  
2002; Rousseeuw 1984). The LTS regression method 
minimizes the sum of the smallest squared residuals 
and is defined as: 

where r2
i½ �(β) represents the square of the residual of the 

ith point, i.e., yi-βTXi; h is the cardinality of the points 
used, usually h = n/2; in other words half of the 
observations that have the smallest residual are used. 
This is of course an iterative process.

Table S1 in the appendix shows that the number 
of trees used for fitting the species-specific models 
to predict the branch insertion height ranged from 
224 to > 20,000, reporting the error metrics through 
a k-fold cross-validation method such as the 
R-squared, the root mean square error (RMSE), 
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and the mean absolute percentage error (MAPE), as 
shown by Sileshi (2014) and Kutchartt et al. (2021).

3.3. Canopy bulk density (CBD) mapping

Canopy bulk density is defined as “the mass of available 
canopy fuel per canopy volume unit” (Van Wagner  
1977), commonly expressed in kilograms per cubic 
meter. The canopy volume (CV) is defined using the 
difference between canopy height and CBH (Figure 1 
bottom sketch). In this work, we defined bulk biomass 
as the thin biomass (AGBthin), identified as the fraction 
of the AGB consisting of leaves. We can therefore map 
each cell with the following generic formulas: 

where AGBthin is the thin biomass (Mg ha−1) which is 
a fraction that depends on the overall AGB, CV is the 
canopy volume, CH is canopy height (m), DBH is the 
diameter measured at breast height (1.3 m from the 
ground) and by the species presence (sp) and through 
the error (ɛ) of the model used.

So, the overall CBD is a function of all the above 
and can be expressed as: 

The AGB was allocated by tree components, 
extracting the foliage biomass according to the 
equations provided by Forrester et al. (2017b) at 
the pan-European level. The models selected used 
power law functions, based only on DBH as an 
explanatory variable (see all the equations used in 
Table S3 in the appendix). The fraction of foliage 
biomass was divided by the canopy volume using 
a mattress figure based on the CBH layer. It means 
that all the full area of the pixel was used, and it 
was not segmented by individual tree crowns. 
Therefore, the first step was to define the volume 
of the canopy in each cell in the grid, then to 
obtain the fraction according to the foliage mass, 
which decreases as the trees increase in diameter. 
We combined the equations for foliage biomass 
and total aboveground biomass to get the fraction 
allocated by foliage. The results of the percentages 
and how they change depending on DBH are 

shown in Table 2. However, not all the tree species 
were covered by species-specific allometric equa-
tions. Therefore, the missing species were covered 
by general or multi-species models, considering the 
leaf type by broadleaves and conifers or by simi-
larity of species. Consequently, for species such as 
C. avellana, O. europaea, and S. caprea, the general 
broadleaves model was applied, while A. alba was 
replaced by the general conifers model. On the 
other hand, P. halepensis was replaced by P. abies, 
P. pinea by P. sylvestris, and the two oaks missing 
(Q. cerris and Q. suber) were repealed by the Q. 
robur model. These models were crucial to extract-
ing the foliage mass from the total AGB.

Diameters at breast height, which are necessary 
for the allometric equations provided by Forrester 
et al. (2017b), were estimated using allometric 
equations that allow for the estimation of DBH 
from tree heights. The independent variable is the 
canopy cover height, which is available as an Earth 
observation product with a pixel size of 10 m (Lang 
et al. 2023). An inverted allometric relationship 
(equation 3) was obtained using an open database 
from Aussenac et al. (2023), which included the 
DBH, height, and tree species for 42 million trees 
distributed in three European landscapes (France, 
Poland, and Slovenia). In addition, data from the 
Italian National Forest Inventory (Gasparini et al.  
2022) was integrated into these models (see Table 
S2 in the appendix). Therefore, these models 
allowed us to estimate the DBH as a function of 
the tree heights and, thus, to predict the foliage 
mass and compute the CBD. In short, both for 
the estimation of the diameter based on the height 
as an independent variable and the estimation of 
the foliage biomass based on the DBH, multiplica-
tive models, also known as a power law equation, 
were used: 

where y is DBH, the response variable, β0 and 
β1are the model parameters estimated by ordinary 
least squares (OLS), and X is the independent vari-
able, the tree height.

3.4. Accuracy metrics

All models from the allometric equations and the final 
maps were validated through accuracy metrics. The 
equations and validation metrics considered in this 
work were the following: 
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where n is the number of values used to calculate the 
accuracy, yi is the observed value, ŷi is the predicted 
value, and �yi is the mean value. Mean absolute percen-
tage error (MAPE*) is slightly modified from the 
common MAPE formula in that in the common for-
mula the reference is the observed value, which in our 
case can (and often is) equal to zero in the case of 
CBH, as it is common to have canopies reaching the 
ground. The MAPE will not provide reasonable values 
when the denominator is zero or very close to zero. 
We therefore addressed this issue by using the arith-
metic mean of observed and predicted values in the 
denominator, as in Miller (2011).

3.5. Uncertainty estimation

Uncertainty quantification via the propagation of 
known errors is of primary importance for making 
data-driven decisions. Estimating corresponding 
uncertainties for the mapped canopy fuels provides 
corresponding uncertainty maps with expected devia-
tions from the estimated values. This is especially 
important in mapping variables that are calculated 
using multiple inputs, each with its own intrinsic 
error distribution. In this work, we used two different 
approaches for the two datasets. CBH estimation is 
a mathematically simpler composite function, and 
uncertainty can be calculated using the calculus- 
based chain-rule: 

The uncertainty of CBH (∆CBH) estimated for the ith 
species includes the uncertainty of the species map 
(Ei), the uncertainty of the model for the ith species 
(Ei) expressed with its RMSE, and the uncertainty of 
the canopy height map (∆h) provided by Lang et al. 
(2023). We assume no correlations and independence 
of variables.

Regarding CBD, the number of functions 
embedded in the composite function makes the calcu-
lation of error propagation more complex, so we 
adopted Monte-Carlo (MC) simulation. Also, in this 
case, we assume no correlations between variables, 
independence of variables, and normally distributed 
error. The Monte Carlo procedure consists of iterating 
over a random estimate of the expected error using the 
known accuracy metrics. In this work, we used 380 
iterations. Notably, MC simulations use a very high 
number of iterations, from one to two orders of mag-
nitude, but due to the very large data volume for each 
raster layer, that is, 3.20 × 109 pixels, those numbers 
were not feasible with the computing infrastructure 
that was used in this work. We therefore based the 
number of iterations on the following relationship 
(Hauck and Anderson 1984) that relates the number 
of iterations with the required convergence. Let E1, E2, 
. . . . En be the errors that are independent and follow 
an identically distributed random distribution with 
a finite mean µ and variance σ2. Let � ε be the average 
of the sample and s the standard deviation of the 
sample. The Central Limit Theorem states that the 
mean of a sample is normally distributed regardless 
of the type of distribution of the population from 
which the samples were taken, if the population is 
significantly larger than the number of samples. The 
confidence interval (CI) that is set as the target can be 
calculated with the well-known formula: 

Table 2. Foliage biomass fraction (%) of the 16 tree species according to different diameter at breast height (DBH) values in cm.
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where n is the number of samples, � ε and s is the mean 
and standard deviation of the samples. The z statistic is 
the critical z-score value when using a specific con-
fidence/significance level; it is approximately −1.96 
and + 1.96 in the case of a 95% confidence level (alpha  
= 0.05 significance level). Equation (10) is derived 
from the confidence interval’s probabilistic form and 
can be rearranged by substituting z in terms of 
a specific level of precision φ. Then we obtain the 
following equation in probabilistic form: 

At this point, we can estimate the number of simula-
tions required for a desired confidence interval (level 
of precision) by solving the upper and lower bounds of 
equation (11) for the only unknown variable n. There 
seem to be two unknowns, n and s; however, s- the 
sample standard deviation, can be obtained by iterat-
ing a number of times. We can therefore estimate the 
number of iterations needed as we consider one sam-
ple for each iteration with the following expression: 

where n is the number of iterations needed, S is the 
estimated standard deviation of the output, E is the 
desired margin of error, and ZCI is the critical value of 
the normal distribution for a specific CI, i.e., the 
z value such that the area of the right-hand tail in 
a normal distribution is α/2 where α is. It is the 
number that satisfies P(Z>zα/2) = α/2, where 
Z follows a normal distribution with a mean of 0 and 
a standard deviation of 1. CI = α/2 can be found by 
setting the desired confidence level equal to 100*(1-α) 
and solving for α. So, if we would like to simulate our 
error metric at 95% confidence within 10% of the 
expected standard deviation s of the error values, as 
a rule of thumb, we would need 380 iterations [1.96 *  
s/(s * 0.1)]2 = 380. In all cases, error metrics had to be 
aggregated by pixel size. This was done with the fol-
lowing procedure: 

where w is the weight of the area fraction inside the 
pixel at final resolution, i.e., 100 m, and is equal to 1 if 
the smaller pixel is completely covered by the final- 
resolution pixel, < 1 otherwise. N is the number of 
pixels that overlap the full-resolution pixel.

4. Results

4.1. Canopy base height mapping

The resulting allometric models, created for calculat-
ing CBH, are available in Table S1 in appendix with 
their corresponding accuracy metrics. The models 
were used to estimate the final pan-European CBH 
map depicted in Figure 2 (left), and accuracy metrics 
were embedded in the error propagation to assess the 
relative uncertainty map in Figure 2 (right). The num-
ber of samples by species was heterogeneous, consid-
ering a range between 224 and 21,913 measurements, 
but well distributed among countries from different 
latitudes. The metric errors were quite similar between 
tree species, with only four species exceeding 10% in 
MAPE, providing satisfactory results for the CBH 
prediction.

Figure 2 also shows the locations where the valida-
tion data were obtained. Predominantly, the highest 
CBH values were concentrated in the alpine regions, 
specifically in countries such as Switzerland, Austria, 
and Northern Italy, but also in regions of Eastern 
Europe. Notably, high CBH values were related to 
high uncertainties, with RMSE between 6 and 8 m 
(Figure 2 – right). High RMSE values were also evident 
in boreal areas, where CBH values were not extremely 
high but had much higher uncertainties.

4.2. Canopy bulk density mapping

Canopy bulk density depends on the fraction of thin 
biomass (mainly foliage) and the volume filled by the 
canopy. Regarding the fraction of foliage biomass, 
Table 2 shows the percentage of expected biomass in 
the foliage from the total per DBH class. This is used to 
assign the foliage biomass and extract the CBD dataset, 
shown in Figure 3. Normally, trees, especially conifer 
species, concentrate a high percentage of foliage biomass 
when they are young, but this fraction starts to decrease 
over time (Portsmouth et al. 2005). In this case, species 
such as Abies alba, Picea abies, Pinus halepensis, and 
Pinus nigra show high CBD values at young growth 
stages, and therefore, these values are strongly related 
to the species composition in which CBD is measured.

4.3. Validation

The validation of CBH and CBD maps was carried out 
using a completely independent data source consisting 
of two datasets: (a) 804 ground plots from across 
Europe, and (b) seven LiDAR-based canopy fuel 
maps from surveys in the same year as the canopy 
fuel maps.
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4.3.1. Ground measurements
The 804 ground plots were used from four countries 
that provided CBH and CBD georeferenced data from 
field measurements: Greece (153 plots), Italy (64 
plots), Norway (176 plots), and Portugal (411 plots). 
Canopy fuels in the field were measured in different 
years, between 2010 and 2020. To avoid including 
parts that were subject to some kind of forest distur-
bance, we used the Hansen et al. (2013) canopy cover 
loss map as a mask to remove any pixels that were 
detected as having had a canopy loss between the years 
2000 and 2020. The approximate position of the 
ground plots is visible in the left quadrant of Figures 
2 and 3. All ground plots, except one, which is a 1-ha 
square, are circular with a 10 to 20-m radius and an 

area between 314 and 1,256 m2. It should be noted that 
this makes a much smaller sample than the cell size of 
the raster, which is approximately 10,000 m2 (1 ha). 
This will have an effect on results, as for example, a cell 
might be half covered with very dense canopies (thus 
high CBD values) and half covered with very light 
canopies, and the sample might fall completely in 
one of the two cases, thus not reflecting the whole 
area. To partially mitigate these cases, accuracy 
metrics were calculated using all plots and also by 
removing plots that fall in cells that have a forest 
cover of less than 80%. Figures 4 and 5 show the 
results and the respective accuracy metrics, where the 
scattering of points shows a clear concentration 
between 5 and 10 m in the case of CBH and between 

Figure 2. Left: CBH map with approximate locations of ground samples (red dots) and number of ground plots (number under the 
red dot) used for validation. Right: uncertainty map expressed as estimated absolute RMSE.

Figure 3. Left - canopy bulk density dataset with locations (red dots) and number of ground plots (number under the red dot) used 
for validation of results; right - uncertainty values expressed as estimated absolute RMSE.
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0.0 and 0.1 in CBD. It is important to note that when 
considering forest cover of 80% or higher (Figures 4 
and 5 – right panels), the error metrics drop 
considerably.

4.3.2. LiDAR-derived canopy fuel maps
Further validation was done using seven canopy fuel 
maps with CBH and CBD, located in Portugal, which 
were estimated using field samples and LiDAR data 
with a flight between 2020 and 2021 (Mihajlovski et al.  
2023). Data were combined with field measurements 
obtained through forest inventory in the same period. 
Final raster maps have a 25 m cell resolution and 
explain the variability of CBH and CBD with relative 
RMSE of 13.4–48.7% and 5.9–23.0%, respectively 
(Botequim et al. 2019). These areas represent 
a mapped estimation of CBH and CBD based on 
calibration using ground plots and thus provide 
further sources of validation for our results. Figure 
S3 shows the areas for visual comparison.

This information has been visually compared with 
the results obtained through earth observation, artifi-
cial intelligence, and allometric equations applied in 
this investigation that cover the pan-European scale at 
100 m spatial resolution.

5. Discussion

Through this new methodology, we combined harmo-
nized allometric equations by tree components at the 
EU level provided by Forrester et al. (2017b), taking 
into account the probabilistic tree species map pro-
vided by Bonannella et al. (2022) to gain spatial varia-
bility and specificity. This approach shows an effort to 
harmonize databases to develop allometric equations 
to predict height branch insertion and biomass equa-
tions to extract foliage biomass component, combin-
ing different sensors and validating the pan-European 
model of CBH and CBD through ground-truth data 
obtained in four different countries. Other efforts on 
developing superficial fuel maps were carried out by 
Aragoneses et al. (2023) and by the same authors for 
forest canopy fuel parameters at European scale 
Aragoneses et al. (2024), being the first harmonization 
at the EU level. For this reason, the main effort was to 
improve and solve the issue of a lack of standardized 
field data in the EU (Alberdi et al. 2016), where data at 
the national level is measured by country-specific con-
ditions, inventory traditions and information needs 
(Gschwantner et al. 2022). On the other hand, most 
of the National Forest Inventories (NFIs) have been 
focused on measuring forest parameters, species com-
position, and sometimes health indicators, neglecting 
important variables such as CBH to prevent forest 
fires. In this regard, Spain has been one of the first 
countries in the EU to integrate the canopy variables 
related to crown fire in the last NFI, which was 

Figure 4. Ground validation for canopy base height measured 
from all ground samples (red) and on ground samples falling 
over a raster cell with forest cover equal to or above 80% 
(blue). Specific accuracy metrics for both are reported in 
Table 3.

Figure 5. Ground validation for canopy bulk density measured 
from all ground samples (red) and on ground samples falling 
over a raster cell with forest cover equal or above 80% (blue). 
Specific accuracy metrics for both are reported in Table 3.

Table 3. Results from the ground plots shown in Figures 4 and 
5. CBH units are meters, CBD units are kg m−3.

Canopy Fuel CBH CBD

Forest Cover Fc > 0% Fc>80% Fc > 0% Fc>80%

N 804 322 486 225
RMSE 3.9 3.8 0.099 0.085
MAPE 61% 50% 76% 59%
R 0.445 0.524 0.330 0.457
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adapted to the new challenges in the forestry sector of 
the country (Alberdi et al. 2017).

Testing the accuracy of CBH and CBD datasets at 
this scale is a challenging task due to the difficulties of 
having accurate field measurements available. In this 
work, it was achieved using 804 ground plots distrib-
uted across Europe and six areas with field-calibrated 
CBH and CBD values from 2020 LiDAR data, which 
were combined with field measurements at close dates. 
The field plots were measured in various instances 
between 2010 and 2020; we assume that areas without 
specific forest disturbance have undergone changes 
with CBH and CBD values well under the precision 
level requested by this work. As mentioned in the 
validation section of the results, ground plots have 
a much different scale and catch only a small fraction 
of the raster cell area, around 12%, considering 
a typical 20 m radius plot against the approximate 
one-hectare area of the cell (see Pirotti et al. 2023b). 
Therefore, comparing such different scales must be 
done with caution and should consider within-class 
variability vs. boundary effects; this concept is well 
illustrated in the work of Latty et al. (1985) and 
Hsieh, Lee, and Chen (2001). A more correct 
approach, but trivially very time-consuming and 
expensive, would be to sample large plots that cover 
the full raster cell footprint plus a buffer to account for 
uncertainty in the geo-positioning of the pixel. This 
would mean sampling plots well larger than one hec-
tare, at least so that a down-scaling can be carried out, 
reaching pixel size at 30 m to better fit the plot cap-
tured on the field and compare with the data obtained 
from EO. Although the main issue is that field data in 
a high accuracy and well distributed on a pan- 
European scale, it is only available through the 
national forest inventories, where circular plots are 
available at much smaller sample sizes, between 250  
m2 and ~1000 m2 (Breidenbach and Astrup 2012; Eid, 
Gobakken, and Næsset 2004; Fridman et al. 2014; 
Gobakken and Næsset 2008). Another source of 
uncertainty internal to the validation procedure is 
that the approximate 100 m cell with predicted CBH 
and CBD might cover a forest with high structural 
variability, and the ground sample might catch this 
variability only partially if the sampling protocol 
applied is flexible and does not strictly require the 
samples to be allocated in homogenous landscapes 
(Gobakken and Næsset 2008). This limitation is visible 
in the results shown in Figures 4 and 5, where accuracy 
improvements were recorded after sub-setting data 
from pixels with almost full (>80%) canopy cover. 
The improvement in MAPE is stronger for CBD, as 
expected considering that CBD has a biomass 

component (foliage), which is directly impacted by 
varying degrees of canopy cover, whereas CBH does 
not. By sub-setting the data, we limit potential varia-
bility inside the pixel area. It is worth emphasizing that 
the canopy fuel metric values in each pixel are an 
estimated average of what is in a one-hectare area 
around the raster cell center. In one-hectare, there 
can be a very mixed scenario, with a forest with very 
high CBD in half a pixel and bare ground in the other 
half. A sample plot in the forested part of this scenario 
will provide the forest CBD, but the pixel will provide 
a value that is mixed, i.e., half the plot’s CBD value due 
to half of the pixel having no forest.

Another aspect to highlight is that training and vali-
dation AGB data were actualized from the 2018 AGB 
map (Santoro and Cartus 2021; Santoro et al. 2022) to 
2020 by removing any sampled values that correspond to 
an area that had forest loss or significant gain according 
to the loss/gain mask of Hansen et al. (2013). This mask 
is available up to 2022 at the time of writing, and allows 
to keep only AGB values that are consistent between 
2018 and 2020. It can be noted that in 2 years there can 
be an increase in biomass, but this factor was ignored in 
this work for two reasons: it will not significantly change 
in only 2 years except in very productive areas, and it is 
not possible to update consistently with enough detail 
considering local factors affecting tree growth. These 
factors are many, e.g. tree species, density, age, soil type 
and soil depth, climate, height of terrain, and also vary 
spatially. Updating without due consideration of those 
factors would only add more error than the expected 
advantage. We therefore kept the 2018 values, accepting 
a potential slight underestimation.

A noteworthy aspect is that the presented method 
has not in any way been trained against the ground 
plots used for validation, which are completely inde-
pendent. This supports further investigation into the 
likely hypothesis that some training on ground plots 
can lead to a significant improvement in modeling 
performance. This would, of course, require time- 
consuming data collection from a wide variety of 
agencies and public bodies around Europe, but there 
is evidence that they could significantly improve the 
results, providing a hybrid approach that requires less 
training data and leads to better results.

Results in Figure 6 show a clear overestimation in 
canopy base height and underestimation of CBD. The 
two things are related as CBD partly depends on CBH, 
and underestimation of CBH leads to underestimation 
of the canopy volume (see CV in equations 3a-3d). 
This observation leads to two reasonable considera-
tions: (1) the models fitted for deriving CBH (Figure 
S1 in appendix) are generic for all of Europe, and thus 
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cannot represent site-specific canopy characteristics, 
such as the LiDAR-derived validation sites, and (2) the 
LiDAR-derived method overestimates CBH. This 
leads to calling for a harmonized methodology for 
defining CBH values using a more standard method, 
as, for example, LiDAR is also known to consider 
understory as canopy, as it is extremely hard to sepa-
rate low canopies from high undergrowth from a point 
cloud. This would naturally lead to underestimating 
the CBH in the LiDAR-derived values. Of course this 
is an open question that is worth further investigation.

LiDAR surveys are widely used to monitor forests 
and provide 3D point clouds. They are an ideal type of 
data for analysis of the vertical structure of vegetation, 
including CBH and CBD (Arkin et al. 2023; Botequim 
et al. 2019; Rocha et al. 2023). Using CBH and CBD 
estimated from models that use LiDAR surveys might 
also prove to be a valid alternative to improving accu-
racy by training a more accurate model of a pan- 
European map at one-hectare per pixel using such 
results. The uncertainty sources in the input data had 
to be considered. The canopy height map is provided 
with its uncertainty raster, which is propagated to the 
final CBH and CBD values. In this sense, it is impor-
tant to address the higher degree of uncertainty at 
higher latitudes (e.g. Scandinavian region), as the 
canopy height map was trained through GEDI data, 
which is notably not available over ±51.6 degrees 
north latitude (Lang et al. 2023). Also, from the work 
developed by Kutchartt, Pedron, and Pirotti (2022), it 
can be noted that mountain areas with steep slopes 

will have a high probability of very significant errors. 
We can conclude that areas in mountainous environ-
ments and/or at high latitudes will have more pro-
nounced uncertainties.

Another important variable used in mapping that 
inherently has a certain degree of uncertainty is the 
species distribution probability map that has been 
provided by Bonannella et al. (2022). The use of spe-
cies distribution is one of the most relevant aspects of 
the mapping process and allows for a higher level of 
specificity when extrapolating structural and biomass 
allocation. Misinterpretation of tree species presence, 
which is a common issue, especially in mixed stands, is 
due to the similarity in morphology among tree spe-
cies (Hemmerling, Pflugmacher, and Hostert 2021; 
Pittman and Hu 2023; Torabzadeh et al. 2019). This 
misclassification will result in the wrong allometric 
model being applied for CBH estimation based on 
canopy height values applied to the wrong species- 
species model, which will thus cascade to the final 
CBH estimations. The same principle is applied to 
extract the foliage biomass from the total AGB using 
the wrong species-specific model, and thus, the esti-
mation of the CBD is highly influenced by the accu-
racy of the tree species map. As it is trivial to state that 
higher accuracy in input maps will automatically 
define better down-stream CBH and CBD values, it 
should be noted that accurate and harmonized tree 
species real-distribution maps at the European scale 
with comparable resolution are not available. It was 
assumed that site characteristics or relations between 

Figure 6. Binned scatterplots of predicted values in the pan-European map and observed values for each cell in the LiDAR-derived 
CBH and CBD maps. Specific accuracy metrics are reported in the main title.
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tree species would influence how tree or stand struc-
ture would evolve (Forester et al. 2017a). Resolution of 
several kilometers is available (Mauri, Strona, and San- 
Miguel-Ayanz 2017). Only species probability maps 
are available, which is a different matter with respect 
to their actual presence. Another aspect that adds 
error was the resampling that was required to standar-
dize and process the maps at the same spatial resolu-
tion (100 m), often being the case of resampling from 
a higher spatial resolution (e.g., 10 or 30 m) to the final 
resolution of 100 m for both CBH and CBD rasters. 
A last note can be related to land-cover change, that 
can play a key role in wrong attribution of CBH and 
CBD values were tree cover is not present anymore or 
has reduced canopy density (Akbar Hossain, Masiero, 
and Pirotti 2022).

The high uncertainty of CBD was expected as it 
aggregates uncertainties from estimations of the mul-
tiple factors that were used to calculate the final CBD 
values. It should be kept in mind that the input vari-
ables, each with its own estimated error, included 
canopy height, which was used to infer stem diameter, 
which was in turn used to infer foliage fraction. Each 
step implicates a degree of uncertainty, which adds up 
through the well-known chain rule. In particular, it 
should be noted that the functions to estimate the 
foliage fraction from DBH are such that small errors 
in DBH already cascade to large changes in fraction 
values. Nevertheless, the CBD map will provide a more 
probable value at that specific location. In addition, 
uncertainties to predict CBD are also produced by the 
biomass estimation at continental scales, where some 
authors, such as Huang et al. (2015) and Avitabile and 
Camia (2018), mentioned that at large continental 

scales some discrepancies arise at pixel levels, where 
aboveground forest biomass can be underestimated or 
overestimated depending on the different inputs and 
modeling approaches used (Avitabile and Camia  
2018), producing additional uncertainty for CBD 
estimations.

From the results shown in Figure 7, we can also 
assume that the pan-European map can be used with 
higher reliability when aggregated over larger areas, 
which is the objective of this work. The provided maps 
are meant to provide a regional-scale perspective of the 
spatial distribution of canopy fuels. The provided infor-
mation will help to plan actions and interventions that 
aim at mitigating fire impacts. In particular, considering 
that climate change scenarios will change the temporal 
and spatial distribution of aridity and thus change the 
dynamics of fire hazards.

6. Conclusions

This work reports on the estimation of two important 
forest canopy fuel parameters, canopy base height 
(CBH) and canopy bulk density (CBD). The estima-
tion was carried out using Earth observation data that 
was processed by a mixed approach that uses artificial 
intelligence and allometric models. Allometric mod-
els were defined specifically for this study using 
a combination of open data and ad-hoc contributions 
from coauthors. CBH and CBD maps at the 
European scale for the year 2020 at an approximate 
resolution of 100 m and with respective uncertainties 
are provided as the final product and to be used an 
operational scale, comparing to previous coarse maps 
(1 km). These two layers of information are 

Figure 7. Scatterplots of predicted values in the pan-European map and observed values aggregated for each area in the LiDAR- 
derived CBH and CBD maps. Specific accuracy metrics are reported in the main title.
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fundamental inputs for further modeling the beha-
vior of wildfires and extreme wildfire events. 
Validation was provided through an independent 
dataset of 804 sample plots. The specific metrics 
reported CBH and CBD having respectively the fol-
lowing accuracies: (i) coefficient of correlation R of 
0.445 and 0.330 (p-value < 0.001); (ii) root mean 
square of errors (RMSE) of 3.9 m and 0.099 kg m−3; 
and (iii) a mean absolute percentage error (MAPE) of 
61% and 76%. Regarding CBD, the accuracy metrics 
improved significantly if considering only cells cov-
ered by 80% or more forest canopy, to R = 0.457, 
RMSE = 0.085, and MAPE = 59%. This degree of 
accuracy was adequate and expected, as ground sam-
ples might not be representative of the forest varia-
bility in the 100 m raster cell, and models naturally 
propagate uncertainty. We can therefore assume with 
a reasonable degree of significance that the resulting 
maps can support planning and mitigation efforts in 
addressing fire-related actions.
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Appendix

Table S1. Species-specific allometric equations fitted to estimate the branch insertion height based on the total height as an 
explanatory variable for 16 tree species across Europe, including the metrics from the cross-validation using k-fold validation 
where k=20. β0 (Intercept) is equal to zero. Figure S1 shows the plotted fitted models.

Species N β1 (Slope) R-squared (+SD) RMSE (+SD) MAPE (+SD)

Abies alba 304 0.253 0.802(0.0059) 2.039 (0.206) 11.1 (0.987)
Castanea sativa 4806 0.549 0.882(0.0007) 2.944 (0.377) 9.3 (1.121)

Corylus avellana 1685 0.637 0.923(0.0008) 2.143 (0.262) 9.2 (0.947)
Fagus sylvatica 5395 0.509 0.867(0.0004) 4.518 (0.906) 12.9 (2.388)

Olea europaea 594 0.628 0.946(0.0005) 1.119 (0.054) 7.3 (0.455)
Picea abies 11631 0.166 0.701(0.0009) 3.135 (0.048) 14.6 (0.084)
Pinus halepensis 6875 0.522 0.921(0.0004) 1.567 (0.033) 7.6 (0.165)

Pinus nigra 4878 0.501 0.927(0.0007) 1.745 (0.060) 7.8 (0.178)
Pinus pinea 1655 0.446 0.905(0.0009) 1.544 (0.077) 8.3 (0.287)

Pinus sylvestris 21913 0.468 0.909(0.0008) 2.254 (0.014) 8.0 (0.072)
Prunus avium 224 0.325 0.730(0.0052) 2.939 (0.336) 12.8 (0.728)

Quercus cerris 2244 0.409 0.905(0.0012) 1.359 (0.059) 7.6 (0.287)
Quercus ilex 18187 0.394 0.908(0.0004) 0.993 (0.014) 7.2 (0.072)
Quercus robur 4164 0.662 0.930(0.0012) 2.843 (0.085) 7.6 (0.301)

Quercus suber 479 0.352 0.913(0.0016) 1.653 (0.194) 8.3 (0.277)
Salix caprea 544 0.388 0.837(0.0047) 2.265 (0.149) 10.0 (0.726)

Table S2. Relationship to predict the diameter breast height based on total height using data from Aussenac et al. (2023) and from 
other projects for France, Poland, Slovenia and Italy. Results of the coefficient of determination are all significant with P-value < 0.001

Species N β0 β1 β2 R-squared (+SD) RMSE (+SD) MAE (+SD)

Abies alba 1933156 1.3436 0.6874 0.0372 0.924 (0.0007) 4.9 (0.0260) 2.9 (0.0060)

Castanea sativa 141803 4.0980 -0.2394 0.0869 0.803 (0.00076) 7.1 (0.1880) 4.1 (0.0564)
Corylus avellana 87151 0.9046 0.5337 0.0365 0.981 (0.0005) 0.4 (0.0063) 0.3 (0.0033)
Fagus sylvatica 3401526 0.8648 0.3802 0.0470 0.891 (0.0005) 4.4 (0.0133) 2.7 (0.0034)

Olea europaea 353 -4.3107 3.1992 -0.0528 0.555 (0.1353) 4.7 (1.4807) 3.2 (0.7838)
Picea abies 2092487 1.3806 0.6790 0.0351 0.939 (0.0004) 3.8 (0.0157) 1.9 (0.0052)

Pinus halepensis 1992 -9.2907 3.3574 -0.0463 0.586 (0.0475) 6.8 (0.5510) 5.0 (0.2781)
Pinus nigra 5956 5.4561 1.1050 0.0119 0.621 (0.0345) 5.9 (0.2327) 4.5 (0.1842)

Pinus pinea 809 -2.3634 2.9791 -0.0297 0.569 (0.0914) 8.7 (1.3745) 6.2 (0.7248)
Pinus sylvestris 3149820 5.1299 -0.0554 0.0395 0.831 (0.0008) 4.0 (0.0112) 2.8 (0.0042)

Prunus avium 119316 -1.0741 0.5173 0.0574 0.774 (0.0037) 5.9 (0.0665) 3.6 (0.0318)
Quercus cerris 18972 0.6734 0.9954 0.0196 0.608 (0.0255) 5.4 (0.2986) 3.6 (0.0751)
Quercus ilex 12692 4.7826 0.4492 0.0679 0.510 (0.0502) 4.6 (0.4237) 3.0 (0.1072)

Quercus robur 313817 3.5610 0.1671 0.0461 0.897 (0.0019) 5.6 (0.0517) 3.2 (0.0210)
Quercus suber 2112 -2.5090 3.6174 0.0128 0.623 (0.0388) 7.8 (0.8060) 5.3 (0.3645)

Salix caprea 120551 -7.8555 1.4519 0.0317 0.624 (0.0074) 6.2 (0.1162) 3.3 (0.0396)
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Figure S1. Fitted models for CBH estimation for the 16 species (see Table S1 for more details).
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Figure S2. Fitted models for DBH estimation for the 16 species (see Table S2 for more details).
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Figure S3. Fitted models for CBH estimation for the 16 species (see Table S1 for more details).

26 E. KUTCHARTT ET AL.



Figure S3. (Continued)
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Figure S4. Areas with CBD extracted from LiDAR metrics (left) and from allometric models (center), with difference maps (right).
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Figure S4. (Continued)
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