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Abstract: Granular soils exhibit very complex responses when subjected to cyclic loading. Understanding the cyclic 14 

behavior of such materials is not only crucial for engineering applications but also the bottleneck of most of constitu-15 

tive models. This study employs 3D Discrete Element Method (DEM) simulations to explore the accumulative plastic 16 

deformation and the internal fabric evolution within granular soils during cyclic loading. Two novel observations are 17 

identified: 1) A distinct and unique linear relationship between post-cyclic loading void ratio e and log (p*/p0) is found 18 

independent of the amplitude of cyclic load and the initial stress state prior to cyclic loading, where p* is the mean 19 

pressure incorporating cyclic loading stress and p0 is the mean pressure prior to cyclic loading; 2) When resuming 20 

drained triaxial loadings after cyclic loadings, we observe that both microstructural and macroscopic variables con-21 

verge to the same values they would have reached for pure monotonic drained triaxial loadings. This intriguing behav-22 

ior underscores and extends to more general loading paths the influential and attractive power of the critical state. 23 

 24 

Keywords: Cyclic loading; Discrete Element Method; Accumulative plastic deformation; Anisotropy; Coordination 25 

number; Granular material 26 

 27 
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1. Introduction 29 

Granular soils, including sands and gravels, are subjected to complex cyclic loading in various scenarios, such as 30 

waves, wind, earthquakes, construction work or moving traffic (Ng and Dobry, 1994; Donna and Laloui, 2015; Xu 31 

and Guo, 2021). Consequently, the study of the cyclic behavior of granular soils has gained considerable attention 32 

within the geotechnical community over the past few decades (Lazcano et al., 2020; Song et al., 2023). 33 

Cyclic loads induce the accumulation of plastic deformation in granular soils. Numerous scholars have conducted 34 

extensive research on the accumulative deformation of granular soils under cyclic loads. They have explored the 35 

effects of various internal influencing factors, e.g., soil type (Li et al., 2021), grain size distribution (Cai et al., 2018), 36 

initial density (Xiao et al., 2019) as well as external influencing factors, including cyclic frequency (Thakur et al., 37 

2013), amplitude of cyclic load (Lackenby et al., 2007), principal stress rotation (Guo et al., 2022), and cycle numbers 38 

(Indraratna et al., 2012). Among these factors, the amplitude of the cyclic load is highlighted as a critical factor 39 

influencing accumulative plastic strain development. The accumulative plastic strain is found to gradually stabilize if 40 

the cyclic load is below a critical value (Hyde et al., 1993; Yang et al., 2012). However, when the cyclic load exceeds 41 

a certain critical value, it results in a detrimental response of deformation characteristics which makes the specimen 42 

collapse (Lei et al., 2016). Furthermore, the soil's initial stress state prior to cyclic loading significantly impacts its 43 

dynamic performance. Studies indicate that specimens with higher initial stress ratios or lower confining stresses 44 

exhibit greater accumulative axial strain under identical cyclic loading conditions (Peng et al., 2019; Cui et al., 2023). 45 

Nevertheless, a comprehensive relationship between cyclic load amplitude, initial stress state, and accumulative 46 

deformation of granular soils is still missing. The objective of this study is to develop such a relationship, which holds 47 

significant implications for accurately predicting accumulative plastic deformation in granular materials subjected to 48 

cyclic loading scenarios. 49 

The mechanisms governing accumulative deformation under cyclic loads in granular materials result from the 50 

collective rearrangement of particles through sliding, contact opening, and contact creation in response to cyclic load-51 

ing (Dean 2005; Kuhn and Chang, 2006; Wautier et al., 2019; Rahman et al., 2021; Mei et al., 2023). In this regard, 52 

the discrete element method (DEM), renowned for simulating the movement and interaction of particles within granu-53 

lar assemblies, emerges as an appropriate tool for investigating the micro-mechanical mechanisms driving plastic 54 

deformation. Through DEM simulations, Gu et al. (2020) found that the cyclic behaviors of granular materials with 55 

the same micro state parameter  ΨMCN0, defined as the difference between the initial and critical state mechanical 56 



3 

 

coordination number, are close to each other, indicating that ΨMCN0 is a plausible state variable for characterizing the 57 

behavior of granular materials. Kolapalli et al. (2023a) performed a large number of DEM cyclic triaxial tests and 58 

evaluated various factors influencing the magnitude and rate of excess pore water pressure generation under cyclic 59 

loading conditions. Additionally, Wang et al. (2021) conducted DEM simulations to investigate the fabric evolution, 60 

plasticity, and dilatancy of sand under cyclic loading and proposed an anisotropic plasticity model based on their find-61 

ings. 62 

.In monotonic loading tests, such as drained triaxial loading (axial compression with constant lateral confining 63 

pressure), a granular assembly reaches a critical state—a stationary state where stress and volume tend to remain con-64 

stant under continuous shear strain. The critical state concept defines a unique linear critical state line (CSL) in e-log 65 

(p’) space, where e is the void ratio and p’ is the effective mean pressure. A critical state soil mechanics framework 66 

has proven to be powerful for capturing the monotonic behavior of soils, with some researchers extending it to cyclic 67 

loading. These studies use a state parameter (Ψ) for quantifying liquefaction resistance for soil. This state parameter is 68 

defined as the difference between the current void ratio and the corresponding void ratio on the CSL at a particular 69 

mean effective normal stress (Huang and Chuang, 2011; Zhao and Guo, 2013; Rahman and Sitharam, 2020; Kolapalli 70 

et al., 2023b). While the attractor property of the critical state has been studied in monotonic loading (Deng et al., 71 

2021), its application to non-monotonous loading paths, such as cyclic loading, remains unexplored. During stress-72 

controlled cyclic loading, the stress state point (e, p’) in e-log (p’) space shifts due to accumulative volumetric strain. 73 

A key question arises: will a post-cyclic triaxial test drive the material to the same critical state observed in pure mon-74 

otonic loading? Answering this question is crucial for predicting post-cyclic behavior and establishing constitutive 75 

models for granular soils. Investigating the attractor property of the critical state in relation with the significant chang-76 

es in microstructure induced by cyclic loading is the novel focus of this study. 77 

This study intends to explore the accumulative deformation characteristics of granular media under cyclic 78 

loading and its post-cyclic loading behavior by using DEM. The organization of this study is as follows: In Section 2, 79 

drained triaxial tests are first executed, and specific stress states are chosen as initial stress states for subsequent cyclic 80 

loading tests. Section 3 focuses on the analysis of accumulative volumetric strain induced by cyclic loading. In 81 

Section 4, mixed cyclic loading and triaxial loading tests are performed to investigate how a specimen converges 82 

towards its CSL after a cyclic loading test. Finally, concluding remarks are presented in Section 5. 83 

 84 
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2. DEM simulation of cyclic loading test 85 

2.1 DEM model 86 

In this study, we utilized the open-source software YADE (Šmilauer et al., 2015) for conducting numerical 87 

simulations. The interaction between two grains was modeled using the classical elasto-frictional contact law 88 

proposed by Cundall and Strack (1979). The calculation of normal and tangential contact forces (𝐹n and 𝐹t) is outlined 89 

as follows: 90 

 {
𝐹n = 𝑘n𝛿n

d𝐹t = 𝑘td𝛿t,     𝐹t ≤ 𝐹ntan𝜙 
 (1) 

where 𝑘n  and 𝑘t  represent the normal and tangential stiffness, respectively. 𝛿n  and  𝛿t  correspond to the relative 91 

displacements in the normal and tangential directions, respectively. Additionally, ϕ denotes the friction angle that 92 

controls the sliding between grains, limiting therefore the tangential contact force through the Coulomb criterion. 93 

In Equation (1), the normal stiffness 𝑘n is contingent on the size of the two contacting grains, being proportional 94 

to a material modulus E and the harmonic average of the radii of the two grains,  𝑅𝑝 and 𝑅𝑞. 95 

 {
𝑘n = 𝐸

2𝑅𝑝𝑅𝑞

𝑅𝑝 + 𝑅𝑞

𝑘t = 𝑟𝑘n

 (2) 

The parameters employed in this simulation are detailed in Table 1. The parameters selected for this study are in 96 

accordance with recommendations given in the Yade software manual (Šmilauer et al., 2015), and are consistent with 97 

those used by Xu et al. (2024) and Shi et al. (2024) as well. They were chosen based on a balance between realism 98 

and computational efficiency. We did not calibrate the DEM parameters to represent a specific granular material, 99 

since our primary objective is to put forward the generic physics of granular materials. 100 

Table 1 Parameters used in DEM simulations 101 

Parameter Value 

Density 3000 kg/m3 

Material modulus (E) 300 MPa 

Stiffness ratio 𝑟 = 𝑘t/𝑘n 0.5 

Inter-grain friction angle 35° 

Grain-wall friction angle 0° 
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2.2 Sample preparation and cyclic loading test 102 

The grain size distribution for all numerical specimens is illustrated in Fig. 1. The ratio of maximum diameter to 103 

minimum diameter is five. To prepare the numerical samples, we initially generate a cloud of 12,000 non-overlapping 104 

spheres within a box surrounded by frictionless walls. Subsequently, a consolidation process is applied to isotropically 105 

compress the specimen. During the consolidation process, the contact friction is adjusted to control the final density of 106 

the samples, wherein smaller friction angles result in denser samples. In this study, we consider loose specimens with 107 

a friction angle of 35°, consistent with other references (Lobo-Guerrero and Vallejo, 2006; Wang et al., 2021). Void 108 

ratios of numerical specimens after consolidation under different confining pressures are given in Table 2. Then, a 109 

vertical compression (𝜀1) is applied at a strain rate of 0.01/s while maintaining lateral stresses (𝜎2=𝜎3) constant. Note 110 

that the inertial number is below 10-4 during the whole process of triaxial loading, which ensures that the loading can 111 

be regarded as quasi-static (Anandarajah, 2008; Martin et al., 2020). Soil mechanics conventions are adopted where 112 

compressions and contractions are counted positive. 113 

Table 2 Void ratios of numerical specimens after consolidation under different confining pressures 114 

Confining pressure Void ratio  

100 kPa 0.751 

200 kPa 0.745 

400 kPa 0.732 

800 kPa 0.710 

 115 
 116 
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 117 

   Fig. 1 Grain size distribution of 3D numerical specimens  118 
 119 

Figure 2 illustrates the progression of deviatoric stress (q=𝜎1 − 𝜎3) and volumetric strain (𝜀𝑣=𝜀1+𝜀2+𝜀3) with 120 

axial strain for the numerical specimens subjected to various confining pressures during triaxial loading. It is clear that 121 

both q and 𝜀𝑣  consistently rise with axial strain across all curves and demonstrate greater strength and higher 122 

contractancy under increased confining pressures. To investigate the response of a specific specimen under cyclic 123 

loading at distinct mechanical stress states, different specimens were saved during the triaxial loading, each 124 

characterized by a different stress ratio (η=p’/q). The respective stress states are denoted by solid red circles in Fig. 2. 125 

  

(a) Deviatoric stress (b) Volumetric strain 

Fig. 2 Deviatoric stress q (a) and volumetric strain 𝜀𝑣 (b) versus axial strain for the numerical specimens in triaxial 126 

loading test under various confining pressures. Solid red circles indicate stress states saved for subsequent cyclic 127 

loading test. 128 
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For the stress states selected during triaxial loading, a cyclic loading test is subsequently conducted in direction 129 

e1 as defined in Fig. 1 while maintaining constant confining pressures in direction e2 and e3, as shown in Fig. 3(a). 130 

During the cyclic loading process, a constant downward (and upward) velocity is initially applied to the upper (and 131 

bottom) wall to initiate the loading stage and impose an incremental stress Δ𝜎1. Once the stress on the upper wall 132 

reaches the target value 𝜎1+Δ𝜎1, the movement direction of the upper (and bottom) wall is reversed to initiate the 133 

unloading stage. When the stress reduces to the initial axial stress 𝜎1, the upper wall moves downward again. This 134 

completes one cyclic loading cycle, during which the lateral confining stress is kept constant. Various combinations of 135 

stress states, characterized by 𝜎3, 𝜎1 and Δ𝜎1, are considered in this study, as outlined in Table 3. Throughout both the 136 

loading and unloading stages, the velocity of the upper wall is maintained constant and low enough, corresponding to 137 

an axial strain rate of 0.01/s, to ensure quasi-static conditions throughout the entire cyclic loading process. Fig. 3(b) 138 

give the axial stress–strain curve during the first 5 cycles for illustration under the case of 𝜎3=100 kPa, η=0.39 and 139 

Δ𝜎1=10 kPa. It shows that accumulative axial strain greatly develops during the first two cycles and gradually slows 140 

down in the following cycles.  141 

(a) 

 

(b) 

 
Fig. 3 (a) Movement of the walls to conduct cyclic loading and (b) Axial stress–strain curve during the first 5 cycles 142 

for illustration (𝜎3=100 kPa,  η=0.39, Δ𝜎1=10 kPa).         143 

  144 
 145 
 146 
 147 
 148 
 149 
 150 
 151 
 152 
 153 
 154 
 155 
 156 

Wall speed：0.01 /s
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Table 3 Programs of cyclic loading test 157 

𝜎3 (kPa) 𝜎1 (kPa) η Δ𝜎1 (kPa) 

100 
145 0.39 10, 20, 30,40, 50, 60 

159 0.49 5, 10, 20,30, 40, 50 

200 
302 0.44 20, 40, 60, 80, 100 

343 0.58 10, 20, 30, 40 

400 
623 0.47 20, 50, 100, 150, 200 

693 0.59 40, 80, 120, 160 

800 
1191 0.42 50, 100, 200, 300, 400 

1386 0.59 40, 80, 120, 160 

3. Macroscopic volumetric response to cyclic loading   158 

3.1 Accumulative volumetric strain 159 

Figure 4 illustrates the evolution of accumulative volumetric strain (𝜀𝑣
ac) with the number of cycles (N) at various 160 

loading amplitudes (Δ𝜎1) for specimens under different initial stress states (i.e., different 𝜎3 and η). All 𝜀𝑣
ac-N curves 161 

exhibit a monotonous increasing and eventually reach a steady value as N becomes relatively large. Note that in all 162 

simulations, the values of 𝜎1+Δ𝜎1 do not exceed the peak stress of the specimen which is obtained at the critical state 163 

during monotonic triaxial loading, so that no detrimental response of deformation is observed. With the increase in 164 

Δ𝜎1, both the number of cycles required to achieve a stabilized regime and the corresponding value of 𝜀𝑣
ac increase. 165 

For smaller Δ𝜎1  (e.g., 𝜎3=800 kPa, η=0.42 and Δ𝜎1=50 kPa), 𝜀𝑣
ac  stabilizes at a low value of 0.001 when the number 166 

of cycles is only 100. However, for large Δ𝜎1, the resulting accumulative volumetric strain is significant. Considering 167 

the case of 𝜎3=100 kPa, η=0.39 as an example, 𝜀𝑣
ac exceeds 0.03 when N >2500 at Δ𝜎1=60 kPa. This means that a 168 

significant change in microstructure occurs during cyclic loading, consistent with the increase in the accumulative 169 

volumetric strain. 170 
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(a) 𝜎3=100 kPa  η=0.39 (b) 𝜎3=100 kPa  η=0.49 

  
(c) 𝜎3=200 kPa, η=0.44 (d) 𝜎3=200 kPa, η=0.58 

  
(e) 𝜎3=400 kPa, η=0.47 (f) 𝜎3=400 kPa, η=0.59 
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(g) 𝜎3=800 kPa, η=0.42 (h) 𝜎3=800 kPa, η=0.59 

Fig. 4 Development of accumulative volumetric strain with number of cycles for specimens at various loading 

amplitudes and initial stress states. 

3.2 Analysis of volumetric response in e-p* plane 171 

The loose specimens investigated in this study undergo volumetric contraction during the cyclic loading process, 172 

resulting in a decrease in the void ratio. The void ratios after the cyclic loading test are computed under various 173 

loading amplitudes and are presented in Fig. 5 in terms of p*. Here, p* denotes the maximum mean pressure reached 174 

by the specimen during the cyclic loading by incorporating the cyclic loading amplitude (Δ 𝜎1 ), expressed as 175 

p*=(2𝜎3+𝜎1 + ∆𝜎1)/3,  where 𝜎1 is the axial stress prior to the cyclic loading test. It is worth noting that the post-176 

cyclic loading void ratios demonstrate a linear relationship with p* in the e-log (p*) plane, with a high correlation 177 

coefficient R2. Indeed, this linear relationship holds true irrespective of the initial stress state, encompassing different 178 

𝜎3 and η. Similarly, Huang et al. (2019) observed that the final steady value of the void ratio (i.e., minimum void ratio) 179 

under cyclic loading varies linearly with the corresponding normal stress both in the shear band and outside the shear 180 

band of the specimen. They also noted that the slopes of these linear relationships are significantly different. 181 

Henceforth, we shall refer to this line in the e-log (p*) plane as the maximum densification lines for cyclic loading, 182 

since the void ratio reach its minimum value under a certain cyclic load.  183 
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(a) 𝜎3=100kPa, η=0.39 (b) 𝜎3=100kPa, η=0.49 (c) 𝜎3=200kPa, η=0.44 (d) 𝜎3=200kPa, η=0.58 

    

(e) 𝜎3=400kPa, η=0.47 (f) 𝜎3=400kPa, η=0.59 (g) 𝜎3=800kPa, η=0.42 (h) 𝜎3=800kPa, η=0.59 

Fig. 5 Evolution of the void ratios after cyclic loading at various loading amplitudes as a function of p*. p* is the maximum 

mean pressure reached by the specimen during the cyclic loading. 

Figure 6 presents all the post-cyclic loading void ratio data in the e-log (p*) plane. A notable observation from 184 

Fig. 6 is that the post-cyclic loading void ratios of specimens subjected to the same confining pressure 𝜎3 lie on a 185 

single line in the e-log (p*) plane. This indicates that after cyclic loading, specimens with an initial stress state 186 

corresponding to the same confining pressure share the same maximum densification line. Moreover, the slopes of the 187 

four fitted lines (i.e., 𝜎3=100, 200, 400, and 800 kPa) are close, resulting in nearly parallel lines in the e-log (p*) 188 

planes. 189 

 190 
Fig. 6 Void ratios of specimens after cyclic loading versus p* under various loading amplitudes and initial stress states. 191 
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The data points representing the post-cyclic loading void ratios for all specimens are plotted in the e-log (
𝑝∗

𝑝0
) 192 

plane, as shown in Fig. 7. In this figure, 𝑝∗ is normalized by its initial mean pressure 𝑝0, 𝑝0 =
2𝜎3+𝜎1

3
 . An important 193 

finding is that these post-cyclic loading void ratios consistently form a single, unique line in the e-log (
𝑝∗

𝑝0
) plane, 194 

independent of the initial stress state. This implies that for any stress states during a triaxial loading path, if a drained 195 

cyclic loading path is imposed at those stress states, they will all fall on the same maximum densification line. With 196 

this finding, by knowing the initial stress state before cyclic loading (𝑝0) and cyclic loading amplitude (Δ𝜎1), we can 197 

directly predict the void ratio after a large number of cyclic cycles.  198 

 199 
Fig. 7 Void ratios of specimen after cyclic loading versus p*/𝑝0 under various initial stress states. 𝑝0 is the mean 200 

pressure of the specimen prior to cyclic loading test, 𝑝0 =
2𝜎3+𝜎1

3
. 201 

4.  Mixed cyclic loading and triaxial loading paths 202 

This section aims to investigate how the cyclic loading path influences a specimen's progression towards the 203 

critical state. A fundamental question arises: if a specimen undergoes a cyclic loading path at a certain stress state, will 204 

it eventually reach the same critical state, just as it would without experiencing cyclic loading? In other words, does 205 

critical state depend on past loading history? To address this question, a comprehensive loading path combining cyclic 206 

loading path and triaxial path was simulated, as depicted in Fig. 8. The simulation was conducted as follows: after the 207 

cyclic loading paths were applied to the specimens as described in Section 2, a secondary triaxial loading path was 208 

executed while maintaining the lateral stress at its current level. These combined loading paths enable to evaluate 209 

whether the specimen converges to the same critical state when cyclic loading is applied.  210 
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 211 

 212 

Fig. 8 Complex loading path combining cyclic loading path and triaxial loading path. The solid blue point denotes the 213 

state saved from triaxial loading to initiate cyclic loading. On the other hand, the solid red point represents the state 214 

when cyclic loading is completed and serves as the starting point for the subsequent triaxial loading. 215 

4.1. p-q-e analysis 216 

The evolutions of deviatoric stress q with axial strain during the process of secondary triaxial loading are 217 

depicted in Fig. 9. To facilitate comparison, the q curves from the primary triaxial loading are also included, as shown 218 

in Fig. 2 (section 2). One notable observation is that after cyclic loading, the q curves deviate from their original 219 

stress-strain paths, exhibiting a sharp increase at the beginning of loading and displaying considerably higher stiffness. 220 

This trend aligns with the finding that significant microstructure changes occur during cyclic loading, resulting in 221 

denser specimens. Furthermore, it is evident that the deviatoric stress increases with the rise of Δ𝜎1, some specimens 222 

even display stress softening under high Δ𝜎1, characteristic behavior of “dense specimen”. For instance, cases such as 223 

𝜎3=100 kPa, 𝜂=0.39 and Δ𝜎1=60 kpa, as well as 𝜎3=200 kPa, 𝜂=0.44 and Δ𝜎1=100 kpa exemplify this behavior. 224 

Similar findings were reported by Cui et al. (2019), who conducted numerical monotonic simple shear tests on these 225 

samples after 6000 cycles of symmetric loadings. They observed that loose specimens densified during the cyclic 226 

loading, with the void ratio converging toward those of dense samples. 227 

An intriguing observation is that all curves converge to the same deviatoric stress, regardless of the imposed ∆𝜎1 228 

during cyclic loading history. This deviatoric stress corresponds to the critical state stress obtained during standard 229 

monotonic triaxial loading path. It shows that critical state acts as a compelling attractor, pulling the specimen back 230 

towards the final state it should reach, despite the cyclic loading path induces significant alterations in the current state, 231 
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including density and fabric. This phenomenon underscores the remarkable attracting power of the critical state, as 232 

also noted by Deng et al (2021) in proportional loading path. 233 

  
(a) 𝜎3=100 kPa, 𝜂=0.39 (b) 𝜎3=200 kPa, 𝜂=0.44 

  
(c) 𝜎3=400 kPa, 𝜂=0.47 (d) 𝜎3=800 kPa, 𝜂=0.42  

Fig. 9 Evolution of deviatoric stress with axial strain during the process of secondary triaxial loading after cyclic 

loading. Curves of reference triaxial loading are included for comparison. Red solid points represent the stress state 

after cyclic loading (i.e., the beginning of secondary triaxial loading). 

 234 

Figure 10 illustrates the progression of void ratios for specimens during the secondary triaxial loading process. 235 

The critical state line obtained by fitting the critical void ratios under different confining pressures from monotonic 236 

triaxial loading is depicted as red curves. Hollow markers are plotted to represent the void ratio at the beginning of the 237 

secondary triaxial loading (i.e. end of cyclic loading). Remarkably, all post-cyclic loading void ratios evolve towards 238 

the critical state line, regardless of their initial state, and ultimately converge to the same critical state point as 239 

achieved in the loading path of monotonic triaxial loading. This feature confirms the remarkable attracting power of 240 

the critical state. 241 
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 242 

 243 
 244 
Fig. 10 Development of void ratios during secondary triaxial loading. Hollow markers are plotted to show the void 245 

ratio of the state at the beginning of secondary cyclic loading (i.e., end of cyclic loading). 246 

 247 

The findings reported in Fig. 9 and Fig. 10 provide compelling evidence that specimens evolve invariably 248 

towards the same critical state p-q-e lines, irrespective of the altering effect of cyclic loading which induces 249 

significant fabric changes within the specimen. 250 

4.2 Microscopic evolution  251 

The coordination number (CN), introduced by Rothenburg and Bathurst (1989), is a micromechanical metric that 252 

quantifies the contact density within granular assemblies. It is defined as CN = 2Nc/Ntotal, where Nc represents the total 253 

number of contacts and Ntotal represents the total number of particles. The evolution of CN during the secondary 254 

triaxial loading under various initial states is presented in Fig. 11. Additionally, the evolution of CN within specimens 255 

that only undergo triaxial loading is displayed for comparison marked as black curves. During triaxial loading with 256 
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𝜎3=100 and 200 kPa, CN remains below 3 throughout the entire loading process. As 𝜎3 increases to 400 and 800 kPa, 257 

CN increases overall, indicating that higher confining pressure enhances the contact density within the granular 258 

material. After cyclic loading, there is an increase in CN. Subsequently, with the development of axial strain, CN 259 

reaches the same value as the specimen during the reference triaxial loading. This observation is consistent with the 260 

behavior of q and e, both of which converging to the critical state value of the monotonic triaxial loading path. It 261 

should be noted that for the sake of clarity, only selected cases are presented here. The results for other cases are 262 

aligned with the above findings but not shown here. 263 

  

(a) 𝜎3=100 kPa, η=0.39 (b) 𝜎3=200 kPa, η=0.58 

  

(c) 𝜎3=400 kPa, η=0.47 (d) 𝜎3=800 kPa, η=0.42 

Fig. 11 Changes of coordination number (CN) with axial strain during the process of secondary triaxial loading. 

Hollow circle represents the CN at the state saved for cyclic loading. Hollow square and triangle represent the CN at 

the beginning of secondary cyclic loading. 

 264 
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Anisotropy is an important concept in granular materials which reflects not only the fabric composition in 265 

connection to the spatial arrangement of particles, voids and interparticle contacts but also the changes of these 266 

microstructures induced by applied loads (Oda, 1982; Hoque and Tatsuoka, 1998). Within a granular assembly, two 267 

main types of anisotropy are recognized: geometrical anisotropy and mechanical anisotropy (Cambou et al., 2004; 268 

Rothenburg and Bathurst, 1989). Geometrical anisotropy is defined as the local orientation of a contact plane that 269 

gives rise to the global anisotropic phenomenon. It can be quantified by a scalar 𝑎𝑐, which represents the deviatoric 270 

invariants of the deviatoric part of fabric tensor as introduced by Oda (1982). Mechanical anisotropy is mainly caused 271 

by external forces and depends on the induced contact forces in relation to contact plane orientations. It can be 272 

quantified by a scalar 𝑎𝑛, which is associated with distribution of normal contact force1. Well-established formulas for 273 

𝑎𝑐 and 𝑎𝑛 can be found in Guo and Zhao (2013) and are reviewed in Appendix A1.  274 

Figure 12 shows the evolutions of  𝑎𝑐 and 𝑎𝑛 during secondary triaxial loading. It can be seen that after cyclic 275 

loading, 𝑎𝑐 experiences significant increase for loose specimens considered in this study, while  𝑎𝑛 keeps almost the 276 

same value. This highlights that the cyclic loading process changes the geometrical fabric (characterized by the 277 

distribution of contact normal) but have little effect on the mechanical fabric (characterized by the distribution of 278 

normal contact force) of the specimen. When a specimen is under cyclic loading, plastic deformation largely depends 279 

on the rearrangement of grains by sliding, contact opening, and contact creation, all being related to the geometrical 280 

fabric. Therefore, 𝑎𝑐 show important change after cyclic loading. However, 𝑎𝑛 is more related to the mechanical state 281 

of the specimens. The fact that the cyclic tests are stress-controlled is consistent with that 𝑎𝑛 does not change after 282 

cyclic loading. During secondary triaxial loading, both 𝑎𝑐 and 𝑎𝑛 evolve towards the critical values of the specimen 283 

along the reference triaxial loading path. 284 

                                                 
1 Note that mechanical anisotropy should involve both normal contact force and tangential contact force. The anisotropy of normal contact 

force has been proven to be much more pronounced than that of tangential contact force. Thus, we only consider anisotropy of normal 

contact force here. 
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(a) 𝑎𝑛 (𝜎3=400 kPa η=0.59) (b) 𝑎𝑐 (𝜎3=400 kPa η=0.59) 

 
 

(c) 𝑎𝑛 (𝜎3=800 kPa η=0.42) (d) 𝑎𝑐  (𝜎3=800 kPa η=0.42) 

Fig. 12 Evolution of anisotropy (𝑎𝑛 and 𝑎𝑐) with axial strain during the process of secondary triaxial loading. Hollow 

circle represents the anisotropy at the state saved for cyclic loading. Hollow square and triangle represent the 

anisotropy at the beginning of secondary cyclic loading. 

 285 

5. Concluding remarks  286 

This manuscript intends to shed the light on the effect of initial stress state and cyclic amplitudes on the 287 

accumulative plastic deformation and the internal fabric evolution within granular materials during cyclic loading by 288 

means of 3D DEM simulations. The major novelties of this contribution are twofold:  289 

• One significant finding of this research is the identification of a distinct linear relationship between post-cyclic 290 

loading void ratio (e) and the mean pressure of the specimen incorporating cyclic loading pressure (p*) in the e-log(p*) 291 

plane across diverse cyclic loading amplitude. Furthermore, the post-cyclic loading void ratios were observed to 292 

4
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consistently fall on a unique line in the e-log (p*/p0) plane, regardless of the initial stress state p0 prior to cyclic 293 

loading, showing the existence of a unique maximum densification line of cyclic loading path. With this finding, by 294 

knowing the initial stress state before cyclic loading (𝑝0) and cyclic loading amplitude (Δ𝜎1), we can directly predict 295 

the void ratio after a large number of cyclic cycles.  296 

• The study also delved into the interaction of cyclic loading with subsequent triaxial loading, revealing that 297 

specimens, despite significant microstructure alterations are induced by cyclic loading, eventually converge to the 298 

same critical state as they would attain along a unique triaxial loading without experiencing cyclic loading. This intri-299 

guing behavior underscores the influential and attractive power of the critical state, pulling the specimen back towards 300 

its anticipated critical state despite perturbations from cyclic loading. 301 

In summary, this study illuminates the presence of a unique maximum densification line in granular materials 302 

under cyclic loading, providing essential insights for the development of constitutive models and accurate prediction 303 

of accumulative plastic deformation in granular materials subjected to cyclic loading scenarios. However, it's 304 

important to note that this study primarily focuses on stress-controlled drained cyclic loading paths. Future research 305 

should expand the investigation to include other cyclic loading modes, such as undrained cyclic loading and constant 306 

q (or p) cyclic loading, to further enrich our understanding of the complex mechanical responses of granular materials 307 

in various loading conditions.  308 
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695-704. 408 

Appendix A1: Calculation of 𝒂𝒄 and 𝒂𝒏 409 

The fabric tensor proposed by Oda (1982) quantifies the directional distribution of contact normals. 410 

 𝜙𝑖𝑗 = ∫ 𝐸(𝒏)
 

𝛺

𝑛𝑖𝑛𝑗𝑑𝛺 =
1

𝑁𝑐
∑ 𝑛𝑖𝑛𝑗

𝑐𝜖𝑁𝑐

 (A1) 

where 𝒏 is the unit vector along the normal direction of the contact plane, 𝑛𝑖 and 𝑛𝑗 are the ith and jth component of 𝒏, 411 

𝛺 characterizes of the space of all the directions 𝒏 relative to the global coordinate system, Nc is the total contact 412 

numbers, and 𝐸(𝒏) is the distribution probability function for having a contact along direction 𝒏 . 𝐸(𝒏) can be 413 

expressed as the following second-order approximation: 414 

 𝐸(𝒏) =
1

4𝜋
(1 + 𝑎𝑖𝑗

𝑐 𝑛𝑖𝑛𝑗)   (A2) 

where the second-order deviatoric anisotropy tensor 𝑎𝑖𝑗
𝑐  is symmetric and characterizes the fabric anisotropy. 𝑎𝑖𝑗

𝑐  can 415 

be determined using the following expression: 416 

 𝑎𝑖𝑗
𝑐 =

15

2
𝜙𝑖𝑗

′    (A3) 

where 𝜙𝑖𝑗
′  is the deviatoric part of 𝜙𝑖𝑗. 417 

As the mechanical anisotropy is related to normal force anisotropy, the following second-order tensor 𝑎𝑖𝑗
𝑛  is 418 

adopted: 419 

 
𝑎𝑖𝑗

𝑛 =
15

2
 
𝜒𝑖𝑗

′ 𝑛

𝑓̅0  
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where 𝜒𝑖𝑗
′ 𝑛 is the deviatoric part of 𝜒𝑖𝑗

𝑛 ,  𝜒𝑖𝑗
𝑛  being determined from Equation (A5). 𝑓̅0 = 𝜒𝑖𝑖

𝑛.  420 

 𝜒𝑖𝑗
𝑛 =

1

𝑁𝑐
∑

𝑓𝑛𝑛𝑖𝑛𝑗

1 + 𝑎𝑘𝑙
𝑐 𝑛𝑘𝑛𝑙

𝑐𝜖𝑁𝑐

 (A5) 

Because 𝒂𝑐  and 𝒂𝑛  are deviatoric tensors by definition, it is convenient to use the following invariants to 421 

quantify the degree of anisotropy: 422 

 𝑎𝑐 = sign(𝑎𝑖𝑗
𝑐 𝜎𝑖𝑗

′ )√
3𝑎𝑖𝑗

𝑐 𝑎𝑖𝑗
𝑐

2
 (A6) 

 𝑎𝑛 = sign(𝑎𝑖𝑗
𝑛 𝜎𝑖𝑗

′ )√
3𝑎𝑖𝑗

𝑛 𝑎𝑖𝑗
𝑛

2
 (A7) 

where 𝜎𝑖𝑗
′  is the deviatoric part of the stress tensor 𝜎𝑖𝑗 and sign() is the sign function. The sign function gives the 423 
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relative orientation of the principal direction of 𝑎𝑖𝑗
𝑐  and 𝑎𝑖𝑗

𝑛  with respect to that of the stress tensor. A positive sign 424 

indicates that the major principal direction of 𝑎𝑖𝑗
𝑐  or 𝑎𝑖𝑗

𝑛  is closer to the major principal direction of the stress tensor. 425 


