

TAPS for Multimodal Epigenomic Profiling in Livestock A Comparison with ONT, WGBS, and EM-Seq

Céline Vandecasteele, Julie Demars, Sophie Leroux, Nathalie Iannuccelli, Carole Iampietro, Craig Marshall, Travis Sanders, Aaron Garnett, Martin Ranik, Kristina Giorda, et al.

▶ To cite this version:

Céline Vandecasteele, Julie Demars, Sophie Leroux, Nathalie Iannuccelli, Carole Iampietro, et al.. TAPS for Multimodal Epigenomic Profiling in Livestock A Comparison with ONT, WGBS, and EM-Seq. Plant and animal genome conference 32, Jan 2025, San Diego (California), United States. 2025. hal-04911060

HAL Id: hal-04911060 https://hal.inrae.fr/hal-04911060v1

Submitted on 24 Jan 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

INRA

TAPS for Multimodal Epigenomic Profiling in Livestock A Comparison with ONT, WGBS, and EM-Seq

Céline Vandecasteele¹, Julie Demars², Sophie Leroux², Nathalie Iannuccelli², Carole Iampietro¹, Craig Marshall³, Travis Sanders³, Aaron Garnett³, Martin Ranik³, Kristina Giorda³, Eduard Casas³, Thomas Harrison³, Doug Wendel³, Brian Kudlow³, Frédérique Pitel²

> 1 INRAE, US 1426, GeT-PlaGe, Genotoul, France Genomique, Université Fédérale de Toulouse, Castanet-Tolosan, France 2 GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France 3 Watchmaker Genomics, Boulder, Colorado, USA

Introduction

Genetic and genomic selection advances have significantly optimized livestock performance over the past decades. However, genetics accounts for only a portion of the observed phenotypic variability, while much of this variability—often attributed to environmental factors—remains inaccessible to genetic approaches. One of the questions in breeding today is thus whether integrating epigenetic markers into prediction models could improve their accuracy or even whether epigenetics should be included in genetic evaluation models for breeding candidates. The availability of a large-scale epigenotyping tool is crucial for answering this question and eventually implementing epigenotyping in animal breeding. Here we evaluated CpG methylation detection using an advanced prototype of TAPS (TET-assisted pyridine borane sequencing) against existing data from Whole Genome Bisulfite Sequencing (WGBS), EM-seq (Enzymatic Methyl-seq), and ONT (Oxford Nanopore Technology) in two farm species: pigs (Sus scrofa) and quails (Coturnix japonica).

Standard methods

Available data sets / TAPS results

		WGBS	EM-Seq	ONT	MicroArray	TAPS
Sus scrofa	Sample 1	ND	148 Gb	192 Gb	650 k Array	287 Gb*
	Sample 2	238 Gb	ND	152 Gb	650 k Array	269 Gb*
Coturnix japonica	Sample 1	119 Gb	ND	55 Gb	ND	94 Gb*
	Sample 2	283 Gb	90 Gb	65 Gb	ND	94 Gb*
						*3 replicates

Results

Methylation analyses (Quail sample 2)

At the 10X threshold, the WGBS approach covers less than 75% of CpG sites, while EM-Seq covers around 90%, and both ONT and TAPS achieve nearly 100% coverage.

- Reduces low-quality reads to enhance sequence economy.
- Speeds up analysis using standard mapping tools.
- Minimizes DNA damage relative to bisulfite for better recovery.
- 1 developed at Ludwig Cancer Research by Benjamin Schuster-Böckler's lab

Conclusion

This provides pilot studv verv **Coverage of CpG sites across technologies** The distribution of CpG site coverage and the percentage of CpG sites covered at a minimum depth of coverage

- 2 Remove positions corresponding to CpG identified with rastair, n=453,192 variants
- 3 Keep only bi allelic SNPs , n=350,011 variants
- 4 Keep only SNPs QUAL>300 & <1300, n=155,285 variants
- 5 Keep only SNPs with meanDP >15 across samples, n=129,211 variants

	Replicates	ONT <i>vs.</i> TAPS	650K <i>vs</i> . TAPS
72734224 A	0.9889	0.9680	0.9686

Pearson correlation matrix of CpG methylation level per-site across technologies (Filtering data: 10x < depth < 100x). Barplots above the matrix show the number of CpG sites covered by 10 or more reads and their percentage compared to the reference genome. Average CpG coverage by technology before depth filtering is shown on the right.

SNP analyses (pigs)

AB72734224			
ONT	Homoz Ref	Hetero	Homoz Alt
Homoz Ref	67871	1009	232
Hetero	52	55790	2810
Homoz Alt	1	20	1140

AB72734224			
650K	Homoz Ref	Hetero	Homoz Alt
Homoz Ref	68358	714	128
Hetero	192	55570	2992
Homoz Alt	1	20	1143

AB72734233				AB72734233			
ONT TAPS	Homoz Ref	Hetero	Homoz Alt	650K TAPS	Homoz Ref	Hetero	Homoz Alt
Homoz Ref	27802	1767	98	Homoz Ref	28173	1480	43
Hetero	81	96344	2217	Hetero	1186	96645	2669
Homoz Alt	1	78	537	Homoz Alt	3	77	537

Genotypes comparisons

The excess of heterozygous in TAPS libraries can be explained by *de novo* SNV-driven CpGs

encouraging results for the use of TAPS in epi/genotyping analyses in animals, with robust farm sequencing and mapping metrics and comparable CpG methylation profiles SNP and genotypes between all technologies.

AB72734224_B	0.9867	0.9678	0.9684
AB72734224_C	0.9870	0.9663	0.9670
AB72734233_A	0.9773	0.9671	0.9576
AB72734233_B	0.9884	0.9681	0.9585
AB72734233_C	0.9807	0.9709	0.9614

AB

Genotypes correlations between TAPS libraries replicates and across technologies

IGV visualization of concordant and discordant genotypes

 \rightarrow A custom script was developed to resolve variant calling complexities associated with *de novo* SNV-driven CpGs. Contact Support@watchmakergenomics.com for details.

PAG 2025, San Diego

