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Abstract

We design a predictive flow rate and concentration controller for wastewater transport and treatment networks. It
manages flow rates to avoid overflows during times of high flow, and maximizes treatment efficiency when the system is
within capacity limits. The underlying optimization is nonlinear due to the microbial growth kinetics and bilinear mass
flows. Using a second-order cone relaxation of the microbial growth constraints and the alternating direction method
of multipliers, we break down the problem into second-order cone and quadratic programs. This allows us to solve the
problem at large scales in real-time. In a case study based on the wastewater transport and treatment system in the
City of Paris, our controller outperforms the conventional flowrate-based controller by removing 13.7% more pollutant
mass while treating the same amount of wastewater.

Keywords: Wastewater treatment, sewer network, second-order cone programming, alternating detection method of
multipliers, predictive control.

1. Introduction

Urban wastewater systems consist of the sewer net-
work, the treatment plants, and the receiving environ-
ment. In a combined system, the sewer network collects
and transports both stormwater and sanitary wastewater5

to the treatment plants. In many networks, actuators like
pumps, gates, and valves help manage flow. Most systems
today do so to minimize combined sewer overflow (CSO)
and treatment bypasses. In principle, flows can also be
managed to improve treatment efficiency, thus reducing10

pollutant emissions to the environment. This requires ac-
counting for the biochemical processes in the plants, which
are nonlinear and hence computationally challenging.

In this study, we design a new predictive controller
for flow management in urban wastewater systems. Our15

controller is based on a nonlinear model with both flow
rates and pollutant concentrations. During times of high
flow, it minimizes overflow, and when the system is within
capacity limits, it maximizes treatment efficiency.

The controller operates in receding horizon fashion,20

wherein the decision is re-optimized in each time period.
The optimizations have two sources of nonlinearity: the
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microbial growth kinetics in the treatment plants, which
are typically modeled by the Monod function, and bilin-
ear mass flows. We handle the growth kinetics using the25

second-order cone (SOC) relaxation of [1]. We handle the
bilinearity using the alternating direction method of mul-
tipliers (ADMM) [2]. This enables us to alternate between
a quadratic program (QP) and an SOCP, both of which
can be solved at large scales using commercial software.30

In the existing literature, modeling and control of the
sewer network and the treatment plant are often separate.
Many sewer control studies model the plants as static out-
lets of the sewer network and do not account for their treat-
ment processes. [3] This type of control can be categorized35

as volume or pollution-based [4]. Volume-based control
manages flow rates in the sewer pipes so as to minimize
CSO and bypasses [5, 6, 7]. For combined systems, un-
treated overflows to the streets and the receiving environ-
ment are significant pollution sources motivating work on40

CSO management [8, 9, 10]. Both static optimization and
dynamic control strategies have been proposed, in some
cases reducing CSO by 17% [11]. Pollution-based control
improves the dry weather performance by also maximiz-
ing the pollutant mass arriving at the treatment plants45

in order to minimize pollutant discharge [12, 13]. How-
ever, this does not always optimize receiving water quality
because it does not account for the treatment processes
in the plants and interactions between plant effluents and
the receiving environment [14]. Similarly, plant controllers50

neglect the sewer network, treating it as an inlet with un-
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certain flow rates and concentrations [15]. This has moti-
vated several integrated, immission-based controllers that
optimize receiving water quality by accounting for both
the wastewater treatment system and the receiving envi-55

ronment [16, 17, 4]. Immission-based control can achieve
better environmental protection, but it is more complex
in that it requires nonlinear modeling and real-time mon-
itoring of the receiving environment; integrated modeling
of heterogeneous components; and extensive calibration60

and validation of parameters that can change over time
[18, 19, 20, 21]. In this paper, we design a controller
that incorporates a dynamic model of the biochemical pro-
cesses in the treatment plants, similar to immission-based
controllers. However, unlike immission-based systems, we65

do not model or monitor the receiving environment. Our
controller is thus more similar to pollution-based meth-
ods, but with further modeling of the coupling between
the sewer network and treatment plants.

The main novelty of our controller is its computational70

structure. By using a recent SOC relaxation of the mi-
crobial growth kinetics, we break down the problem into
an QP for flows and an SOCP for concentrations. This
enables us to solve problems with numerous variables and
time periods in real-time. During times of high flow, the75

controller minimizes CSO and flooding, as with volume-
based control; and during low flow, the controller mini-
mizes pollutant discharge. We implement the controller in
a case study based on the City of Paris wastewater trans-
port and treatment network. Compared to a conventional,80

flowrate-based controller, our controller releases 13.7% less
pollutant mass while treating the same volume of wastew-
ater.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the model and setup. In Section 3,85

we formulate the flow management optimization with con-
vex relaxation, and its solution via ADMM. In Section 4,
we implement the optimization within a model predictive
controller. In Section 5, we evaluate the performance of
the controller in a case study based on the City of Paris90

wastewater transport and treatment network.

2. Modeling

2.1. Network

The network consists of n tanks interconnected by pipes.
The tanks can be real or virtual. Real tanks can be storage95

in the pipe network, or reactors in the treatment plants.
Virtual tanks represent the volume of sewage pipelines
within a catchment area. The volume stored in tank i
is denoted Vii, and V ∈ Rn×n is a diagonal matrix of the
volumes. Actuators such as valves and pumps are repre-100

sented by their corresponding flow rates. We use Qin
i ∈ R+

to denote the flow rate entering tank i from outside the net-
work, Qout

i ∈ R+ the flow rate exiting the network from
tank i, and Qij ∈ R the flow rate from tank i to tank j.
If tank i is not connected to outside, Qin

i and Qout
i can be105

zero.

Define the n× n matrices

Cij(Q) =

{
0, i ̸= j

Qin
i , i = j

Mij(Q) =

{
Qji, i ̸= j

−Qout
i −

∑n
k=1 Qik, i = j,

and let M̄(Q) = diag[M(Q)·1] where 1 is a column of ones.
M(Q) is a compartmental matrix, and therefore, assuming
the network is outflow connected, is negative definite. As-110

suming constant density, the evolution of the tank volumes
is

dV

dt
= C(Q) + M̄(Q), (1)

with initial volumes V (0) = V0.

2.2. Biological Treatment

There arem components (substrates/biomasses) in each115

tank. Let ξi ∈ Rm
+ denote the process state of tank i, which

contains the substrate and biomass concentrations, and let
ξini ∈ Rm

+ be the corresponding influent concentrations. If
tank i is not connected to outside, i.e. Qin

i = 0, we take
ξini = 0 just by convention.120

There are r reactions in each reactor tank, which con-
vert substrates to other substrates and biomasses. Let
ϕi(ξi) ∈ Rr

+ be the reaction rate vector of tank i. Two
commonly used kinetics models are the Monod [22] and
Contois [23] growth rates. They model the kinetics of one125

microbial species of concentration x on a single limiting
substrate of concentration s:

µMonod = µm sx

k + s
and µContois = µc sx

kx+ s

where µm, µc, and k are constant parameters. Let κi ∈
Rm×r be the stoichiometric matrix, which is all zeros if no
reaction takes place in tank i, or if the reactions in tank i130

are negligible compared to other ones.
The dynamics in tank i, i = 1, ..., n, are:

d(Viiξi)

dt
=

dVii

dt
ξi + Vii

dξi
dt

= Viiκiϕi(ξi)−Qout
i ξi −

n∑
k=1

Qikξi

+Qin
i ξini +

n∑
k=1

Qkiξk.

Define the stacked vectors ξ = [ξ1, ..., ξn]
⊤ and ϕ(ξ) =

[ϕ1(ξ1), ..., ϕn(ξn)]
⊤. Let K be a block diagonal matrix

with κ1, ..., κn on its main diagonal. Let Â = A⊗Im, where135

⊗ represents the Kronecker product and Im ∈ Rm×m is the
identity matrix. The dynamics of the concentrations can
be written as:
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dV̂

dt
ξ + V̂

dξ

dt
= V̂ Kϕ(ξ) + M̂(Q)ξ + Ĉ(Q)ξin, (2)

with initial concentrations ξ(0) = ξ0.

2.3. Discretization and Time Delays140

We discretize (1) and (2) to make them compatible
with finite-dimensional optimization. Here we use a simple
Euler step, but note that a more complicated scheme, e.g.,
Runge-Kutta, can also be used so long as it is linear. Here
we also introduce time delays in the concentrations due to145

transit through the pipes.
Let there be τ time periods and constant time step ∆.

For clarity, we slightly abuse notation and omit the time
step from variable arguments, e.g., V (t) is the matrix of
volumes at time ∆t. Define Dt[f(·)] = (f(t+1)−f(t))/∆.150

The discretization of (1) is:

Dt[V (·)] = C(Q(t)) + M̄(Q(t)), t = 0, ..., τ − 1.

Denote the time delays as dk ∈ N, k ∈ D. The dis-
cretization of (2), with time delay, is:

V̂ (t)Dt [ξ(·)] +Dt

[
V̂ (·)

]
ξ(t) = V̂ (t)Kϕ(ξ(t))

+
∑
k∈D

(
M̂k(Q(t))ξ(t− dk)

+ Ĉk(Q(t))ξin(t− dk)
)
,

for t = 0, ..., τ −1. The matrices M̂k and Ĉk specify which
flows in the current time period carry which concentrations155

from earlier time periods. Mass conservation in continuous
completely mixed tanks implies that∑

k∈D

M̂k(Q(t)) = M̂(Q(t))∑
k∈D

Ĉk(Q(t)) = Ĉ(Q(t))

for t = 0, ..., τ − 1. The initial conditions for delayed con-
centrations are ξ(t) = ξt, with t = −maxk dk, ..., 0, which
is the range of time delays.160

3. Optimization

We now formulate a general optimization problem for
managing the sewage network. We first introduce the vec-
tor variable T (t), which we constrain to be equal to the
vector of kinetics, ϕ(ξ(t)). This enables the convex relax-165

ation in Section 3.3. We denote the objective F and con-
straints on concentrations, Ω1, and flow rates, Ω2, which

we describe in Sections 3.1 and 3.2. The full optimization
is below.

min
ξ,T,V,Q

F(ξ, T, V,Q) (3a)

s.t. T (t) = ϕ(ξ(t)) (3b)

Dt[V (·)] = C(Q(t)) + M̄(Q(t)) (3c)

V̂ (t)Dt[ξ(·)] +Dt

[
V̂ (·)

]
ξ(t) = V̂ (t)KT (t)

+
∑
k∈D

(
M̂k(Q(t))ξ(t− dk)

+ Ĉk(Q(t))ξin(t− dk)
)

(3d)

(ξ, T ) ∈ Ω1, (Q,V ) ∈ Ω2 (3e)

t = 0, ..., τ − 1.

We introduce some notation to describe F , Ω1, and Ω2.170

The following are subsets of the tanks.

• P, the treatment plants.

• V, the virtual tanks.

• R, the real tanks.

• U , the tanks whose outflow is uncontrolled.175

The following are subsets of other constitutive elements in
the sewage network.

• A, the subset of active flow control devices, such as
valves, gates, and weirs.

• J , the subset of junctions with zero volumes.180

3.1. Objectives

F(ξ, T, V,Q) can consist of multiple terms representing
different control objectives, some of which are listed below.
The first objective involves concentrations and flows, and
the rest only flows. Different weights can be assigned to185

each term according to priority. Squaring the terms in the
objective can improve numerical performance and discour-
age more extreme outcomes for each individual term.

• Flooding. When raining, the sewer network can sat-
urate, and excess wastewater can flow onto streets.190

The corresponding objective term is

τ∑
t=1

Qf(t)
⊤1,

where Qf(t), the vector of flooding flows, is defined
in Section 3.2.

• Combined sewer overflow (CSO). When raining, a
part of the flow can bypass the treatment plant di-195
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rectly to the environment. The corresponding objec-
tive term is

τ∑
t=1

QCSO(t) =

τ∑
t=1

∑
i∈P

max

Qin
i (t) +

n∑
j=1

Qji(t)−Qmax
i , 0

 ,

where Qmax
i is the maximum allowed flow rate into

plant i.

• Pollutant release. We can improve treatment effi-200

ciencies by optimally allocating wastewater over the
plants. The corresponding objective term is

τ∑
t=1

∑
i∈P

(
Qout

i (t)ξi(t)
)⊤

1+
(
QCSO,i(t)ξ

in
i (t)

)⊤
1.

• Total stored volume. This objective aims to empty
the sewer network to make space for future rain events.
At each time period, the total stored volume is the205

trace of V .

• Final state. This objective encourages the system to
end at a specific state. It could be an empty state
which encourages the system to empty as quickly as
possible, or it could be a set point which enables210

long-term stability. This objective is computed as
the absolute difference between the final state of the
system and the set point.

• Control action smoothness. Valves and pumps should
be operated smoothly to minimize wear and tear.215

Since the actuators are represented by flow rates,
this objective penalizes large changes between flows:

τ∑
t=1

∥Q(t)−Q(t− 1)∥22 .

3.2. Constraints

The feasible set Ω1 constrains the concentrations and
reactions, and Ω2 the flow rates and volumes. The follow-220

ing constraints make up Ω1.

• Concentration limits of the form 0 ≤ ξ(t) ≤ ξreg.
This could represent regulatory limits on pollutant
discharge from the treatment plants, P.

• Initial concentrations, ξ(t) = ξt, t = −maxk dk, ..., 0.225

Below are the constraints that make up Ω2.

• Initial volumes, V (0) = V0.

• The volume of wastewater stored in a real tank can
not exceed its capacity:

0 ≤ Vii(t) ≤ V max
i , i ∈ R.

• When the storage capacity of a virtual tank is ex-230

ceeded, extra flow is either redirected to other tanks,
or treated as overflow:

Qf,i(t) = max ((Vii(t)− V max
i ), 0) , i ∈ V.

In the dynamics equations, Qf,i is part of Q
out
i .

• Flow out from uncontrolled tanks driven by gravity is
often approximated by a linear equation [24, 25, 26]:235

Qout
i (t) = βiVii(t), i ∈ U ,

where βi is a constant.

• Flow rate control devices such as valves, gates, and
weirs are represented by the flow rate passing through
the unit. Active units, such as controlled gates and
valves, can manipulate the amount of flow passing240

through it within a certain range. The operational
range can be a constant [7],

Qmin
i ≤ Qout

i (t) ≤ Qmax
i , i ∈ A,

or proportional to the stored volume [24, 25, 26]:

0 ≤ Qout
i (t) ≤ βiVii(t), i ∈ A. (4)

• Flow rates are equal at junctions. At a junction, the
volume is equal to zero:245

Vii(t) = 0, i ∈ J .

In this case, (2) simplifies to a mass balance equa-
tion.

3.3. Convex Relaxation

We relax constraint (3b) by changing the equality to
inequality:250

T (t) ≤ ϕ(ξ(t)). (5)

The relaxation allows the microbial growth rate to be lower
than its actual value. Since the optimization objective
prioritizes maximizing the growth rate, the constraint re-
mains tight in most cases. Let Tr(t) be an element of
T (t) corresponding to a reaction with substrate s(t) and255

biomass x(t). In [1], it is shown that (5) has an SOC
representation in the following two cases.

• If the growth rate is represented by the Contois func-
tion, then (5) takes the form∥∥∥∥∥∥

 µcs(t)
kTr(t)
µckx(t)

∥∥∥∥∥∥
2

≤ µckx(t) + µcs(t)− kTr(t). (6)

• If the growth rate is represented by the Monod func-260

tion, and we assume that in each time period t,
biomass is a fixed parameter, x(t) = x̄(t), then (5)
takes the form∥∥∥∥∥∥
µms(t)x̄(t)

kTr(t)
µmkx̄(t)

∥∥∥∥∥∥
2

≤ µmkx̄(t) + µms(t)k − kTr(t).

(7)
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This relaxation can be tightened using a linear under-
estimator [1]. For example, the underestimator for the265

Monod kinetics model takes the form

Tr(t) ≥ Tr(t) +
(
T̄r(t)− Tr(t)

) s(t)− smin

smax − smin
,

where

T̄r(t) =
µmsmaxx̄(t)

k + smax
, Tr(t) =

µmsminx̄(t)

k + smin
,

and smin and smax are minimum and maximum concentra-
tions. If such concentrations are not known, then we can
use smin = 0 and smax some large number. The relaxed270

optimization problem becomes:

min
ξ,T,V,Q

F(ξ, T, V,Q) (8)

s.t. (5), (3c)− (3e).

3.4. Solution via ADMM

Problem (8) is difficult to solve due to the bilinearities
between volumes, flow rates, and concentrations. We use
ADMM, wherein we alternatively fix subsets of variables275

and solve the remaining subproblems [2]. Here, this means
fixing flow rates and volumes while optimizing concentra-
tions, an SOCP; and fixing concentrations while optimiz-
ing flow rates and volumes, a QP.

The scaled augmented Lagrangian is:

L(ξ, T, V,Q) = F(ξ, T, V,Q) +

τ∑
t=1

ρ

2
||E(t) + U(t)||22,

where ρ is a small positive constant, U is the scaled dual280

variable, and

E(t) = −V̂ (t)Dt[ξ(·)]−Dt

[
V̂ (·)

]
ξ(t)

+
∑
k∈D

(
M̂k(Q(t))ξ(t− dk)

+ Ĉk(Q(t))ξin(t− dk)
)
+ V̂ (t)KT (t).

For concision, we suppress the dependence on t below.
The ADMM consists of the following steps. The iterate

is denoted by the superscript.

1. Initialization. Set α = 0, U(0) = 0, and choose285

values for V 0, ξ0, Q0, and T 0. Note that only ξ0

and T 0 need to be specified to proceed to Step 2, but
specifying initial values of all variables can improve
convergence.

2. Solve.290

V α+1, Qα+1 = argmin
V,Q

L (ξα, Tα, V,Q)

s.t. (3c)

(Q,V ) ∈ Ω2

t = 0, ..., τ − 1.

3. Solve.

ξα+1, Tα+1 = argmin
ξ,T

L
(
ξ, T, V α+1, Qα+1

)
s.t. (5)

(ξ, T ) ∈ Ω1

t = 0, ..., τ − 1.

4. Update.

Uα+1 = Uα + Eα+1.

5. Termination. If a termination criterion is satisfied,
return the current solution. The termination crite-
rion could be, e.g., maximum iterations or conver-295

gence of the objective, solution, or E. If a termina-
tion criterion is not satisfied, set α ← α + 1 and go
to Step 2.

We note that ADMM is not guaranteed to converge to
a local solution on bi-convex problems like (8). However,300

it is known to achieve good empirical performance, and
does so in our examples. It is also relatively user-friendly
in that it relies on convex solvers, and thus does not re-
quire the calculation of gradients and Hessians, which we
acknowledge is now also a feature in several general non-305

linear programming solvers.

4. Model Predictive Control

We implement the optimization via model predictive
control (MPC). We note that this is more precisely eco-
nomic MPC, wherein the controller aims to minimize a310

cost and not necessarily to drive the state to equilibrium
[27, 28]. Informally, MPC operates by applying the de-
cisions in the first period; updating the parameters and
pushing the time horizon back one period; resolving; and
then again applying the decisions in the new first period315

[29]. Some of the benefits of MPC are that it incorporates
uncertainty by updating the parameters in each iteration;
it is computationally tractable because we can choose the
time horizon; and it accommodates constraints. Although
our controller does not guarantee stability, using a long320

prediction horizon and incorporating a final state (termi-
nal) cost can still promote closed-loop stability.

Our MPC procedure is as follows. LetH be the horizon
length and t0 be the current time period.

1. Forecasting and state estimation. Obtain inlet vec-325

tors Qin and ξin for t = t0, ..., t0 + H − 1. There
are several techniques for forecasting inflow profiles,
such as in [30], [31], and [32]. Also, obtain ξ(t0−dk),
k ∈ D, and V (t0) for initial conditions. These can
be obtained by SCADAmeasurements, or using state330

estimators such as the Unscented Kalman Filter, a
particle filter, or a moving horizon state estimator
[33]. The forecasts and current state estimates are
used to parameterize (8).
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2. Optimization. Solve (8) over time periods t = t0, ..., t0+335

H − 1. We do so using ADMM, as described in Sec-
tion 3.4.

3. Implementation. Execute decisions for the current
time period, t0.

4. Continuation. Set t0 → t0 + 1 and go to Step 1.340

To speed up Step 2, we use the optimal solution of
the current time period as the starting point for the next.
More precisely, suppose (V ∗(t), Q∗(t), ξ∗(t), T ∗(t)), t =
t0, ..., T0+H−1 is the solution at time t0. In the next time
period, t0+1, the starting point for the ADMM routine is345

(V ∗(t), Q∗(t), ξ∗(t), T ∗(t)) for times t = t0+1, ..., t0+H−1.
The starting point for the last period, t0+H, must be cho-
sen by other means, e.g., equal to the starting point of the
second last period, t0 +H − 1.

5. Case Study350

We now present results from a case study based on a
part of the City of Paris (France) sewage network, shown
in Figure 1.

Figure 1: Simplified representation of the catchment area.

5.1. System Description

The network includes 8 tanks (7 virtual, 1 real) and 3355

treatment plants. Volumes and time delays of the tanks
are listed in Table 1. Time delays are estimated based on
the total volume of each virtual tank and are assumed to be
constant, independent of the flowrate. The time delays are
due to the tanks, but are mathematically represented in360

the flows. Volumes and flow requirements of the treatment
plants are listed in Table 2.

The tanks are connected by detention gates, diversion
gates, and pumps. Detention gates and pumps are mod-
elled as active units as in (4) with β = 0.15, and diversion365

gates are modelled as junctions.
The two input streams represent the Clichy and La

Briche pre-treatment facilities. The Seine Centre (Sec),
Seine Aval (Sav) and Seine Grésillons (Seg) treatment plants

Volume (m3) Time delay (min)
V1 1.6× 105 60 (Q1, Q2)
V2 8.0× 104 30 (Q3, Q4)
V3 8.0× 104 30 (Q5, Q6)
V4 8.0× 104 30 (Q15)
V5 1.2× 105 45 (Q14)
V6 8.0× 104 30 (Q9, Q10, Q11)
V7 4.0× 104 15 (Q13)
V8 1.2× 105 45 (Q12)

Table 1: Volumes and time delays of the tanks. The corresponding
flows are listed in parentheses.

Volume (m3) Qmin (m3 d−1) Qmax (m3 d−1)
P1 2.0× 104 4.8× 104 2.4× 105

P2 1.6× 105 1.4× 105 1.7× 106

P3 3.0× 104 1.9× 104 1.0× 105

Table 2: Volumes and flow requirements of the plants.

are modelled as reactors with constant volumes. The fol-370

lowing constraint is added to Ω2:

Qin
i (t) +

n∑
j=1

Qji(t) = Qout
i (t), i ∈ P.

At each treatment plant, the dynamics of biochemical
oxygen demand (BOD), ammonia nitrogen (NH+

4 ), nitrite
nitrogen (NO−

2 ), and nitrate nitrogen (NO−
3 ) are modelled

assuming Monod growth rates with constant biomass at375

x̄(t) = 1 × 103 (mg L−1). The vector of concentrations is
thus

ξ =
[
SBOD, SNH+

4 , SNO−
2 , SNO−

3

]⊤
.

Following [34], it is assumed that the air supply is suf-
ficient for microbial growth, and pH in the plants is al-
ways around neutral pH. The corresponding parameters380

are listed in Table 3, which come from Table 1 in [34].
The stoichiometric matrix κi for each plant i ∈ P is:

Parameter Sec Sav Seg
µBOD (d−1) 3.99 2.56 1.93

µNH+
4 0.84 0.83 0.89

µNO−
2 1.68 1.27 0.92

µNO−
3 1.21 1.38 0.85

kBOD (mg L−1) 13.67 11.65 14.26

kNH+
4 6.59 14.98 8.53

kNO−
2 2.46 1.15 2.55

kNO−
3 1.40 2.69 4.20

yNH+
4 , NO−

2 0.28 0.25 0.27

yNO−
2 , NO−

3 0.68 0.64 0.70

Table 3: Growth rate parameters.
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κi =


−1 0 0 0
0 −1 0 0

0 1/y
NH+

4 , NO−
2

i −1 0

0 0 1/y
NO−

2 , NO−
3

i −1

 .

Initial conditions of the system are listed in Table 4.
The concentrations before time zero are assumed to be
constant.385

Volume (m3) ξ (mg L−1)
V1 6.4× 104

[128.9, 30.1, 0, 0]

V2 4.0× 104

V3 0
V4 3.2× 104

V5 4.8× 104

V6 1.6× 104

V7 1.6× 104

V8 4.0× 104

P1 2.0× 104 [5.0, 0.39, 10.2, 36.3]
P2 1.6× 105 [16.0, 6.8, 5.4, 40.0]
P3 3.0× 104 [2.5, 1.1, 0.7, 10.0]

Table 4: Volumes and concentrations at time zero and before.

5.2. Controllers

All controller parameters are shown in Table 5. The
termination criteria is set to 50 because the residual is the
squared norm of a matrix with more than 6000 entries, and
thus 50 does enforce near satisfaction of the soft constraint390

corresponding to each entry. The objective (8) consists of
the following terms.

• Pollutant release (P ). Total mass of discharged BOD,
NH+

4 , NO
−
2 , and NO−

3 .

• Flooding and CSO (F ).395

• Total stored volume (V ).

• Final volume (V (H)). Total volume of wastewater
stored in the system at the end of the optimization
period compared to a set point value. The set point
is computed by opening all valves over the horizon,400

and equally dividing the flows at diversion gates.

For the sake of comparison with a controller that does not
model concentrations, we introduce the following term to
promote balanced utilization of the treatment plants:

D =

τ∑
t=1

(
Qin

i (t)

Qmax
i (t)

− 1

P
∑
i

Qin
i (t)

Qmax
i (t)

)
, i ∈ P.

405

We compare the performances of the following two con-
trollers.

• Flow rate controller (FC). This aims to minimize
flooding and CSO while evenly utilizing the treat-
ment plants. It represents the present-day standard410

approach, and does not make use of concentrations.

min
V,Q

w1F
2 + w2V

2 + w3V (H)2 + w4D
2 (9)

s.t. (3c), (3e).

• Flow rate and concentration controller (FCC). Our
new controller aims to maximize treatment efficiency
while avoiding flooding and CSO.

min
ξ,T,V,Q

w1F
2 + w2V

2 + w3V (H)2 + w5P
2 (10)

s.t. (5), (3c)− (3e).

The values of the weights can be found in Table 5. Certain415

variables with inherently larger numerical values, such as
volume and flow rates, must be scaled to make the terms
comparable and to avoid numerical issues. Volumes are
scaled down by a quarter of the average volume of all vir-
tual tanks. Flows are scaled down by the average inlet420

flowrate. Concentrations are scaled down by the average
inlet concentration. Squaring the objective terms makes
these weights smaller yet. This is not an issue, as all of our
computations are conducted with 16 digits of precision.

5.3. Simulations425

The influent data is based on the Inf rain 2006 dataset
of [35] which contains two weeks of influent flow rates and
concentrations at a 15-minute resolution. Inflow data for
the first 2.5 days is used in our simulation. The inlet flow
rate is scaled so that the average daily inflow is equivalent430

to 70% of the total treatment capacity
(∑

i∈P
Qmax

i

)
of

the plants. The inlet flow rates of Tanks 1 and 2 are 60%
and 40% of the total flow, respectively. Both tanks share
the same inflow substrate state vector.

Three sets of simulations are conducted, and a sum-435

mary of parameters can be found in Table 6.

• Base case. Problem (9) and (10) are solved with
precise inlet profiles.

• Smoothed case. The control action smoothness ob-
jective (C) is added to (9) and (10).440

• Noisy case. Gaussian noises (zero-mean, 0.1 stan-
dard deviation) are applied to the inlet profiles to
simulate inaccurate predictions.

Decisions are made every 15 minutes, and flow variables
evolve with a 15-minute time step. Concentrations evolve445

with a three-minute time step for better numerical pre-
cision. Flows are not on the three-minute discretization
because volumes change relatively slowly, and the actua-
tors receive new commands every 15 minutes.

Simulations were run in Matlab R2022a using CVX450

version 2.2 and the Gurobi solver version 9.00. [36, 37].
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Objective weights
w1 = 1.00× 103 w2 = 1.77× 10−9

w3 = 1.77× 10−7 w4 = 1.00× 103

w5 = 1.55× 10−10 w6 = 1.77× 10−3

MPC parameters
H = 6 h

∆Q,V = 15 min
∆ξ = 3 min

Termination criteria ||E||22 ≤ 50
Penalty factor ρ = 0.1

Table 5: Controller parameters.

Scenario Objective function Noise

Base
(9)
(10)

None

Smoothed
(9) + w6C

2

(10) + w6C
2 None

Noisy
(9)
(10)

Zero-mean, 0.1
standard deviation

Table 6: Parameters of simulation scenarios.

5.4. Results

The performance of FC and its improvement over FC
in each scenario is summarized in Table 7. In Table 7,
Q represents the total volume of wastewater treated by455

the plants (expressed in m3), P represents the total mass
of discharged pollutants (quantified in tons), and R repre-
sents the pollutants released (tons) that exceed the regula-
tory limit [6, 0.5, 0.3, 50] mg L−1 for the concentrations of
BOD, NH+

4 , NO
−
2 , and NO−

3 , respectively. The percentage460

improvement is shown in parentheses next to FCC perfor-
mance.

Figure 2: Total volume of wastewater stored in the system in the
smoothed case.

Both controllers are effective in preventing flooding and
CSO. FCC removes more pollutant mass while maintain-
ing the same total wastewater flow as FC. This improve-465

ment results from better allocation of wastewater over the

Figure 3: Pollutant discharge rate in the smoothed case.

Figure 4: Plant 1 inlet flow rate in the smoothed case.
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Scenario Q (m3) P (tons) R (tons)
Base 3.36× 106 (same) 100 (−13.7%) 26.4 (−30.1%)

Smoothed 3.38× 106 (same) 105 (−3.87%) 29.2 (−15.1%)
Noisy 3.33× 106 (same) 112 (−3.83%) 30.7 (−18.8%)

Table 7: Performance of FCC and its improvement over FC in each scenario. Q represents total volume of treated wastewater, P represents
the total mass of discharged pollutants, and R represents the pollutants released that exceed the regulatory limit.

Figure 5: Plant 2 inlet flow rate in the smoothed case.

Figure 6: Plant 3 inlet flow rate in the smoothed case.

treatment plants, as depicted in Figures 2 to 6. During
peak hours, FCC routes wastewater to Plants 1 and 3 in-
stead of Plant 2. FCC also retains more wastewater in the
sewage pipes during peak hours. This levels the load over470

time, enabling the plants to run more efficiently.
In the base case, FCC achieves a 14% decrease in dis-

charged pollutants and a 30% reduction in regulation vio-
lation. There is a trade-off between control action smooth-
ness and treatment efficiency, as shown in the second row475

of Table 7. Adding the control action smoothness term
to the objective reduces the benefit of FCC. Nevertheless,
FCC still outperforms FC, but to a lesser extent. In Figure
7, we see that adding the smoothness term to the objec-
tive results in substantially smoother control actions. As480

expected, adding noise to the inlet flow profiles degrades
performance, but FCC still substantially outperforms FC.

The simulations were run on a personal laptop with
an Intel i7-8750H CPU. It takes on average 2.5 minutes
to solve the optimization problem for the 6-hour predic-485

tion horizon, which is within the 15-minute decision win-
dow. There are 24 time periods for flow variables, 120 time
periods for concentration variables, and around 200 state
variables in each time period. Each ADMM iteration has
around 20000 variables with 15000 constraints. Typically490

around 10 iterations are needed to reach convergence. Fig-
ure 8 shows the convergence over five iterations. Note that
while the residual decreases with each iteration, the ob-
jective might not, because early iterations might produce
highly infeasible solutions. The warm-start procedure de-495

scribed in Section 4 reduces the number of iterations by
roughly 80%. In each iteration, the SOCP step is typi-
cally three times slower than the QP step. If we shorten
the time horizon to two hours, the average computation
time becomes 50 seconds. These results demonstrate that500

the controller can be implemented in real-time.

6. Conclusion

We have developed a predictive flow rate and concen-
tration controller for the wastewater transport and treat-
ment network. It minimizes CSO, bypasses, and pollu-505

tant emissions in real-time. The City of Paris case study
demonstrates that our controller releases 13% less pol-
lutants than the conventional flow-based controller while
treating the same amount of wastewater and avoiding CSO.
The performance depends on the accuracy of the predicted510

inlet profile over the optimization horizon. Future work
will focus on integrating inlet profile predictions, real-time
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Figure 7: Control actions in the smoothed and base cases.

Figure 8: Example evolution of the residual and the objective value over iterations.
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measurements and noises, and further improving compu-
tation so as to allow for longer horizons.
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