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14 Abstract

15 Implementation of sample pooling strategy in the food chemical surveillance could lead to a 
16 strengthening of the food safety by increasing the number of analyzable samples. The analysis 
17 of a pool of samples and no longer individual samples was applied to the issue of self-
18 monitoring mycotoxins in cereal-based foods, thanks to a data set provided by the surveillance 
19 based on ELISA-kits of two mycotoxins  ̶  zearalenone (1121 samples) and ochratoxin A (1601 
20 samples)  ̶  in four different types of cereal products. After fitting the distribution of mycotoxin 
21 concentrations determined in this product category by a Pareto distribution and considering the 
22 measurement error in the decision threshold, numerical simulations of pooling were 
23 implemented using the Dorfman-2-step strategy. Simulations showed promising results for 
24 three out of the four case-studies of zearalenone and ochratoxin A. While being as sensitive 
25 and specific as the current one-by-one system, the pooling approach led to a reduction of the 
26 number of analyzes performed by 75 – 87 % in three out of the four case studies. Nevertheless, 
27 in unfavorable analytical conditions, the pooling approach can lead to an increase of the total 
28 number of analyzes.

29 Keywords: chemical hazard ; food safety surveillance ; zearalenone ; ochratoxin A; ; numerical 
30 simulations ; corrected maximum limit ; Dorfman strategy

31 1 Introduction

32 Particularly when it aims to protect sensitive populations such as children of less than three 
33 years of age for whom chemical exposure during the first 1000 days of life is essentially of 
34 food origin and will play a key role in health well beyond the childhood (ANSES, 2016), 
35 surveillance of risky chemical contaminants must be strengthened. This involves intensifying 
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36 the frequency and extent of surveillance carried out by health authorities but also providing 
37 food manufacturers with the means to develop or intensify self-monitoring at critical control 
38 points in their processing chain. To do this, it is not only necessary to develop detection tools 
39 that are fast, inexpensive and sufficiently efficient but also to propose ingenious strategies to 
40 optimally organize their implementation (Engel et al., 2022).

41 Mycotoxins are chemical agricultural contaminants that are naturally produced by several 
42 fungal species, mainly Aspergillus, Penicillium and Fusarium. Control measures involve pre- 
43 and post- harvest practices, as contamination may occur upon cultivation and storage. Even if 
44 mycotoxins occur in various food commodities, the main exposure sources for humans are 
45 cereals such as wheat, maize, rice and sorghum and nuts (Battilani et al., 2020; Eskola et al., 
46 2020). Exposure to mycotoxins via cereals is all the more critical for infants and children as 
47 the extreme importance of this food category in child nutrition (Pereira et al., 2022). According 
48 to the literature on the occurrence of mycotoxins in cereals, ochratoxins and zearalenone are 
49 part of the most commonly detected mycotoxins (Wan et al., 2021). Ochratoxin A (OTA) is 
50 the most toxic member in ochratoxin family and classified as a potential human carcinogen 
51 (group 2B) by the International Agency for Research on Cancer. Little is known about the 
52 toxicological effects of chronic exposure to low-level OTA in foodstuffs, but some recent 
53 studies highlight the toxicological and physiological effects of successive exposure to OTA at 
54 food regulatory limits (Wei et al., 2021). Zearalenone (ZEA) is a non-steroidal estrogenic toxin, 
55 with toxic hazards including reproductive toxicity, digestive toxicity, hepatotoxicity and 
56 immunotoxicity (Cai et al., 2024). Considering hazard to human health, these mycotoxins are 
57 part of the mycotoxins for which maximum permissible levels in food have been set in Europe 
58 (EU 2023/915).

59 For the food industry, mycotoxins monitoring in the incoming raw materials is thus important 
60 and unavoidable to ensure food safety, as it is practically impossible to minimize contamination 
61 upon processing. Taking into consideration the serious impact of mycotoxins on human health, 
62 especially in childhood, the difficulties in eliminating contamination of crops, and the high rate 
63 of incidents, testing for mycotoxins, and especially ZEA and OTA, on cereal food products on 
64 a regular basis is indispensable. Hence, in many cases, a strict sampling plan is applied in all 
65 cereal-based raw materials, involving control for mycotoxins at every receipt and resulting in 
66 a huge number of samples to be analyzed. 

67 In addition to the development of increasingly rapid while remaining inexpensive tools such as 
68 Enzyme-Linked Immunosorbent Assay (ELISA) kits for monitoring these mycotoxins on an 
69 industrial scale, sample pooling approaches could make it possible to meet this need to monitor 
70 continually a very large number of samples. Sample pooling is a group testing strategy 
71 introduced by Dorfman (1943) where multiple samples are combined into a pool that is tested 
72 using a single analysis (Aldridge et al., 2019). This strategy aims to exclude a large number of 
73 negative samples and detect a few positive samples at lower cost (Cheng et al 2020). Sample 
74 pooling has already been experimented in areas where positive samples are rare, such as high-
75 throughput testing of drugs (Hann et al., 1999), detection of pathogens in clinical samples 
76 (Currie et al., 2004) or in food products (Jagadeesan et al., 2019) but it is above all the COVID 
77 crisis which has highlighted the benefits of this approach for large-scale safety surveillance 
78 issues (Bilder et al., 2020; Mallapaty, 2020; Verdun et al., 2021). While in terms of food safety 
79 the method was mainly devoted to microbiological hazards, a first group sought to evaluate the 
80 benefits of sample pooling to improve the monitoring of priority chemical hazards (Cheng et 
81 al., 2020). To do this, they use existing databases to model mycotoxin contamination in single 
82 corn kernels by fitting statistical distributions to experimental data and used Monte-Carlo 
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83 simulation to evaluate assay sensitivity, specificity as well as potential gains compared to a 
84 single test approach. Starting with the screening of mycotoxins by ELISA methods as a case 
85 study, Cheng et al., (2020) showed that the sample pooling strategy could be interesting for 
86 reducing laboratory costs (volume of solvent, pipetting). Nevertheless the advantage was 
87 generally mixed, in particular due to the often high rate of samples exceeding the  regulatory 
88 maximum limits set for the agricultural raw material studied together with the high measure 
89 uncertainty due to the heterogeneity of mycotoxin partition in whole grain samples compared 
90 to more processed samples like powders (Brodal et al., 2020; Köppen et al., 2010). By focusing 
91 on the case of regulatory surveillance of PCBs in pork meat for which the ML exceedance rates 
92 were of the order of 0.1% that is much lower than in the former work of Cheng et al (2020), 
93 Ratel et al (2024) recently demonstrated the full potential of the approach. Based on two 
94 lognormal distributions for fitting the uncontaminated and contaminated data respectively, a 
95 numeric simulation demonstrated that with an optimal pool size of 25, the pooling strategy 
96 enabled to decrease the number of analysis per sample by 19 while preserving the sensitivity 
97 and specificity of non-conformity diagnosis. 

98 After pointing out the relevance of sample pooling to strengthen surveillance conducted by 
99 health authorities (Ratel et al., 2024), this new study aims to assess its potential to help food 

100 industry manufacturers optimize self-monitoring. To do this, it draws on unique databases of 
101 ELISA kit surveillance of two mycotoxins - zearalenone (1121 samples) and ochratoxin A 
102 (1601 samples) - in 4 different types of cereal products including either incoming raw materials 
103 or processed finished products intended for human consumption or infant nutrition. To evaluate 
104 the implementation of the pooling strategy, the distributions of mycotoxin concentrations in 
105 flours are fitted from the available data by selecting a probability distribution that best fitted 
106 the data with particular attention to the tails of the distribution. This model makes it possible 
107 to simulate pooling of n samples by using the Dorfman-2 step strategy (Ratel et al., 2024). In 
108 order to better control the sensitivity associated with the decision threshold at the level of the 
109 pools, the choice of the new “maximum corrected limits” is then discussed. Finally, simulation 
110 studies are performed for evaluating the performance of sample pooling strategy by considering 
111 both sensitivity, specificity and, of course, its cost-effectiveness in terms of relative number of 
112 tests per sample.

113

114 2 Material and methods

115 2.1 Samples

116 In total 1121 samples were analyzed for Zearalenone (ZEA) from February 2017 till September 
117 2023 and 1601 samples for Ochratoxin A (OTA) from February 2017 till January 2023. These 
118 samples either were incoming raw materials (521 samples) such as wheat, rye, barley and rice 
119 flour, semolina, and cornstarch collected from various food industries in Greece or processed 
120 final products (600 samples) such as cereal snacks, breakfast cereals and cereal-based baby 
121 food randomly collected from the Greek market. For the study, samples were categorized 
122 according to the Maximum Level (ML) permitted for each mycotoxin according to Regulation 
123 (EU) 2023/915 on maximum levels for certain contaminants. For ZEA, 3 cases were formed 
124 with ML 20, 50 and 100 μg/kg, while for OTA one case with ML 3 μg/kg.

125 2.2 Reagents and instrumentation
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126 The quality of methanol reagent was from Fisher Scientific (Hampton, USA). Ultrapure water 
127 (resistivity 18.2 MΩ cm-1) was produced by a Milli-Q purification system (Purite). The 
128 RIDASCREEN® Ochratoxin A 30/15 enzyme immunoassay kit was from R-Biopharm AG 
129 (Darmstadt, Germany), while the Bio-Shield Zearalenone kit was from Prognosis Biotech 
130 (Larissa, Greece). The microplate spectrophotometer was provided by BIO-TEK (Santa Clara, 
131 USA).

132 2.3 Sample analysis

133 Samples were analyzed following the protocol of the commercial kits RIDASCREEN® 
134 Ochratoxin A 30/15 enzyme immunoassay kit (Giray et al., 2009) and Bio-Shield Zearalenone 
135 kit (Trevisi et al., 2020). The method principle was the competitive enzyme immunoassay. In 
136 brief, the wells in the microtiter strips of the kit were already coated with specific antibodies 
137 against each specific mycotoxin. Mycotoxin standards or sample solutions and enzyme 
138 conjugate were added. Free and enzyme conjugated mycotoxin compete for the specific 
139 mycotoxin antibody binding sites. Any unbound enzyme conjugate was then removed in a 
140 washing step. Enzyme substrate and chromogen were added to the wells and incubated. Bound 
141 enzyme conjugate converts the colorless chromogen into a blue product. The addition of the 
142 stop solution lead to a color change from blue to yellow. The measurement was made 
143 photometrically, in a microplate absorbance reader (BIO-TEK, Santa Clara, USA.) at 450 nm 
144 for both ZEA and OTA. The absorption was inversely proportional to the mycotoxin 
145 concentration in the sample.

146 2.4 Method performance 

147 The limit of quantification (LOQ) for each parameter was determined as ten times the average 
148 absorbance plus the standard deviation of the signal of ten blank samples. The relative standard 
149 deviation for each analyte and for each contamination level was calculated from 40 samples 
150 analyzed in two different days. The results are summarized in Table 1. 

151

152 3 Theory/calculation

153 In the following, the contaminant concentration is denoted by 𝑋. 𝑋𝑖 is the value of 𝑋 on an 
154 individual sample 𝑖. A sample 𝑖 is claimed contaminated when

155 𝑋𝑖 > 𝑀𝐿

156 where 𝑀𝐿 is the maximum authorized concentration. Therefore, the prevalence of 
157 contaminated sample denoted by 𝑝𝑟𝑒𝑣 is the proportion of sample for which 𝑋𝑖 > 𝑀𝐿.

158 3.1 Modeling the contaminant concentration

159 To take into account the presence of extreme values of 𝑋, its distribution is often chosen from 
160 heavy-tailed distributions (e.g. log-normal distribution, Pareto distribution). Moreover, when 
161 the analytical method has a limit of quantification (LOQ), the concentration 𝑋 is left-censored, 
162 so the Pareto distribution is a good candidate (Merritt, 1898) as it has two parameters to be 
163 determined, namely  𝜆 and 𝑥𝑚, enabling to manage both prevalence through ML and the 
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164 probability of a measure to be lower than LOQ. 𝑥𝑚 can be interpreted as the censoring 
165 parameter and 𝜆 as the shape parameter (called the tail index). 

166 These parameters are estimated based on the following conditions:

167 • The proportion of values below 𝐿𝑂𝑄 matches observed proportion in databases.

168 • The proportion of values above 𝑀𝐿 matches the expected prevalence of contaminated 
169 data.

170 The log-normal distribution could be an alternative to the Pareto as it is also defined from two 
171 parameters and it is often used to model PCBs contaminant distributions (Ratel et al., 2024). 
172 However, with mycotoxins, the Pareto distribution seems more suitable. Indeed, PCBs are 
173 ubiquitous in the environment and are sometimes overexpressed due to environmental 
174 overexposure of animals during their breeding. Therefore, the distribution of their 
175 concentrations in animal products such as meat classically fits a lognormal distribution (e.g. 
176 Berninger & Tillitt, 2019). For mycotoxins, a slightly different model can be expected because 
177 they are produced by fungi that may have contaminated the cereals and develop and produce 
178 these toxins during storage.

179 3.2 Include measurement error in the decision rule 

180 If the contaminant concentration 𝑋 was measured without error, the decision rule might be: the 
181 sample 𝑖 is declared to be contaminated if its concentration value 𝑋𝑖 is greater than 𝑀𝐿. Note 
182 that, for error-free X values, this decision rule has a sensitivity (i.e. true positive rate, 
183 probability of being detected positive when truly contaminated) and a specificity (true negative 
184 rate, probability of not being detected positive when truly uncontaminated) equal to 1. In this 
185 situation, the 𝑀𝐿 corresponds to the threshold for the decision rule.

186 In practice, for an individual sample 𝑖, the measurement 𝑋∗
𝑖  is given with a measurement error 

187 whose value is proportional to the true value 𝑋𝑖. This aspect is considered in the modeling by 
188 assuming that:

189 𝑋∗
𝑖 = 𝑋𝑖 + 𝜀𝑖

190 where 𝜀𝑖 has a Gaussian distribution with mean 0 and standard error 𝜎𝑖 proportional to 𝑋𝑖 (i.e. 
191 𝜎𝑖 = 𝑅𝑆𝐷 ×  𝑋𝑖, where RSD stands for the Relative Standard Deviation). If the previous 
192 decision is used, the sensitivity and the specificity are unknown since a contaminated value 
193 near the 𝑀𝐿 can have a measured value under the 𝑀𝐿 (see Figure 1).

194 As the sensitivity is the ability of a test to detect correctly the contaminated sample, it is a key 
195 parameter to be controlled. Therefore, in this work, the decision rule is defined so that the 
196 corresponding sensitivity (denoted by 𝑆𝑒) reaches a user defined value. This can be achieved 
197 by setting an optimal threshold (denoted by corrected Maximum Limit, 𝑀𝐿∗) that verifies:

198 𝑃(𝑋∗
𝑖 > 𝑀𝐿∗|𝑋𝑖 > 𝑀𝐿) = 𝑆𝑒.

199 Since 𝑀𝐿∗ has no analytical expression, it is estimated by Monte Carlo simulations.

https://www.zotero.org/google-docs/?nHrVjy
https://www.zotero.org/google-docs/?T25B1G
https://www.zotero.org/google-docs/?T25B1G
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200 Figure 2 shows the evolution of the corrected Maximum Limit, 𝑀𝐿∗, for a sensitivity target of 
201 99% and 𝑀𝐿 fixed at 20 (as in the case ZEA1) with a 𝑅𝑆𝐷 ranging from 0 to 0.20 and 
202 prevalence ranging from 0.1% to 10%. As it can be observed, the corrected Maximum Limit 
203 decreases more or less linearly as the measurement uncertainty increases. The lower the 
204 prevalence, the more the ML* is far below ML. These observations are an illustration of the 
205 level of confidence required for decision making when testing is carried out under complex 
206 conditions (relatively large RSD and low prevalence of contamination).

207 3.3 Sample pooling strategy

208 As said in the Introduction, the detection of contaminated samples is based on the Dorfman 
209 procedure (Dorfman, 1943). With 𝑁 samples to test, in the first step, samples are gathered into 
210 pools of size 𝑛𝑃. Having a pool made of 𝑛𝑃 samples whose individual contaminant 
211 concentration values are 𝑋1,...,𝑋𝑛𝑃, the contaminant concentration of the pool is their average 

212 𝑋𝑃 = ∑𝑛𝑃
𝑖=1 𝑋𝑖

𝑛𝑃
. The pool is submitted to the analytical instrument (here ELISA-kit). The observed 

213 measurement, 𝑋∗
𝑃, follows the same distribution as the individual measurement value i.e.

214 𝑋∗
𝑃 = 𝑋𝑃 + 𝜀𝑃 

215 where 𝜀𝑃 has a Gaussian distribution with mean 0 and standard deviation equal to 𝑅𝑆𝐷 × 𝑋𝑃. 
216 The decision rule for the pool is based on a threshold value 𝑀𝐿∗

𝑃 which is determined to reach 
217 a fixed value for the pool sensitivity 𝑆𝑒𝑃. This threshold 𝑀𝐿∗

𝑃  defined such that:

218 𝑃(𝑋∗
𝑃 > 𝑀𝐿∗

𝑃|at least one 𝑋𝑖 is greater than ML) = 𝑆𝑒𝑃.

219 Pools for which the 𝑋∗
𝑃 measurement are below 𝑀𝐿∗

𝑃 are considered to be made up of solely 
220 uncontaminated samples. 

221 On the contrary, when 𝑋∗
𝑃 measurement is above 𝑀𝐿∗

𝑃, the pool is likely to contain at least one 
222 contaminated sample. Thus, all the samples into such a pool are individually tested in the 
223 second step of the Dorfman procedure. In the second step, the decision rule for each individual 
224 sample is the one described in section 3.2.  

225 At the end of this strategy, the global sensitivity is the product of the sensitivities of both steps, 
226 i.e. 𝑆𝑒𝑃 ∗ 𝑆𝑒. For instance, for an overall sensitivity of 0.99 (i.e. 99%), setting the sensitivity 
227 of the pool sample at 99.5% (𝑆𝑒𝑃 = 𝑆𝑒 = 0.99 = 0.995) balances the risk. Note that, in 
228 practice, a major drawback of the Dorfman procedure is to assume that the test has a perfect 
229 sensitivity (see for instance Jaszkiewicz, 2020). In the proposed procedure, this assumption is 
230 not required and the sensitivity of the global procedure is a target for the optimization of the 
231 corrected maximum limit. 

232 3.4 Simulations

233 To investigate the interest of the Dorfman strategy, numerical simulations were performed. The 
234 simulation process was as follows. First, 𝑁 random values were drawn from a Pareto 
235 distribution. These values represent the true values, 𝑋𝑖 of samples’ contaminant concentration.  

https://www.zotero.org/google-docs/?5Mz5Bw
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236 In this paper, a size of 𝑁= 50 was considered but realistic analytical batches may be smaller. 
237 These 𝑁 true values were then gathered in pools of size 1 up to 𝑁. Note that in case the pool 
238 size is not a divisor of 𝑁, the last pool contains less samples. For each constituted pool, the 
239 average of the true values from the samples that belong to the pool, 𝑋𝑃, was computed. A 
240 Gaussian noise was added to the average value to simulate the measurement 𝑋∗

𝑃 (see section 
241 3.3). This measurement was then compared to the corresponding pool threshold, 𝑀𝐿∗

𝑃, to take 
242 the decision of whether or not the pool contains at least one contaminated sample. If the 
243 decision is that the pool indeed contains at least one contaminated sample, then the same 
244 process as the one described for the pool (measure and decision) is applied to the individual 
245 samples pertaining to this pool. At the end of the process the number of measures performed, 
246 the sensitivity and the specificity are collected. This entire process is repeated a large number 
247 of times (say 10 000) with the different parameters of the case studies described in Table 1 in 
248 terms of LOQ, ML, etc. 

249 4 Results and Discussion

250 4.1 Distribution fitting

251 Figure 3 provides the fitting of the Pareto and Log-Normal distributions on the data. It shows 
252 that the Pareto distribution was more adapted to model mycotoxin contaminations than the 
253 Log-Normal distribution in all four cases. The parameter of censor 𝑥𝑚 ranged from 5.8 to 7.5 
254 for ZEA datasets and was equal to 0.2 for OTA dataset and the parameters of shape from 2 to 
255 3 for all four samples. 

256 4.2 Corrected Maximum Limits

257 The corrected Maximum Limits, 𝑀𝐿∗
𝑝, were determined for the four case studies investigated 

258 (ZEA I, ZEA II, ZEA III, OTA). As shown in section 3, the Maximum Limit (𝑀𝐿), the 
259 prevalence (𝑝𝑟𝑒𝑣) and the relative measurement uncertainty (𝑅𝑆𝐷) had an impact on the 
260 performance of the test, and especially in terms of sensitivity. For global sensitivity objective, 
261 fixed here to 99%, corrected Maximum Limits 𝑀𝐿∗

𝑝, can be assessed as a function of the pool 
262 size 𝑛𝑝, as shown in Table 2.

263 The decision rule for pools in the first step of the Dorfman procedure is based on such 
264 thresholds. In the specific case of a pool size equal to 1, Table 2 gives the corrected Maximum 
265 Limits to be considered in the second step of the Dorfman procedure, or if the sampling 
266 protocol is defined without pooling.

267 Table 2 shows that for the ZEA I case study, the corrected Maximum Limit was below the 𝐿𝑂𝑄 
268 value for pools of any size. The pooling strategy was therefore unsuitable in this situation. In 
269 fact, ZEA I case study presented rather specific conditions with a 𝑀𝐿 value that was not high 
270 compared to the 𝐿𝑂𝑄 (𝑀𝐿/𝐿𝑂𝑄 = 2) and a relative measurement uncertainty 𝑅𝑆𝐷 of 35%. For 
271 the OTA case study, the corrected Maximum Limit was always larger than or equal to LOQ 
272 but the choice of large pool size may be questionable because the corrected Maximum Limit 
273 becomes close or even equal to the LOQ. In the other case studies, the corrected Maximum 
274 Limits became lower than LOQ when the pool size became too large. Obviously, the lower the 
275 LOQ as compared to the ML, the larger the pool size can be.

276 In order to compare the corrected Maximum Limit proposed in Table 2 for decision making, 
277 let us consider a simpler rule of thumb. The naive way of selecting limits for decision making, 
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278 considering the dilution effect, is to compare the analytical result for a pool with the 𝑀𝐿 value 
279 divided by the number of samples in the pool, i.e. to define the limit as 𝑀𝐿0

𝑝 =
𝑀𝐿
𝑛𝑝

. 

280 Figure 4 illustrates 𝑀𝐿∗
𝑃 and 𝑀𝐿0

𝑃 as a function of the pool size considering the parameters of 
281 the ZEA II case. Note that the larger the pool size, the smaller 𝑀𝐿0

𝑃 was compared to 𝑀𝐿∗
𝑃 

282 except when samples were not pooled (i.e. pool size = 1). For instance, with pools of four 
283 samples, the proposed corrected Maximum Limit, 𝑀𝐿∗

𝑝, would be 16.7, and the naïve corrected 
284 Maximum Limit, 𝑀𝐿0

𝑝, equal to 12.5. Monte Carlo simulations with pools of size 4 showed 
285 that the sensitivity using 𝑀𝐿∗

𝑝 was 98.8%. This result was expected as 𝑀𝐿∗
𝑝 was set to give a 

286 global sensitivity of 99%. When using 𝑀𝐿0
𝑝, the estimated sensitivity was only 89.0%, which 

287 means that approximately 11% of the contaminated samples could not be detected. However, 
288 test specificity was very high at 99.9% for both limits.

289 4.3 Average number of tests expected with the pooling strategy 

290 In order to benchmark the "sample pooling" approach with the classic approach consisting of 
291 analyzing all samples individually, the simulation results obtained with Dorfman pooling 
292 method were examined for the four case studies of mycotoxin monitoring using ELISA-kits. 
293 Criteria used were the sensitivity, the specificity and the savings obtained thanks to the pooling, 
294 assessed by the number of tests performed per sample (ratio of the total number of tests to the 
295 number of samples present in the pool). 

296 Regarding the sensitivity (data not shown), when the Corrected Maximum Limit (𝑀𝐿∗
𝑃) was 

297 considered as decision limit, it achieved the global sensitivity target, which was set at 99% for 
298 all pool sizes and all case studies. Regarding the specificity (data not shown), it was equal to 1 
299 for all pool sizes, in the case studies of OTA (prevalence of 0.1%) and ZEA in products II and 
300 III (prevalence of 0.2% and 0.1%, respectively). In contrast, the specificity in the case study of 
301 ZEA in product I (prevalence of 8%) specificity was between 89% and 92%, depending on the 
302 size of the pool considered. Note that these results guarantee the internal validation of the 
303 proposed procedure. However, an interesting avenue for future research could be an external 
304 validation using spiked experimental samples with a known level of contamination.

305 Figure 5 shows the reduction of the number of analysis per sample expected using the Dorfman 
306 pooling procedure, when considering 𝑀𝐿∗

𝑃 as a decision limit. According to the prevalence 
307 estimated for each mycotoxin, the optimal pool size was different depending on the type of 
308 mycotoxin and the type of cereal-based food considered. In the ZEA I case study, the use of 
309 sample pooling was not recommended since the ratios of the total number of tests to the number 
310 of samples present in the tested pools were always strictly greater than 1. In this case the use 
311 of pooling would be even less efficient than individual analysis of samples. These results can 
312 be explained by the fact that the analysis conditions did not meet two of the main criteria for 
313 the applicability of sample pooling recalled by Malapaty (2021) and more recently by Ratel et 
314 al (2024): a relatively low prevalence and a sufficient margin between the sensitivity of the 
315 analytical method used (in this study the ELISA kits) and the ML set for the contaminant 
316 considered (in this case ZEA) in the matrices studied, modulo the uncertainty of the analytical 
317 method. Indeed, as shown in Table 1, the prevalence of exceeding the ML was logically higher 
318 than for the two other case studies concerning ZEA (8% for ZEA I vs 0.2% for ZEA II and 
319 <0.1% for ZEA III) because the ML set for infant food (category I) was stricter in order to 
320 ensure the protection of a more sensitive population, infants (Engel et al., 2022). Moreover, for 
321 ZEA I case study, the margin between the ML (20 µg/kg) and the LOQ of the method (10 



9

322 µg/kg) was all the more restricted as the uncertainty of measurement U=2×RSD=34.8% was 
323 relatively large. 

324 In contrast, Figure 5 shows that for ZEA II and III case studies, the relative number of tests per 
325 sample was less than one, indicating that a significant gain could be expected when pooling 
326 was implemented. For ZEA II, the use of pools of 5 samples required the implementation of 
327 25% of tests compared to 100% with a sample analysis one by one, i.e. a saving of 3 tests out 
328 of 4 (75%), if the possible additional logistical costs linked to the implementation of pooling 
329 was neglected. For ZEA III, a cost saving of approximately 87% can be achieved for pools of 
330 10 or 13 samples. Concretely, this means that, considering a batch of 20 samples, out of 20 
331 analyzes traditionally carried out one by one, sample pooling led to only 2 or 3 analyzes being 
332 carried out, on average. It is also interesting to note that the performance of sample pooling 
333 remained fairly stable for pool sizes between 10 and 20. With the aim of maximizing the speed 
334 of obtaining control results, and therefore speed up batch release and improve the flexibility of 
335 analyzes more generally, the pooling of 20 samples could even be considered. For OTA case 
336 study, the optimal pool size equal to 9 samples would make it possible to reach a relative saving 
337 of 82%, i.e. barely lower than for the ZEA III case. 

338 It is interesting to confirm that if the ZEA II, ZEA III and OTA case studies were much more 
339 favorable to the use of sample pooling than the ZEA I case, it was in particular because they 
340 fulfilled its applicability criteria much better than ZEA I. Prevalence rates, margin between ML 
341 and LOQ as well as the analytical uncertainty (RSD) are criteria of main importance. It 
342 therefore seems interesting to continue developments to improve the performance of analytical 
343 methods, whether by lowering the LOQ or by limiting measurement uncertainties in order to 
344 improve performance and the relative gains expected to sample pooling implementation. In this 
345 regard, it is worth noting that the analytical cost saving could be already significantly increased 
346 with the use of the most recent ELISA kits for ZEA detection, whose performance in terms of 
347 LOQ is greatly improved (for example LOQ of 1.75 µg/kg for the RIDASCREEN® kits). 
348 Furthermore, even if our results obtained from cereal-based products collected on the Greek 
349 market can be considered robust and realistic in view of the number of samples analyzed (1121 
350 and 1601 samples for ZEA and OTA, respectively) and the collection period (6 years), the 
351 parameterization of the sample pooling model could be readjusted in certain specific situations 
352 likely to impact mycotoxin contamination levels in cereal-based products (geographic location, 
353 climate change...).

354 5- Conclusion

355 This study showed that sample pooling, which had already proven to be a serious avenue for 
356 strengthening the monitoring of certain key chemical contaminants by food safety authorities 
357 (Ratel et al, 2024), is also a very promising approach for improving the effectiveness of self-
358 monitoring that food companies work on contaminants. Taking as an example the monitoring 
359 of two mycotoxins in cereal products by ELISA test kits, the simulations showed that for the 
360 most favorable products, this approach could make it possible to reduce by 75 to 87% the 
361 number of analyzes carried out by analyzing the samples.

362 This article proposes a new approach based on numerical simulations that allows measurement 
363 error to be included in the model. Contrary to common practice, this approach ensures that 
364 practitioners can control the proportion of false negatives when identifying a contaminated 
365 value in a sample. This method is then extended to sample pooling, where the threshold is 
366 corrected for measurement error and pool size.  From a practical point of view, the approach 
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367 also allows to derive a threshold value above which a sample or a pool should be declared as 
368 contaminated directly on the basis of the measurement, without any additional adjustment or 
369 correction, since the measurement error has already been taken into account by the model in 
370 the derivation of the threshold value. Even if in one of the case studies the sample pooling 
371 turned out not to be relevant, in most case studies, it enabled sensible gain in terms of the 
372 relative number of samples to be tested.
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481 Table1. 

482 Method performance for ZEA and OTA determination.

case  LOQ 1 (μg/kg) pLOQ2 ML3 Prevalence4 RSD5
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(μg/kg)

I 10 66% 20 8% 17.4%

II 10 61% 50 0.2% 8%ZEA

III 10 74% 100 <0.1% 5%

OTA  0.3 50% 3 <0.1% 10%

483 1LOQ: Limit of Quantification

484 2pLOQ: the proportion of values below 𝐿𝑂𝑄

485 3ML: Maximum Limit (as described in Regulation (EU) 2023/915)

486 4Prevalence: proportion of observations exceeding ML.

487 5RSD: Relative Standard Deviation
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502 Table 2: 

503 Corrected Maximum Limit, ML∗
p as a function of the pool size for the different case studies.

ZEA I ZEA II ZEA III OTA

ML=20, LOQ=10,

RSD=17.5%,prev=8%
ML=50, LOQ=10, 

RSD=8%,prev=0.2%
ML=100, LOQ=10,

RSD=5%,prev=0.1%

ML=3, LOQ=0.3,

RSD=10%,prev=0.1%

𝑛𝑃 𝑀𝐿∗
𝑃 𝑀𝐿∗

𝑃 𝑀𝐿∗
𝑃 𝑀𝐿∗

𝑃

1 15 44.7 95 2.6

2 9.1 25.5 50.1 1.4

3 7.7 19.5 35.7 1

4 7.1 16.7 28.7 0.8

5 6.7 15 24.4 0.7

6 6.5 13.8 21.5 0.6

7 6.2 13 19.5 0.6

8 6.1 12.4 18 0.5

9 6 11.9 16.9 0.5

10 5.9 11.6 16 0.5

20 5.7 9.9 11.9 0.4

30 5.6 9.4 10.5 0.3

40 5.7 9.2 9.9 0.3
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504 When 𝑀𝐿∗
𝑝 are larger than the LOQ, values are in bold.

505
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517 Figures

518 Figure 1.

519

520

50 5.8 9.1 9.6 0.3
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521 Figure 2.
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556 Figure 1. Distribution of a measurement X∗
i  according to a true value Xi closed to ML. The area 

557 in blue corresponds to proportion of measurements below the ML. ML∗ designates the corrected 
558 ML (i.e. the threshold calculated considering measurement error).

559 Figure 2. Evolution of the corrected Maximum Limit, 𝑀𝐿∗, as a function of 𝑅𝑆𝐷 and the 
560 prevalence, for a sensitivity target of 99% and ML=20.

561 Figure 3. Empirical Cumulative Distribution function of the data and Cumulative Distribution 
562 Function of the corresponding Pareto distribution (red line) and Log-normal distribution (green 
563 line) for each of the four case studies (ZEA I, ZEA II, ZEA III, OTA). 

564 Figure 4. 𝑀𝐿∗
𝑃 and 𝑀𝐿0

𝑃 as a function of the pool size considering the parameters of ZEA II.

565 Figure 5. Relative number of tests by sample as a function of the pool size for the different 
566 case studies considering 50 samples in the analytical batches, and the corrected Maximum 
567 Limits for decision making.

568 Highlights

569 • Sample pooling was applied to mycotoxin self-monitoring in cereal-based foods
570 • Mycotoxin concentrations were fitted by Pareto distributions
571 • A numerical simulation of pooling was implemented using the Dorfman-2-step strategy
572 • Pooling strategy can decrease the number of analysis per sample by more than four
573 • The tests’ sensitivity and specificity were not impaired with pooling in most cases

574

575
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