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Abstract: Background and Objectives: Glaucoma is a major cause of irreversible blindness,
with primary open-angle glaucoma (POAG) being the most prevalent form. While elevated
intraocular pressure (IOP) is a well-known risk factor for POAG, emerging evidence
suggests that the human gut microbiome may also play a role in the disease. This review
synthesizes current findings on the relationship between gut microbiome and glaucoma,
with a focus on mathematical modeling and artificial intelligence (AI) approaches to
uncover key insights. Materials and Methods: A comprehensive literature search was
conducted using PubMed and Google Scholar, covering studies from its inception to
1 August 2024. Selected studies included basic science, observational research, and those
incorporating mathematical-related models. Results: Traditional statistical and machine
learning approaches, such as random forest regression and Mendelian randomization, have
identified associations between specific microbiota and POAG features. These findings
highlight the potential of AI to explore complex, nonlinear interactions in the gut–eye
axis. However, limitations include variability in study designs and a lack of integrative,
mechanistic models. Conclusions: Preliminary evidence supports the existence of a gut–eye
axis influencing POAG disease. Combining data-driven and mechanism-driven models
with AI could identify therapeutic targets and novel biomarkers. Future research should
prioritize longitudinal studies in diverse populations and integrate physiological data to
improve model accuracy and clinical relevance. Furthermore, physics-based models could
deepen our mechanistic understanding of the gut–eye axis in glaucoma, advancing beyond
associative findings to actionable insights.

Keywords: glaucoma; microbiome; therapeutic targets; mathematical modeling; artificial
intelligence; machine learning; data science

1. Introduction
Glaucoma is a leading cause of irreversible blindness worldwide, with the most

common form being primary open-angle glaucoma (POAG) [1]. POAG is a progressive
optic neuropathy characterized by loss of retinal ganglion cells (RGCs) and visual field
defects [2]. While elevated intraocular pressure (IOP) is a key risk factor, other factors,
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including systemic inflammatory processes, have been increasingly implicated in the
disease’s pathogenesis [2–4]. Of particular interest is the human microbiome, which has
been linked to other neurodegenerative diseases such as Alzheimer’s and Parkinson’s
disease [5,6]. As glaucoma is inherently a neurodegenerative condition, the microbiome’s
potential influence on POAG warrants further investigation.

Mechanistically, dysbiosis of the gut, oral, and ocular microbiomes have all been
proposed as possible contributors to immune-mediated inflammatory diseases and neu-
rodegenerative conditions through the lipopolysaccharide toll-like receptor 4 (LPS-TLR4)
pathway [7]. Bacterial translocation increases LPS products, which trigger proinflammatory
responses and mediate local immune activation [8]. TLR4, a bacterial toxin shared between
the ocular environment and the gut, responds to LPS by initiating an adaptive immune
response and endotoxin pathway that propagates neurodegeneration [7]. A recent review
by Hernández-Zulueta et al. identified 25 microbes present in the gut, mouth, or eye linked
to glaucoma pathogenesis, emphasizing the relevance of the microbiome in the disease
context [9].

This article reviews the current literature exploring the relationship between the
human gut microbiome and the development and progression of POAG. We highlight
recent studies that utilize mathematical modeling, particularly those enhanced by artificial
intelligence (AI) based tools, for their ability to navigate the complexities of the gut–
eye axis. The discussion also highlights the potential of underutilized physics-based,
mechanism-driven models to provide causal insights and deepen our understanding of the
microbiome’s role in POAG pathogenesis.

2. Materials and Methods
PubMed and Google Scholar databases were searched to identify the literature from

inception through 1 August 2024, exploring relationships between glaucoma and the human
microbiome. The initial search included: (“glaucoma” OR “primary open-angle glaucoma”
OR “open-angle glaucoma” [Mesh]) AND (“human microbiome” OR “microbiome” OR
“microbiota” OR “gut–eye axis” [Mesh]). A subsample search of resulting articles included:
(“mathematical modeling” OR “artificial intelligence” OR “mathematics” [Mesh]). Special
attention was given to the mathematical journals covering biomedical applications, such
as the Journal of Mathematical Biology, Journal of the Royal Society Interface, and Mathematical
Biosciences and Engineering. Reference lists from relevant review articles were also examined
and cross-referenced. Titles and abstracts of 68 articles were screened by three authors to
assess relevancy. A full-text review was conducted for 23 articles identified as relevant.
Ultimately, 10 key articles were selected, focusing on studies that demonstrated how AI
and mathematical modeling could be used to investigate the impact of the microbiome on
glaucoma. These articles included basic science studies, observational clinical studies, and
those employing mathematical modeling approaches. Only articles that were written in
English, presented original data, discussed POAG and the human microbiome, and utilized
mathematical modeling were included. Data were organized using Microsoft Word and
Excel.

Potential biases in the selected studies were considered when interpreting findings.
Variability in study design (e.g., sample size, population demographics, microbiome sam-
pling techniques, statistical methodologies) may introduce heterogeneity, limiting the
generalizability of findings. Additionally, publication bias favoring significant associations
may overemphasize certain relationships while underrepresenting null results.

For clarity, we categorized mathematical modeling approaches into two primary
classes: (1) data-driven models and (2) mechanism-driven models. Data-driven models
rely on empirical data to identify patterns, correlations, and associations within large
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datasets. These models include classical statistical approaches, such as regression anal-
ysis (for modeling relationships between variables) and Principal Component Analysis
(PCA, for dimensionality reduction). More advanced methods, such as machine learning
(ML) techniques and Mendelian Randomization (MR) also fall under this category. ML
techniques include random forest for classification and deep learning for complex pattern
recognition. MR, a statistical method used for causal inference, leverages genetic variants as
instrumental variables to infer causal relationships between exposures (e.g., gut microbial
composition) and outcomes (e.g., glaucoma progression). By using the random allocation
of genetic variants at conception, MR minimizes confounding factors and biases, providing
a robust framework for causal inferences in observational data.

By leveraging the random allocation of genetic variants at conception, MR minimizes
confounding factors and bias, providing a robust framework for establishing causal in-
ferences in observational data. All in all, AI-based methods are considered a subset of
the data-driven framework, as they enhance model performance by automating pattern
recognition, optimizing predictions, and handling high-dimensional data.

Mechanism-driven (or physics-based) models simulate system behavior using funda-
mental biological and physical principles. These models are based on equations derived
from physical laws, such as fluid dynamics, solute transport, or immune response mecha-
nisms, to provide causal explanations and predictive capabilities.

A graphical illustration of the use of data-driven and mechanistic models in the study
of the connection between glaucoma and gut microbiome (GMB) is given in Figure 1. The
conceptual scheme helps understand how information available from the single patient’s
clinical history may be provided as input for each model (purple arrows) and how the
output returned from each model (yellow arrows) may be used to ascertain the onset of
glaucoma and the level of its progression and to help optimize the design of individualized
therapy for the cure of the disease.
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Figure 1. Conceptual scheme representing the use of data-driven and mechanism-driven models to
investigate the connection between glaucoma and the gut microbiome (GMB). Arrows in purple color
indicate input data provided to each model on the basis of information available about the single patient.
Arrows in yellow color indicate the output returned from each model. The information provided by the
two outputs may be used as a supporting tool to design an optimal individualized therapy.

AI applications are increasingly being explored as computational tools to improve
mechanism-driven models. By optimizing simulation parameters, integrating multi-scale
datasets, and improving computational efficiency, AI techniques can increase the predictive
power and robustness of physics-based approaches. This distinction between data-driven
and mechanism-driven models allows for a clearer interpretation of the literature. AI serves
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both as an enhancer of data-driven frameworks and a computational bridge to optimize
mechanistic simulations. Combining these approaches could offer a unified, multi-faceted
understanding of the gut–eye axis.

3. Results
Most research on the relationship between glaucoma and the human gut microbiome

comes from gene marker analysis and RNA sequencing of bacteria, which mainly identify
microbiome composition. These studies are limited by the complexity of interactions be-
tween the gut microbiome and glaucoma, as well as the challenges of conducting large-scale
clinical trials. Data-driven models, including statistical approaches and ML methodologies,
offer advantages in analyzing large-scale data from animal or human hosts to identify
associations between microbiome features and disease features [10,11]. Studying the effects
of microbiomes in clinical settings is challenging due to the complexity of the microbial
communities in our bodies. As a result, the development of AI-based tools to enhance
data-driven models has emerged as a promising direction for future research. Below, we
discuss current evidence of microbiota involvement in POAG, and how data-driven models
and other mathematical approaches can address existing data challenges.

Chaiwiang et al. provide a foundational perspective on the role of gut microbiota in
diseases such as POAG, highlighting areas where modeling could advance our understand-
ing [11]. Although this study does not utilize mathematical modeling, it emphasizes the
potential of such approaches, particularly in bioinformatics and epidemiological modeling,
to clarify the complex pathways linking gut dysbiosis to glaucoma. The authors suggest
that the gut microbiome may contribute to neuroinflammatory and autoimmune pathways
affecting the retina, similar to mechanisms found in other neurodegenerative disorders.
This research underscores the need for mathematical modeling to enhance our understand-
ing of the gut–retina axis and suggests that modeling immune-mediated pathways may
reveal new insights into POAG.

The relevance of data-driven approaches in microbiome-glaucoma research is demon-
strated by studies from Chen et al., Parker et al., Zysset-Burri et al., Vergroesen et al.,
and Astafurov et al., who apply classical statistical methods to examine correlations be-
tween microbial profiles and glaucoma progression [12–16] [Table 1]. Chen et al. used
correlation analysis and ANOVA, a method for analyzing the variance across groups, to
explore genetic markers associated with POAG, identifying immune-regulatory genes that
may serve as biomarkers [12]. While these methods reveal important associations, they
are limited in capturing the high-dimensional interactions required to fully understand
glaucoma pathogenesis. Similarly, Parker et al. applied PCA and regression techniques to
investigate shifts in gut microbiome composition related to POAG, showing how microbial
profiles correlate with immune modulations that may influence disease progression [13].
Zysset-Burri et al. focused on the complement system, identifying associations between
microbial taxa and immune responses in glaucoma patients, while Vergroesen’s research
utilized correlation analysis to highlight microbiome markers that correlate with specific
POAG phenotypes [14]. Despite these insights, these studies collectively acknowledge that
traditional statistical methods, while valuable for identifying associations, are insufficient
for capturing the dynamic, non-linear relationships within the gut–eye axis. Astafurov
et al.’s foundational study on the role of microbial taxa in POAG also calls for advanced
modeling approaches to transform these associations into clinically actionable insights [16].
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Table 1. Summary of studies exploring the gut–eye axis using classical statistical approaches.

Study Methodology Key Findings Limitations

Chen et al. (2023) [12] Correlation Analysis, ANOVA Identified genetic markers associated
with POAG.

Limited in addressing complex, non-linear
interactions and lacks causal inference capabilities.

Parker et al. (2022) [13] PCA, Regression Analysis Demonstrated shifts in gut microbiome
composition linked to glaucoma.

Limited in addressing complex, non-linear
interactions and lacks causal inference capabilities.

Zysset-Burri et al. (2023) [14] PCA, Correlation Analysis Highlighted associations between
microbiota and immune responses.

Small sample size. Limited in addressing complex,
non-linear interactions and lacks causal inference

capabilities.

Vergroesen et al. (2024) [15] Correlation Analysis
Identify microbiome markers

associated with specific POAG
phenotypes.

Limited in addressing complex, non-linear
interactions and lacks causal inference capabilities.

Astafurov et al. (2014) [16] Correlation Analysis Linked microbial taxa to
neurodegeneration in POAG.

Limited in addressing complex, non-linear
interactions and lacks causal inference capabilities.

In recent years, advanced data-driven models enhanced by AI-based computational
tools have been increasingly applied to microbiome studies on POAG, as demonstrated by
studies from Yoon et al., Li et al., Wu et al., and Zhou et al. [10,17–19] [Table 2]. Yoon and
colleagues used random forest regression and rule-mining algorithms to analyze micro-
biome datasets, identifying Lactococcus as a potential biomarker for POAG severity [17].
This study highlights how ML can uncover complex, non-linear relationships within mi-
crobiome data that may be overlooked by traditional statistical techniques. Similarly, Li’s
2023 study employed bidirectional MR to explore causal links between gut microbiota,
POAG, and age-related macular degeneration (AMD) [18]. Using genome-wide association
studies (GWAS) data, Li et al. provided causal evidence that specific bacterial genera
influence IOP—a key risk factor in glaucoma [18]. Building on this approach, Wu et al.
further applied MR to confirm causal relationships between microbial taxa and POAG
endophenotypes [19]. Their work demonstrated MR’s utility in overcoming confounding
limitations in observational studies [19]. Zhou et al. expanded on this approach by combin-
ing MR with ML techniques to assess the role of Lachnospiraceae in IOP regulation [10]. This
integrated approach illustrates how AI-based tools enhance the precision of data-driven
models, offering both predictive power and potential pathways for intervention.

Table 2. Summary of studies exploring the gut–eye axis using mathematical modeling and AI-based
methods.

Study Methodology Key Findings Limitations

Yoon et al. (2021) [17] Random forest regression Identified Lactococcus as a potential
biomarker for POAG severity.

Limited dataset size; results need
validation in larger cohorts. Limited

mechanistic insights.

Li et al. (2023) [18] Bidirectional mendelian randomization (MR) Found causal links between gut microbiota
and intraocular pressure (IOP).

Relies on GWAS data; lacks diversity
in population samples. Limited

mechanistic insights.

Wu et al. (2024) [19] Mendelian randomization
Confirmed causal relationships between

microbial taxa and glaucoma
endophenotypes.

Observational data may introduce
confounding variables. Limited

mechanistic insights.

Zhou et al. (2024) [10] Combined MR and Machine Learning Highlighted Lachnospiraceae’s role in
regulating IOP.

Integration of MR and ML requires
high-quality input data. Limited

mechanistic insights.

These findings underscore the growing interest from descriptive to more predictive
and mechanistic approaches in microbiome research. The integration of data-driven and
AI-enhanced models improves our ability to explore causal relationships and uncover com-
plex interactions, as shown by Zhou et al.’s use of MR and ML to identify Lachnospiraceae as
a regulator of IOP in glaucoma. Compared to earlier studies that relied on traditional statis-
tical methods, advanced data-driven models significantly enhance predictive accuracy and
facilitate in silico hypothesis testing, bringing the field closer to actionable clinical insights.
These results highlight the need for hybrid models that combine data-driven insights with



Medicina 2025, 61, 343 6 of 10

mechanism-based simulations, such as integrating AI-driven microbial analyses with fluid
dynamics and solute transport models. Data Integrated AI approaches could improve
prediction and intervention strategies, enhancing our understanding of the links between
gut dysbiosis and retinal damage.

4. Discussion
The complexity of the relationship between the human microbiome and POAG, cou-

pled with the scarcity of data, presents significant challenges for analysis. Mathematical
modeling, broadly categorized into data-driven models and mechanism-driven models,
has emerged as a valuable tool for studying these interactions [20]. Data-driven models,
including classical statistical approaches and more advanced ML techniques enhanced by
AI-based tools, are particularly effective for identifying patterns, associations, and causal
relationships in large datasets. For instance, ML methods such as MR have uncovered links
between microbial taxa, POAG severity, and IOP. These models have greatly advanced
our understanding of how gut dysbiosis may influence glaucoma progression. However,
data-driven approaches, while powerful, remain primarily descriptive and focus on statisti-
cal associations rather than providing mechanistic insights. This limitation highlights the
need for mechanism-driven models, which integrate fundamental biological and physical
principles to simulate system behavior [20]. These models can offer deeper understanding
of causal pathways, such as how microbial metabolites may diffuse through systemic circu-
lation, interact with immune components, and contribute to optic nerve damage. Despite
their potential, such approaches have been rarely applied to the study of the gut–eye axis,
and the existing literature on this relationship remains limited.

4.1. Advantages of AI Modeling

AI offers a powerful computational platform that enhances data-driven models by
automating pattern recognition, handling high-dimensional datasets, and optimizing pre-
dictive accuracy. These tools can process the vast complexity of microbiome data, uncov-
ering relationships and trends that may be difficult to detect with traditional approaches.
Furthermore, AI-based methods enable researchers to simulate scenarios—such as the im-
pact of shifts in microbial communities on immune responses and IOP—through predictive
modeling. This simulation approach, often referred to as a Virtual Laboratory (VL) [21],
provides a computational environment for testing hypotheses and exploring intervention
strategies in silico. The integration of AI tools into data-driven models has transformed
microbiome research, accelerating discoveries and providing predictive capabilities that
surpass those of purely observational clinical studies. The development of hybrid mod-
els that integrate AI-enhanced data-driven frameworks with physics-based mechanistic
simulations holds the potential for deeper, more actionable insights into the gut–eye axis.

Incorporating AI-driven data models into the study of the gut–eye axis and POAG
offers significant advantages in improving diagnosis and therapeutic strategies. AI’s ability
to process complex, high-dimensional datasets allows for more accurate risk stratification,
potentially identifying individuals at greater risk for POAG based on their microbiome
profiles. This could lead to sooner detection, more targeted screening, and more personal-
ized management plans, particularly for high-risk populations. Furthermore, these hybrid
models have the potential to reveal novel therapeutic targets and inform the development
of microbiome-based interventions to prevent or slow disease progression. Ultimately, this
integration can lead to more targeted, effective treatments that address the underlying
causes of POAG, moving beyond symptom management and providing a more holistic
approach to care.
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4.2. Disadvantages of AI Modeling

Despite their advantages, data-driven models, including AI-based methods, are heav-
ily dependent on the quality of input data. Variability in study design, sampling techniques,
and sequencing methods can introduce bias, leading to unreliable predictions. Moreover,
the heterogeneity of microbiome composition—shaped by factors such as age, diet, and
geography—complicates modeling efforts and limits the generalizability of findings across
diverse populations. While AI tools excel in identifying patterns and generating predictions,
they often suffer from the “black box” problem, which refers to the lack of transparency in
how AI makes decisions. This lack of interpretability poses challenges for clinicians who
require mechanistic insights to inform clinical decisions.

Mechanism-driven models, though well suited for simulating causal processes, remain
underutilized in microbiome-glaucoma research. These models require precise param-
eterization and well-characterized input data, which are often lacking in microbiome
studies. Additionally, the complexity of microbial ecosystems and their interactions with
host physiology presents significant computational challenges. The lack of integration
between data-driven models and mechanistic-based approaches represents a critical gap.
Combining these frameworks, with AI tools serving as a computation bridge, could enable
the development of hybrid models that deliver both predictive accuracy and mechanistic
insights. Such integration would enhance the ability to understand and address complex
interactions within the gut–eye axis. Lastly, the application of AI in clinical settings also
raises ethical considerations. Issues such as data privacy, informed consent, and algorithmic
bias must be carefully addressed to ensure equitable and transparent clinical applications.
The “black box” nature of some AI models may limit their interpretability, potentially
undermining clinician and patient trust. Future efforts should prioritize the development
of ethical frameworks that ensure fairness, accountability, and transparency in AI-driven
diagnostic and therapeutic innovations.

5. Future Directions
A key challenge in understanding the role of the gut microbiome in glaucoma is the

lack of large, well-controlled longitudinal data. Tracking temporal changes in the gut
microbiome of POAG patients is essential for establishing causal relationships between
microbiota alterations and disease progression. Future research studies should aim to
incorporate physiological data—such as IOP fluctuations, inflammatory markers, and
retinal imaging metrics—with microbiome profiles to improve the biological relevance and
predictive accuracy of current models. Advanced methodologies, such as genome-wide
association studies (GWAS) coupled with MR, can provide insights into causal mechanisms
linking microbial communities to glaucoma pathogenesis.

Addressing population diversity is another critical consideration for future research.
Many microbiome studies are limited to specific geographic or ethnic cohorts, reducing
the generalizability of findings. Including diverse populations in future studies can un-
cover population-specific microbial markers, reduce biases associated with homogenous
datasets, and validate the microbiome’s role in POAG across different demographic groups.
Broadening study demographics will help ensure that findings are clinically applicable on
a global scale.

A review of the current literature reveals a noticeable gap in mechanism-based model-
ing approaches within microbiome-glaucoma research. Mechanism-based modes rely on
fundamental physical laws, such as those governing fluid dynamics, solute diffusion and
transport, and ion electrodiffusion, to provide a mechanistic understanding of biological
systems. These models can simulate key processes, such as cellular transport, diffusion
of microbial metabolites, and immune response dynamics. By developing mathematical
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frameworks, mechanism-based approaches are capable of not only explaining associations
but, more importantly, unraveling causal interactions within the gut–eye axis that influence
glaucoma progression [22].

Unlike data-driven methods which primarily identify statistical associations, mechanism-
based models offer mechanistic explanations and predictive capabilities that deepen our
understanding of system dynamics. By simulating the behavior of microbial communities
and their biochemical interactions over time, these models could enhance the clinical appli-
cability of microbiome research. Incorporating such approaches into microbiome-glaucoma
research could clarify underlying mechanisms and push the field from associative studies
to actionable insights.

To advance research design, future studies could employ hybrid computational frame-
works that integrate AI-enhanced data models with mechanism-based simulations. For
instance, stochastic differential equations (SDEs) could model microbial dynamics over
time, capturing interactions with host systems such as IOP fluctuations and immune re-
sponses. Physics-informed neural networks (PINNs) [23] could combine data with physical
laws to improve model accuracy. Additionally, Monte Carlo simulations or Bayesian infer-
ence could estimate model parameters from longitudinal datasets. These approaches would
not only validate hypotheses but also identify key factors driving disease progression.

The development of hybrid computational frameworks that merge AI-enhanced data-
driven models with mechanism-driven simulations represents a promising avenue for
future research. These integrative approaches would leverage the strengths of large-scale
data analysis and mechanistic modeling to provide a more comprehensive understanding
of the gut–eye axis and its role in glaucoma pathogenesis. By bridging the gap between
statistical associations and causal mechanisms, such frameworks could yield actionable
insights and pave the way for early detection, targeted therapies, and improved clinical
outcomes.

6. Conclusions
Emerging evidence suggests the existence of a gut–eye axis that influences glaucoma

pathogenesis and progression. Although current preliminary data in the literature are
limited and highly diverse, advances in data-driven models, enhanced by AI-based tools,
have provided valuable insights into associations between gut dysbiosis and glaucoma
severity. These approaches excel at identifying patterns and potential causal relationships
but often lack the capacity to offer mechanistic explanations.

The integration of mechanism-driven models remains largely unexplored in this
context and the authors believe this is a crucial direction for future research. Developing
hybrid computational frameworks that combine AI-enhanced data-driven models with
physics-based simulations represents a critical next step in advancing our understanding
of the gut–eye axis. These approaches can potentially bridge the gap between statistical
associations and mechanistic insights.

In conclusion, while the literature on AI and microbiome’s relationship to glaucoma
remains limited, understanding this interplay has the potential to transform our knowl-
edge of glaucoma pathogenesis. Future breakthroughs could lead to the identification of
novel diagnostic biomarkers and therapeutic strategies, significantly advancing the clinical
management of POAG on a global scale.

To achieve this, future research efforts must address challenges related to data quality,
incorporate physiological parameters such as IOP fluctuations and inflammatory markers,
and improve the representation of diverse populations to enhance the reliability and
generalizability of findings. Importantly, these efforts require an interdisciplinary approach
that fosters collaboration among clinicians, research scientists, and mathematicians. By
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leveraging the synergy between data-driven approaches and mechanism-based models
supported by AI tools, researchers can achieve a more comprehensive understanding of
the microbiome’s role in glaucoma progression. This deeper insight holds the promise of
improving patient care and outcomes worldwide.
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