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Abstract

In this paper, we focus on describing a landfill or a ’well-controlled’ anaerobic composting area
where leachate recirculation can be managed. We assume that this system can be modeled as a two-
stage anaerobic digester, allowing us to analyze the biological interactions through a mathematical
model that represents the dynamics of the anaerobic process. The work’s originality lies in the fact
that we consider different compartments of organic matter with respect to the rates at which they
become accessible to the biomass for its growth, which explicitly depends on the recirculation rate.
The different compartments are unsolubilized organic matter (sometimes named slowly degradable)
and solubilized organic matter (rapidly degradable). The methane produced is evaluated as a function
of the initial solubilized matter and the leachate recirculation rate. The study shows that when
the kinetics is monotonically increasing, the ordering of solutions could be preserved subject to
certain constraints on the parameters and then the methane production can be seen as an increasing
function of initial solubilized matter. In addition, it is shown that the leachate recirculation rate and
the initial distribution of organic matter affect methane production significantly in the presence of
biomass inhibition. A numerical investigation shows that a minimum of recirculation could enhance
the methane production and allow the conversion of a high initial organic load.

Keywords: Anaerobic digestion; methane; leachate recirculation; non hyperbolic equilibria; singular per-
turbations; solutions comparison; sensitivity.

1 Introduction

Solid waste, which contains a high organic matter content, may be treated either through aerobic or anaerobic
biological pathways. Anaerobic digestion converts the biodegradable fraction of bioresources, such as lipids,
proteins, and carbohydrates, into digestate (biomass) and biogas composed of a mixture of carbon dioxide and
methane, a product that can be valorized as a source of energy [27]. Keeping in mind the growing demand for
green energy on a global scale [28] and the availability of waste, anaerobic digestion can be used to valorize waste
in landfills or composting areas. Indeed, recently, there has been an increasing interest in the commercial uses of
anaerobic digestion in waste treatment facilities for its environmental and economic benefits [15]. When working
with such a system, the selection of the main primary organic resource is an important aspect of the process.
However, anaerobic digestion is a complex natural process involving a large number of bacterial strains [13] and
is not yet fully understood.

Traditionally, landfills were seen as containment structures where waste was merely stored. However, this
approach has faced criticism, particularly concerning the generation and spread of contaminated leachate capable



of polluting soils and aquifers [12]. These identified issues can be addressed through an alternative contemporary
perspective, wherein landfills are considered as managed sites where solid waste undergoes treatment and stabi-
lization. Such sites have been waterproofed to avoid the leakage of leachate. In most advanced sites, the leachate
can be collected and treated or recirculated as a way of keeping a sufficiently high water content to facilitate
and boost biological processes [5, 9] so that the organic component is minimized and byproducts such as biogas
are generated [30]. To better understand the conditions under which the process operates effectively, we can use
mathematical modeling [26, 19].

In the historical context of anaerobic digestion modeling, numerous comprehensive mathematical models were
developed to understand and predict process dynamics [25, 8] and the references therein. Among these, the so-
called ’ADM1’ serves as a reference model developed by Batstone et al. [7]. The ADMI1 is a high-dimensional
model as it includes the four main stages of anaerobic decomposition: hydrolysis, acidogenesis, acetogenesis, and
methanogenesis, as well as growth and decay of different biomass fractions. Additionally, physicochemical and
kinetic processes are included. Due to its high complexity and strong non-linearity, ADM1 cannot be used for
qualitative analysis of the system. However, when dealing with processes with a relatively high water content,
there is a wide range of publications describing the successful use of ADM1 for forecasting and simulating biogas
plants with a large number of different substrates and operating modes. A review of mathematical modeling of
anaerobic digestion, with an emphasis on modeling for control, is provided in [19]. In most biogas installations,
about 70% of methane is produced through the conversion of acetate. By focusing on this principal pathway
and separating hydrolysis from the overall process, the representation of the system can be simplified into two
main reactions: acidogenesis and methanization, which are described by the so-called AM2 model [10], a four-
dimensional system, as modeled in [39, 22, 34, 20]. In [10], monotone growth of the bacteria was assumed, and
the existence and stability properties of the equilibrium points were explored. Even though the AM2 model has
proven useful for the control and monitoring of anaerobic bioreactors, it remains a very simple model, unable
to describe certain biological phenomena, such as the dynamics of lower concentrations or small microorganisms
[1]. Therefore, a different, more extended approach to modeling anaerobic digestion was taken in [39, 14, 20, 18]
with the aim of better describing the process by integrating new main variables. In Rouez’s model [39], a
simplification was proposed in which the process is reduced to two fundamental steps: hydrolysis/acidogenesis
and methanogenesis. This model was extended in [40] by considering that part of the dead microorganisms
returns to the solubilized material. It is shown for non-monotonic growth functions that the performances in
terms of biogas production are discontinuous with respect to the initial condition since the global attractor is
non-connected.

The biodegradation of waste in a landfill environment is affected by several factors such as waste composition
and age, operational conditions, pH, moisture content, temperature, nutrient availability, etc. [11]. However,
moisture content has been determined to be the most critical parameter [46]. For instance, the main process
used for controlling the moisture content of waste is leachate recirculation. It can be operated and manipulated
to enhance system mixing, improve degradation, and enhance biogas generation. Several studies have assessed
the impact of leachate recirculation through pilot-scale experiments [23, 41|. For example, gas production rates
were found to double in wetter zones of a partially recirculating landfill compared to drier areas, while a 12-fold
increase in gas production was observed in recirculating cells compared to conventional ones [38]. However, few
studies have reported on the improvement of gas collection through leachate recirculation in a mathematical
context, particularly in the long term in the field. There are few simple models describing anaerobic digestion
that take into account a hydrolytic process [16, 2, 17]. In [36], the authors present a simple model of a landfill
that describes the degradation of the soluble substrate by means of anaerobic biomass and the solubilization of
the insoluble one through leachate recirculation under perfect mixing conditions.

There are many variables that affect methane production from substrates during anaerobic digestion. The
most obvious one is the different substrates and proportions of substrates added. Previous models for anaerobic
digestion in landfills [40, 39, 36] did not take into account the composition of the organic mixture to be treated.
Thus, in this paper, we restructure the complex matter compartment by including a new variable (unsolubilized)
in the model considered in [40] and taking into consideration the leachate recirculation that connects the two
components via a solubilization process. This work presents a detailed mathematical analysis of the asymptotic
behavior of the corresponding model and gives relevant mathematical conclusions. Moreover, it proposes a
brief revisit of some qualitative results from [40] by adapting the proofs, especially to characterize the global
attractor. In this study, we consider both non-solubilized and solubilized matter converted to methane in a
two-stage anaerobic digestion process using a coupled model. Our main objective is to study the effects of this
consideration on the system’s performance. In particular, we examine under what operating conditions and
leachate parameter there is a significant effect on methane production.

The paper is organized as follows. First, the model is described in detail. We give some preliminary results
related to the asymptotic behavior of the solutions. Then, the qualitative analysis is presented, with the determi-
nation of the equilibrium points and the characterization of a global attractor. In section 4, we evaluate methane
production depending on the leachate recirculation rate and input parameters. After reducing the model to a



three-dimensional system, we give conditions under which the vector order of solutions of this model is preserved
for monotonically increasing kinetics. Finally, a numerical sensitivity investigation of the model with respect to
key parameters and input values was carried out before conclusions and perspectives are formulated.

2 Model and assumptions

In landfills, the different types of organic matter present in a mix of waste are not all equal when it comes
to decomposition. Some materials are very easily and therefore quickly degraded by microorganisms. Other
materials, on the contrary, are called 'unsolubilized’ because of their resistance to decomposition which can be
enhanced by leachate recirculation in anaerobic environments [9, 5]. This recirculation is aimed in particular at
reviving biological activity by adding humidity within the waste insofar as certain areas of the massif would have
a lower level of water content.

In our context, we consider a simplified mathematical model of anaerobic digestion as a two-stage process in
batch mode. This model, initially proposed by Rouez [39] and completely analyzed in [40] with a biomass recir-
culation and a generic growth law is generalized in the present work. We take into consideration the composition
of the organic mixing under the influence of leachate recirculation on the hydrolysis process. Thus, we integrate
a new variable (X") standing for the concentration of unsolubilized organic matter. The recirculation of leachate
provided that X* which is not consumed directly by the biomass is converted into a solubilized one (X*). During
the first stage, X° is transformed into substrate (S). Methanogenic bacteria (B) then convert substrate into
methane (M).
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Figure 1: Overall diagram of anaerobic digestion process under the effect of leachate recirculation with
an unsolubilized matter.

Let us notice that we are interested on methane only as a bioproduct. Thus, the proposed mathematical model
reads as follows: )

X" = —p(u)g(X*)

X = —KpX®* 4+ ¢(u)g(X") + aKqB

S = iKX= $u(S)B (1)

B = (u(S) — Ka)B

M = f2155u(S)B
where X{, X§, S0, Bo and M, denote the initial concentrations of unsolubilized, solubilized organic matters, sub-
strate, biomass and methane, respectively. The parameters K}, o, K4, f1, f2, Y and u are positive and constant,
as given in Table 1. The kinetics p depends only on S and the functions ¥ and g are the leachate flow rate and
the conversion rate of X" to X°®, respectively. Thus, the product ¥ (u)g(X") describes the solubilization rate of
unsolubilized matter into solubilized one under the effect of leachate recirculation flow rate. Variables S and B
are measured in equivalent carbon mass where S is converted in B with a yield coefficient Y < 1. Therefore %



Table 1: Parameters and assumptions.

Parameters Significance Assumptions
K, Hydrolysis rate (hours™') Ky >0
Ky Biomass mortality rate 0 < Kq < max u(s)
(hours™) 520
Y Yield substrate conversion Y <1
o} Proportion of nutrient recycling a<l
U Leachate recirculation rate u € [0, 400)
(hours™)
fi i=1,2) Stoichiometric coefficients fi<l1
is larger than 1 because the remaining fraction % —1= % is converted into biogas with some efficiency factor

fe.

In the following, R4+ and R’ denote the set of non negative and positive numbers, respectively. We consider
the following assumptions on the considered functions.

Ay p:Ry — Ry is of class C', such that u(S) > 0 for S > 0 with u(0) = 0.
Az, ¢ : Ry — Ry is of class C* and increasing with ¥(0) = 0.

As. g: Ry — Ry is of class C', increasing with g(0) = 0. Moreover, we assume that there exists v > 0 such
that ¢'(X") > v for all X* > 0.

3 Study of the asymptotic behavior

Note that the system (1) has a cascade structure. In the mathematical analysis, we overlook the last equation,
as it represents the model output. Therefore, we consider the reduced model (2) and give some analytical results
of system (2) in the following section.

X = —g(u)g(X")

Xs = —KpX*® +¢(u)g(X") + aKqB @)
S=fiKnX*— +u(S)B

B = (u(S) - Ka)B

Remark 3.1. The vector field associated to the system of equations (2) is of class C* in R*, and thus the
existence and uniqueness of solutions of (2) on a mazimal time interval are guaranteed for any non-negative
initial condition by the classical Cauchy Lipschitz argumentation.

Proposition 3.1. Assume (A1), (Az) and (As) hold. Then, for any non-negative initial condition, the solution
of (2) is defined for any positive time, non-negative and bounded.

Proof. Let (X¢, X§, So, Bo) be a non-negative initial condition and consider (X", X*, S, B) the associated solution
of (2).

If By = 0, then the solution satisfies B(t) = 0 for any ¢ > 0. If By > 0, by uniqueness of the solution, B(-) cannot
reach B = 0 in finite time. We can then deduce that B(t) is non-negative for any positive ¢, in any case.
Furthermore, since the function g(.) is of class C* on R4 with g(0) = 0, using a same argument, X"*(.) remains
positive, and the solution X"(.) for Xy = 0 is identically null. Thus, X" (¢) > 0 for any t > 0.

On the other hand, one has X* > —K;, X*®, which proves the non-negativity of X*(t) for any positive ¢.
Moreover, from equations (2), one has S > —+u(S)B(1).

Let us consider the following non-autonomous scalar dynamics and denote S its solution.



Since p(0) = 0, we can deduce that S(t) = 0 is solution of (3) for any ¢ > 0, when Sy = 0. As y is Lipschitz
continuous, we deduce by uniqueness of the solution that S(-) is positive for Sy > 0. By comparison of solutions
for scalar ordinary differential equations (see e.g. [45]), one has S(t) > S(t) > 0, for any ¢ > 0 whatever is the
non-negative initial condition.

On the other hand, we introduce the following function defined by

V() =X"(t) + X°(t) + a(YS(t) + B(2)). (4)
From equations (2), one has
V =Kn(afi¥ —1)X°. (5)

Under the assumptions provided in Table 1, one has afiY < 1 and as X° remains non-negative, we conclude
that V' is non-increasing. Thus, 0 < V(t) < X§ + X5 + a(Y So + Bo), Vi > 0. Therefore, V() converges to a
limit, which will be denoted V*° > 0, as t tends to +0c0. We deduce that (X", X*, S, B) is bounded. [ |

We first perform an asymptotic analysis of model (2). Then, we provide a characterization of its global
attractor.
Denote the state vector of model (2) by ¥ = [X", X*, S, B|".

Proposition 3.2. Let u > 0 and assume (A1), (Az) and (As) hold. For any non-negative initial condition
Yo= [X§, X5, So, Bo]T, one has, for some Sg° >0

¥ = lim %(t) = [0,0,55°,0],

t—+o00

where S;° < So + % + %. Moreover, if X§ + X§ + So > 0, then Sg° is non-null.

Proof. Using equations (2) and (5), one has
7 = Kn(@f1Y — 1)(—KnX* + 9(u)g(X*) + aKaB), (6)

from which, under assumptions (A2) and (As), we deduce that V' is bounded and thus V is uniformly continuous
on R;. Then, one can get from Barbalat’s Lemma [4] that \ ligl V(t) = 0 which implies from (5) that
— 400

lim X*(t) = 0. (7)

t——+o0

Moreover, one has
X' 4 X° = —Kn(—KnX° + ¢(u)g(X") + aKy4B(u(S) — Kq — Kp).

Similarly, as X"+ X* is uniformly continuous on R, Barbalat’s Lemma [4] implies that tiigloo [X*(t)+X*5(t)] = 0.
From (7), we deduce that tl}g_noo B(t) =0.
In addition, one has
X' = (%(w)*g (X")g(X").
As u > 0 and from (As), we obtain using the same arguments tl}i:_noo X"(t) = 0. Finally, from (4) one can deduce

that there exists

VOQ
S eRy, lim S(t) =8, = —.
w € +7t_}11100 ( ) uw aY
On the other hand, one has
o Xo+X5 | Bo
So° < S —_—+ —.
w <90+ oY + v

Now let us show that S;° # 0 when X§ + X§ > 0 or Sp > 0.
Suppose that Sg° = 0, then by continuity of u(.) and as ©(0) = 0, one has

Jlimu(S() =0
which implies that there exists T" > 0 such that
w(S)) < afiYKq, Vt>T. ®)

In addition, one obtains from the first three equations of (2)

AR X0 +8 = S(ah YKy~ 1(S))B. (9)



Thus, from (8) we get f1(X"(t) + X°(t)) + S(t) > 0, for any t > T

On the other hand, it has been shown previously that the variables X"(.) + X*(.) or S(.) are positive when
X8+ X5 > 0or So > 0. Since f1(Xg§ + X§) + So > 0, we deduce that f1(X" + X*) + S cannot reach 0 in finite
time. One has then

AXE@) + X5(1) +5(t) 2 LL(XNT) + XN(T)) + 5(T) >0, t=T,

and
lim [f1(X*(t) + X°(t)) + S()] > 0,
t—+o00
which is in contradiction with the fact that S;° = 0 and . liin [X"(t) + X*(t)] = 0. Thus, we conclude our
— o0
result. |
Remark 3.2. In the case of no recirculation (u=0), we have \ 11111 X*(t) = X§. Then, from (4), one has
— oo
S =802 = 7

and as X" is constant, S is independent of X§ as expected (the dynamics X" is decoupled with u = 0).

The model (2) admits a continuum of equilibria. Moreover, one can check that one of the eigenvalues of the
Jacobian matrix at these equilibrium points is always zero, implying that all equilibria of (2) are non hyperbolic.
Consequently, classical stability analysis techniques for hyperbolic equilibria cannot be applied. To overcome
this limitation, we employ an alternative approach: we represent the solutions of the original non-hyperbolic
system as solutions of a family of hyperbolic systems, then apply the stable manifold theory and demonstrate
the exponential convergence of the corresponding trajectories. The characterization of the set of equilibria that
can be reached by positive solutions and the global attractor are given below in Propositions 3.3 and 3.4.

Before characterizing the global attractor of the system (2), let us introduce the following result concerning
the set of equilibria points towards which solutions converge. We define the set

E:={SeRy:p(S) < Kq}. (10)

Proposition 3.3. Assume (A1), (A2) and (Asz) hold. For an initial condition in RY with X§ + X§ > 0 and
By > 0, the solution of (2) converges asymptotically to an equilibrium ¥* = (0,0, S5°,0) with Sg° € £\ {0}.

Proof. If S3° ¢ &, for t sufficiently large, one gets

(n(S(1) — Ka) > e 2= HED) =R,

Consequently, and since B(.) is non-negative, we obtain for ¢ sufficiently large

B(t) > eB(1).

By a standard comparison theorem for differential inequalities [45], one gets
B(t) > B(r)e“*™™)  for t,7 sufficiently large s.t t > 7.

We deduce that B(.) cannot converge asymptotically to 0, which is in contradiction with the result obtained in
Proposition 3.2. |

As the model (2) is a generalized version of the model introduced in [40], we revisit it by adapting the proof
given in this reference to show that the attractor of (2) is characterized in the following result.

Proposition 3.4.
A :={0} x {0} x & x {0}

is a forward attractor for any non-negative initial condition of the dynamics (2).

Proof. To prove this proposition, we introduce a change of variable Z to replace S for a given fixed initial
condition, which will represent the solution of (2) as a solution of a system where 0 is an hyperbolic equilibrium.
This will allow us to use the stable manifold theorem. Then, we obtain that trajectory corresponding to the
chosen initial condition belongs to the stable manifold of the equilibrium of this system with the Z variable and
thus converges exponentially to 0.



Let us fix ¥* = (0,0,5;:°,0) such that S;° > 0 and p(S;°) < Kg4. For solutions with B(t) > 0, consider the
variable Z(.) defined by

Z(t) = +6, V>0

[(XH(E) + X)) + (S(@) = 5i°)
B(t)

where

w(Sw) — afiKqa

,Y
b= s~ K

Note that this change of coordinates depends on the asymptotic value of S and thus of the initial condition. By
a direct computation, we obtain

Z(t) = =(u(S) = u(S2)) = (u(S) — Ka) Z(t)

with X (1 ; Y)
. Ka(l—afi
7= YK (s

We consider the domain
K={(X",X°,Z,B) e R: x RxRL/S® — fi(X*+ X°)+ (Z - B)B > 0}.
We can rewrite the system (2) in terms of X", X*°, Z and B on the domain K as follows

Z = —y(k(Z, X", X*, B) = u(S7)) — (k(Z, X", X*, B) — Ka)Z
X®=-KpX®*+¢(u)g(X") + aKqB
B=(k(Z,X",X*,B)— K,;)B

with
k(Z, X", X*, B) = u(S7 — (X" + X°) +(Z - B)B).

It’s easy to see that the region K is positively invariant for (11). Furthermore, the dynamics (11) is well defined
for B = 0 and regular on the set K which is also positively invariant. Any trajectory of (11) in K matches a
trajectory of (2) where

S(t) = Sa = A(X®) + X°(8) + (Z(t) = B)B(t), Vt=0.

However, we can observe that trajectories of (11) with B(.) = 0 does not necessarily match a trajectory of (2).
By reminding that u(Sg°) # Kqa, we can check that the origin is the unique equilibrium of (11) in K.
The linearization of (11) near the origin is based on the following Jacobian matrix

—(u(S) — Ka) 'Vflu'(Sff) VAR (ST) B (ST)

. 0 w(u)g'(0) 0 0
- 0 ¥(u)g'(0) —Kp, aKy
0 0 0 w(S) — Kq

Under the condition u(S5°) < Kg, J has eigenvalues whose real parts are different from 0: — K}, —(u)g’(0),
H(SE) — Ka and —(u(ST) — Ka).

Since the origin is an hyperbolic equilibrium, then from the Stable Manifold Theorem [32], there exist a three-
dimensional stable manifold W?(0) and a one unstable manifold W™ (0) for the origin. It’s clear that W™ (0) =
{0} x {0} x R x {0}.

On the other hand, let us show that any point (Z, X*, X* B) € W*(0) \ (0,0,0,0) has to be such that B # 0.
If Bp = 0, any solution of (11) verifies B(t) = 0, ¥t > 0. Moreover, since both X" (¢) and X*(¢) converge to 0
when t tends to +oo, it implies that

lim k(Z(t), X"(t), X°(t), B(t)) = u(S:°), whatever is Z(0).
Consequently, for any Z(0), X, X¢ and for ¢ sufficiently large, one has

Lo - u(szy),

Kqg—k(Z(t), X"(t), X" (t), B(t)) > 5



then . 1115_1 Z(t) = 400. It can be deduced from this that any point (Z, X", X*, B) € W*(0) \ (0,0, 0,0) has to
——+Fo0

be such that B # 0. We deduce that any trajectory of (11) in W?*(0) N K corresponds to a trajectory of (2) and
converges asymptotically to 0. Finally, we can say that for any equilibrium point X* with S;° € int £, there exists
a three-dimensional invariant manifold W#*(0) N K in R%, such that all solutions of (2) with an initial condition
in W?°(0) N K converge asymptotically to X*. With the convergence of solutions of (2) towards an equilibrium
that belongs to &, as stated in Proposition 3.3, our result is proved. |

Remark 3.3. For non-monotonic growth functions, the set £ is not connected, as an union of disjoint intervals
E =1 UL, U--. Therefore, the global attractor A of the dynamics (2) is non-connected.

For a given initial condition (Xg, X5, So, Bo,0), we consider the final production of methane, that is the
asymptotic value of the variable M in (1), as a function of the recirculation rate u, that we denote by Mg°.

Proposition 3.5. Assume (A1), (Az) and (As) hold. For any non-negative initial condition (X, X§, So, Bo,0)
and recirculation rate u, the methane produced in system (1) is given by the following expression

fi(X8 + X§) + afiBo + (So — S)

ifu>0
a
M = 15 . (12)
X3 B —
1 X5 + afiBo + (So ) ifu=0
ai
where a1 = };(‘i‘f{il) s a positive number and the existence of Sg° and S are given by Proposition 3.2 and
Remark 3.2.

Proof. Since V(.) is bounded in (4), then fo X®(z)dz < 4+00. Moreover, by integrating egs. (1) between ¢t = 0
and t = 400, one gets the following system of two hnear equations for any positive u

Kn [ X*(z dz—afo ))B( )dz = X§ + X§ + aBo (13)
AEKy [ X(2)dz — & jo B(z)dz = 8 — S
whose solution is unique, well defined under the condition 1 — aY fi > 0, and given by the expressions
[ x(oyas = DEEXD b ¥ (5 - 57)
Kip(l —afrY)
Qoo u 5
/ W(S(2))B(2)dz 7Y(So Su)+f1_(Xo+X0)+Ofleo.
0 1—afiY
Thus, one obtains
oo J1(XE + X6) + afrBo + (So — S&°)
M;® = f2(1-Y .
f2( ) 1-— Oéf1Y
On the other hand, if u = 0, since \ liI+n X"(t) = X{§ and using Remark 3.2, the system (13) becomes
—+o00
Ky fooo X*(z dz—afooo ))B( )dz = X§ + aBo (14)
KR [0 X0 (2 on B(z)dz = 5 — So.
Therefore, the methane produced in the case of no recirculation is given by the following expression
oo _ J1X8 + afiBo + (So — S%)
This ends the proof. |

4 Influence of leachate recirculation and initial conditions on
methane production

Methane production is a crucial component of waste management, particularly in landfill operations where
anaerobic digestion is a key process. This methane can be harnessed as a green energy source by combusting it to
generate combined heat and power, using it as vehicle fuel, or injecting it into the natural gas grid [35]. Optimizing
methane generation and minimizing its environmental impact requires a good understanding of the influencing
factors. Among these, leachate recirculation rate, represented by the parameter u, plays a significant role as it
modify the asymptotic value of S. Additionally, initial conditions, including the initial microbial concentration
and substrate availability, can significantly affect the overall performance and dynamics of methane production.
This section investigates the influence of both leachate recirculation and initial conditions on asymptotic methane
production.



4.1 Influence of leachate recirculation rate

From Proposition 3.5, it is important to note that M;° depends on S;°, which varies with the recirculation
parameter u. For u > 0, the asymptotic value Sg° depends on both initial X{ and Xg, while for u = 0, it does
not depend on X¢§ (cf Remark 3.2). This suggests that the map u — MS° might be discontinuous at u = 0, and
thus motivates the analysis of its continuity properties.

4.1.1 Dependency with respect to the recirculation rate

In the following result, we show that the function associating the recirculation rate u with the asymptotic methane
production MS° is lower semi-continuous. This mathematical property indicates that small increases in u will not
cause a sudden drop in asymptotic methane, ensuring that the methane production does not experience abrupt
decreases as the recirculation rate is adjusted.

Proposition 4.1. For any non-negative initial condition (X§, X§, So, Bo,0), the map u € Ry — Mg° is lower
semi-continuous.

Proof. Fix u > 0 and a number ¢ > 0. Let us denote by M,(t) the solution M (t) in system (1). As M,(-) is an
increasing function converging to M,°, there exists T' > 0 such that

M,(t) > M7 — =, t>T.

NN

For this fixed T, the map v — M, (T) is continuous at v = u, by the Theorem of continuous dependency of the
solution of ordinary differential equations with respect to parameters [24]. Then, there exists n > 0 such that

m

|’U _u| <n = MU(T) > Mu(T) - 5
and thus one has
[v—ul <n = M;°>M,(T)>M; —¢
which implies
lim inf MJ° > M° — ¢

VU
and as € is arbitrary, one gets
lim inf MJ° > M;°

VU

i.e. u— M, is lower semi-continuous at any u. | ]

4.1.2 Methane production for arbitrarily large leachate recirculation rate

By employing a singular perturbation approach, we have approximated the methane production for infinite
recirculation rate both over a finite and an infinite horizon. Our findings indicate that increasing the recirculation
rate to arbitrarily large values does not enhance methane production.

First, let us denote X the concentration of the total organic matter that is the total of the unsolubilized and
the solubilized compartments, thus, X = X" + X*.
If w is very large, the unsolubilized matter X" varies at a fast time scale 7 := t/e under the effect of leachate
recirculation, while organic mixing X, substrate S, biomass B and methane M evolve at a slow time scale, with
1

€= gy << 1 being a small dimensionless non-negative parameter.

Thus, the model (1) has the structure of singular perturbation

e G = —g(X")
X = —Kn(X — X")+aKqB
G = hEW(X = X") = u(S)B (15)

G = (u(S) — Ka)B
G = 5 u(S)B.

For each fixed u > 0, or equivalently for each € = 1/ (u) fixed, let us denote M*°(¢) = M° where M:° is given
by (12).

The reduced model attached to model (15) is obtained with the singular perturbation method (see e.g. [24]).
Here, the fast subsystem is

ax*

dr

—9(X") (16)



which has the single equilibrium X" = 0. The fast manifold is thus the hyperplane X" = 0, and the reduced
model is obtained by substituting X* = 0 and € = 0 in the equations of the full model (15), that is

}l =KX 4+ aKq4B
& _ fR, X — Lu(S)B
42 = (u(S) — Ka)B

L = 355 u(9)B.

(17)

For a given € > 0, let us denote by (X"(t,¢), X (t,¢€), S(t,¢), B(t,e), M(t,)) the solution of (15) for a non-negative
initial condition (X¢, Xo, So, Bo,0) , and by (X (t), S(t), B(t), M(t)) the solution of the reduced system (17) for
the initial condition (Xo, So, Bo,0).

Notice that the system (17) corresponds to the dynamics introduced by Ouchtout et al. [40] which describes the
anaerobic digestion of a complex organic matter without taking into consideration a leachate recirculation phe-
nomenon and that the solutions of (17) are exactly the solutions of (15) for the initial condition (0, Xo, So, Bo, 0).
Therefore, one has for any € > 0

lim M(t)= lim M(t,e), for the initial condition (0, X, So, Bo)

t—> 400 t—>+oo

and thus there exists x B g g
M® = lim M) = 2ot ahBo+ (S = 57 (18)

t—>+oo ai

We first compare the methane production predicted by the reduced model (17) with that predicted by (15)
over a finite time horizon. This comparison will help to estimate the asymptotic methane produced in the two
models when u is relatively large.

Lemma 4.1. Assume (A1), (Az) and (As) hold. For each fized T and for any non-negative vector (X¢, Xo, So, Bo, 0),
one has o
M(t,e) — M(t) = O(e)

uniformly over the finite time interval [0,T].

Proof. Let us fix a positive number T". Since

- the dynamics (15), (17) are of class Ci (Assumptions (A1), (Az) and (As)),
- the reduced problem (17) has a unique non-negative and bounded solution,
- the boundary-layer dynamics

ax" —g(XY)

ar 7

has 0 as the unique exponentially stable equilibrium uniformly in (X, S, B, M) (from Assumption (As)),

one can apply the Tikhonov’s Theorem (see, for instance, [24]) which states that there exists a positive constant

e* s.t, for all 0 < € < &, the singular perturbed system (15) has a unique solution and M (t,e) — M (t) = O(¢)
holds uniformly for ¢ € [0, T7. |

We now demonstrate that when the recirculation parameter u goes to +o00, the asymptotic methane production
is identical for both models (15) and (17), indicating no long-term influence of w.
Proposition 4.2. Assume (A1), (Az) and (As) hold. For any non-negative vector (X, Xo, So, Bo,0), one has

lim M%(e) =M
e>0—0

Proof. Let us fix n > 0 and consider an increasing sequence of positive numbers T,,,n € N, that tends to +oo.
Accordingly to Lemma 4.1, for each n € N, there exists £ > 0 such that for € € (0,£};) one has

|M (T, ) — M(T,)| < g .

We consider a sequence €, € (0,¢},),n € N, such that hr& en = 0. On the other hand, when T;, tends to +oo,
n— o0

M(Ty, en), M(T,) converge to M (e,,), M~ , respectively. Then, there exists N € N such that

‘M(Tnvan)_Moo(E")‘ <77/37 |M(T")_Mool<n/37 n>N.
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One obtains

[M*(en) = M| < IM*(en) = M(Tn,n)| + |M(Tn,en) — M(To)| + |M(T) =M™ | <1
which gives when n tends to +o0o
. oo Vi <
im M= ()~ M| <
and as 1 > 0 is arbitrarily, one gets the conclusion. |

4.2 Influence of initial condition

In this section, the specific growth rate p(.) is assumed to be an increasing function of substrate. We demonstrate
that increasing initial organic matter X§ alone, enhances methane production for any value of u.
For simplicity, we’ll choose

P(u) =u forany u, and g(X")=X" for any X"

The development for other functions is analogous and is left to the reader. The solution of the first eq. of (2) is
then X*(t) = X¢e *'. Consequently, the model (2) can be reduced to the following non-autonomous model of
three equations
X = —K,X° +aK4B +uXje ™
S = fHKnX*— Lu(S)B (19)
B = (u(S) — Kaq)B.
This system is clearly non cooperative i.e. Kamke’s condition [21] is not fulfilled on ]Ri. However, we show that
under certain assumptions when increasing initial conditions, the corresponding solutions are ordered in X*° and
B while not necessarily in S.
For convenience, let us consider the linear change of variables

Z=B+YS,
under which the dynamics (19) can be rewritten as a three-dimensional system
X® = —KnX® + aKqB +uXje ™
Z =Y HK,X*—K4B (20)
defined on the domain
D :={(X*,Z,B) € R} with Z > B}.
One can straightforwardly check that D is forwardly invariant by the dynamics (20) and notice that the system
(20) is not cooperative either. However, we shall derive conditions to preserve the usual vector order of solutions
but for a subset of initial conditions in D, following the technique introduced in [37]. This will allow us to
establish a property of methane production as a function of the initial organic solubilized matter X3. To achieve
this purpose, we isolate terms that prevent the system (20) to be cooperative and rewrite the system as follows:
X* = —KpX° 4+ aKqB + uXfe ™
Z=H@) —KqZ (21)
B = (u(%*) - Ka)B
where H is the linear function
H):=H(X°,Z,B) =Y fiKp X° + Kq4(Z — B) =v.£
with
v=[YfiKp, Kaq,—Kq]".
Consider the partial order > on ]Ri defined by the cone

Eor & <= & -6 >0 and v.(§2—&) >0 (component wise).

We give now conditions for which the partial order = defined above is preserved by solutions of system (21).

Lemma 4.2. Let &, & € D be such that & >= & and Zp — Bo < Yu t(aY f1Ky). Denote by € and & the
corresponding solutions of (20) for the initial conditions & and &y respectively. If Kq > Kp, then there exists
T > 0 such that

§(t) = &(t), vte[o,T].

11



Proof. Following [37], we rewrite the dynamics as a non-autonomous dynamical system

: X i —KnX*® + aK,B uXge "'
E=| Z | =F©)+o@1) = ~KaZ + | HE®) |, (22)
B (m(%57) - Ka)B 0

where ®(-) : Ry — H(D) is a non-negative map. We first remark that the formulation (22) is in a separate form
in the sense that the autonomous part F(€) is separated from the non-autonomous one ®(t). Furthermore, one
can straightforwardly check that the domain D is forwardly invariant for any non-negative map ®(-) and that
the non-autonomous system (22) is cooperative on D and monotone with respect to ®. Moreover, the gradient
of H is always non null.

We use now the results of Corollary 1 of [37] for this separated form: one has to check that the conditions

i. §7(X*,Z,B) > 0 for any (X*,Z, B) € D,

ii. D(€,€):=v-(F(§)—F(€) >0, V&EinDst. £€>¢andv.(E—&) =0,

are fulfilled to ensure that the partial order » is preserved by the solutions of (20). ~
As H is linear, one has g—g = K4 > 0. By a direct computation, one obtains, for & & in D with £ > ¢ and

U(g_ 5) = 07
D(&,€) = =Y iKi(X®* = X*) + oY fiKnKa(B - B) = Ki(Z — Z) + Ki(B — B)
Z_B)B—&-Kd,u(z;B

In addition, from the fact that Y f1 K;,(X* — X°) = —K4(Z — Z — (B — B)), one writes

— Kap(

)B.

D(&,&) =Y iKn(Ka — Kpn)(X® — X°) + oY f1KnKq(B — B)

- K252 B - (255 B).

Since Z—-B=2Z-B-YfiK,/Kqy(X*s - X*®), weget Z— B < Z— B and

D(E,E) > Y fiKn(Kq — Kn)(X® — X°) 4+ Ka(Y fiKna — p(

As p(.) is continuous increasing and the data satisfy the inequalities

T —
aY 1K, > M(%) and Ky > Kp,

there ex[ists ]T > 0 such that u(w) =aoY f1Kp > M(M),Vt € [0, 7] and then D(£(t),£(t)) > 0 for
any t € [0,T].

Thus, under these conditions, having & > & in D implies that
IT >0 :£(t) = &), Vte[o,T].
| |

Remark 4.3. One could have alternatively checked the conditions introduced in [44] to prove that the dynamics
is monotone with respect to the cone associated to =. It turns out that computation is less easy than with the
formulation proposed in [37].

From Lemma 4.2, we can easily deduce the following result which shows that increasing the amount of initial
organic matter only, results in a higher production of methane.
Let us denote M; the methane produced in (19) on the time interval from 0 to ¢ which is expressed as follows

M, := M(t):le;y/o w(S(7))B(7). (23)

Proposition 4.3. Fiz X§, u and a non-negative initial condition (X§, So, Bo) such that So < p~*(aY f1Ky3). If
K4 > Ky, there exists T > 0 such that for any fized ¢t € [0,T], the map X§ € Ry — M(X() is increasing.

Proof. Let X§ and u > 0, then consider the associated solutions (X*(¢),5(t), B(t)) and (X=(t),S(t), B(t)) of
(19)_ with initial data (X§, So, Bo) and (Xg,_So, By) respectively.
If X§ > X§, one can remark that, Y f1 K, (X§ — X§) > 0, which implies

(X8, Zo, Bo) > (X5, Zo, Bo).

12



Furthermore, one gets from (23) and the equations of the model (20)

1-Y

Mt =: M(t):fQ Y

(B(t) — Bo) + Kq /t B(r)dr,

and

1-Y
Y

where M, M; are the concentrations of methane produced on the time interval from 0 to ¢ in (20) for the initial

conditions (X§, Zo, Bo) and (Xg, Zo, Bo) respectively.

Since

Mt = M(t) = fQ

(B(t) — Bo) + Kq4 /t B(r)dr,

Kq> Ky and So < p”'(aY f1K3), (24)

the conclusions of Lemma 4.2 guarantee that there exists T' > 0 such that

(X=(),

N

1), B(t)) > (X*(t), Z(t), B(t)), Vte€[0,T).

Therefore, ~
T >0: My > M, Vtel0,T].

Then, the corgcentrations of methane M; and M; produced on the time interval from 0 to ¢ in (19) for the initial
conditions (X§, So, Bo) and (Xg, So, Bo) respectively, satisfy the same inequality. Thus, the above proposition is
proved. |

Remark 4.4. In practice, we observe that the conclusion of Proposition 4.3 holds on a large time interval or
even over infinite horizon. Consequently, the asymptotic methane production exhibits a monotonic increase with
respect to X§.

5 Numerical computations

The model analysis provided in this paper is valid for all kinetics that satisfy hypothesis (A1). Non-linear
examples of these functions, which are widely used in bioprocesses (see e.g. [31] and Chapter 1.3 of [6]), include
Monod [29] and Haldane [3] kinetics, given respectively as follows:

_ S
wS) =g (25)
_ S
H(S) = m7 (26)
S Ki

where [, Ks and K, are positive constants representing, respectively, the maximum growth rate, the half-
saturation constant, and the inhibition constant (see Figure 2).

0.3

Monod
Haldane

0.25 -

0.2

3 0.15 o

Figure 2: Graphs of Monod and Haldane functions for g = 0.3, K5 = 60 et K; = 10.
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To illustrate our approach, we have considered the following numerical simulations for the Monod and Haldane
functions, with @ = 0.3 h™%, K, = 160 mg.l"! and K; = 10 mg.l”* (where h denotes hour). These parameters
and other model parameters are borrowed from [40] and reported in Table 2. Moreover, the simple functions

P(u) =u and g(X") = X" (mgl™")

will serve as candidates in our simulations to model the leachate flow rate and the solubilization rate respectively.
Specifically, we analyze the impact of initial organic mixing (how the initial matter is distributed in the compart-
ments) and the role of the leachate recirculation rate on methane production.

Ky, K, Y a | fi fo
0.176 =X [ 0.02R= 1 [ 0.05] 09 | 0.7 0.76

Table 2: Parameters values considered for the numerical simulations.

5.1 Impact of initial condition

Organic biodegradable load is one important parameter influencing performance of anaerobic digestion, since
it affects the biogas composition and microbial community. This section investigated the influence of X3 on
methane production in the case of Monod and Haldane response. In particular, numerical sensitivity analyses
will be conducted and comparisons will be investigated with the theoretical formula for asymptotic methane
production given in Proposition 3.5. The results obtained show that the initial concentration of solubilized
organic matter and the leachate parameter u has a significant influence on the degradation of the substrate,
production of methane and bacterial population.

Monod kinetics

To illustrate the results provided in section 4.2, we have run numerical simulations for parameters satisfying (24)
as it given in Table 3. For Monod kinetics (25), the associated function p~'(.) is expressed as follows
Ksm

pH(m) = = where 0<m < i,
g—m

then p~'(aY f1Kp) = 98.06.
We have considered the three initial conditions

X5 = (5,60,100) < X3 = (7,60,200) < X§ = (7,61, 300)

for X§ = 10 and v = 0.1, where Xj is the initial condition of (19) in the (X*, S, B)-coordinates. Furthermore,
one has
H(Xg) =10.35 < H(X]) = 10.60 < H(X5) = 10.77.

Ky Kq Y | a | i | [
0.176 =T [ 0.18=1 1 09 [ 0.9 [ 0.8 | 0.76

Table 3: Parameters values considered for the numerical simulations in Figure 3.

Let us notice from Lemma 4.2 that the solutions are ordered in the (X*, Z, B)-coordinates when increasing
the initial conditions, but not necessarily in S, where the order of the trajectories is preserved in reverse over
the time interval [0,5.5] (see Figure 3 (left)). Even though when increasing X§ only, the methane production
increases as it is illustrated in Figure 3 (right). Since Proposition 4.3 only provides sufficient conditions under
which the methane production in (19) increases when increasing initial solubilized organic matter only, the result
remains indeed valid even in cases where these conditions are violated but not far to be satisfied. To illustrate
this, we choose the initial state as (X§,So, Bo) = (330,0,2) with a final time T = 200, X3 = 30 mg.l"" and an
arbitrarily value of v = 0.01h~".
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Figure 3: Substrate as a function of time in dynamics (19) for three different initial conditions (left)
and methane over time by increasing initial values X§ only (right). While the trajectories for substrate
concentration cross each other as X§ increases, methane production constantly increases as X§ increases.
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Figure 4: The sensitivity function 68% as a function of time and the asymptotic methane production
0]

with respect to the initial value of X§ for Monod response with v = 0.01. The negative limiting value of

aa)fﬁ results in an increasing variation of asymptotic methane production with respect to Xg.
0

The values of the parameters used for all subsequent simulations are provided in Table 2. Figure 4a shows the
sensitivity of the substrate concentration with respect to the initial solubilized organic matter, 9S/9X§, as a
function of t when the condition (24) is not fullfilled (for instance K4 < K},). For this case 05/0Xj is positive,
increases monotonically in the interval [0,10] and attains its maximum value at ¢ = 10 then decreases to attain
the minimum at ¢ = 20. We note that ¢ = 30 is the time when the initial solubilized load affects in a quasi-
constant manner the substrate concentration in the system dynamics (19). Furthermore, if we are interested to
the asymptotic behavior of the dynamics, one can remark that in this case, the solution converges asymptotically
to a very small negative value of —0.0024.

As expected, we remark from the theoretical formula (12) provided in Proposition 3.5 that, if K4 < Kj, the

limiting value of 98;8 is negative which gives a non-negative variation of asymptotic methane with respect to X§.

This explains the behavior obtained in Figure 4b: The methane produced asymptotically in (19) is an increasing
function of X§ for any fixed value of u.

15



Haldane kinetics

The Haldane law, which models the inhibitory effects at high substrate concentrations, is more suitable for such
conditions, compared to the Monod law, which is more appropriate for moderate substrate concentrations. This
section focuses on the impact of varying the initial concentration of solubilized matter X3 on process performance
under different fixed recirculation rates u.

For Haldane kinetics (26), one can check that the set £ has two components

E=[0,\"JUAT, +o0)

where
 p—KaEtVA
D e

K.

i

A:‘:

and

A=p?— 20K, + (1%?)1{3.

The shift in the limiting value S5° directly impacts the methane production Mg° (as Sg° belongs to the set &)
AT~

and then the shift in methane production is given by the difference (using the expressions (12) given in
Proposition 3.5). Since £ is not connected, the global attractor of system (19) is also non-connected, leading to
two attraction basins and then to distinct levels of performance. It can be noted that when Sy < A7, as long as
S(t) < A7, the results concerning increasing kinetics p apply (Proposition 4.3).

As illustrated in Figure 5, in the absence of recirculation (u = 0), for each fixed set of initial conditions X§,
So and By, the asymptotic value M*° (that is M;° when u = 0) undergoes a sudden shift (here approximately
340 units) and shows a discontinuity but the map u — MS° is lower semi-continuous as shown in Proposition 4.1..
This is due to the presence of two disjoint connected components in the attractor. Beyond this critical point,
denoted as X§ ., methane production does not reach its maximum potential. Moreover, methane production
as a function of X3 shows non-monotonic behavior: initially, production increases as long as the equilibrium
value of S (the limiting value of S when u = 0) remains below A~. However, after reaching a threshold, it
starts to decrease when S° exceeds ™. The shift value in M is given by ,\+a_1A— , as mentioned earlier. This
pattern arises from the inhibitory effects described by the Haldane law, which induces a discontinuity in methane
production with respect to X§. Consequently, system performance can be significantly compromised at high
initial concentrations of organic matter Xg.

180
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Figure 5: Discontinuity and non-monotonic behavior of methane production as a function of the initial
solubilized matter X§ without recirculation (v = 0) for Haldane kinetics.

For each fixed X¢, three feeding scenarios for (19) may arise depending on Xg . and the initial organic mixing

Xo (see Figure 6). The plot of ;32 over time for three specific values of u (0, 0.01 and 0.1) shows that this
0

coefficient approaches a positive limit in all cases. According to Proposition 3.5, this limit should be compared

with j% to evaluate methane production performance.
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Case 1: X, < X, & X§ < Xj.

For Xy = 300, we choose the initial state as (Xg, S0, Bo) = (250,0,2) with a final time 7" = 1000 and X§ = 50.

The limiting value of the coefficient =52 is less than (J% (evaluated numerically by 0.52) which gives a positive

6X4
variation of asymptotic methane with respect to X§. The system exhibits good methane production performance.

| |
T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000

Time

as
0X§

different values of u between 0 and 0. 1 This function approaches a positive limiting value in all cases.

Figure 6: The sensitivity function over the time for Haldane response in the three cases for three

Case 2: X) > Xj. & X§ < Xj,

For X, = 360, we choose the initial state as (Xg, So, Bo) = (300, 0,2) with X§ = 60. Figure 6 (Case 2) suggests
that selecting relatively small values of u could maintain the limiting value of the coefficient aaXSE less than (%
However, there is a risk of lower methane productivity if we slightly miss a determined choice of u. The methane
production can be enhanced by choosing a relatively small v and can fall down drastically when the leachate

recirculation is relatively large.

Case 3: Xp > Xj,. & X§> X§,

For Xy = 500, we choose X3 = 400 with X§ = 100. Since X3 is above the threshold, it is naturally observed that
the coefficient significantly exceeds the numerical value of f% and thus the performance falls down dramatically.
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5.2 Effect of leachate recirculation rate

In this section, we show how methane production is influenced by recirculation rate over time, with a particular
focus on the behavior as time approaches infinity. By analyzing the system under both Monod and Haldane
growth kinetics, we observe distinct impacts on the methane yield.

Monod kinetics

We first study the time evolution of the methane production, then consider its asymptotic behavior. We can
deduce that the influence of leachate recirculation on methane production is significant in the case of Monod
kinetics (Figure 7). For instance, the Figure shows that the order of trajectories associated to methane is preserved
for the parameter values given in Table 2 and for a range values of recirculation parameter from 0 to 0.1. Let us
notice that we took canonical values for initial data (X3 = 300, X§ = 100, So = 0 and By = 2).

160

140 4

120

100

M®

(b) Effect of recirculation parameter on asymptotic
(a) Methane over the time for different values of u. methane prodution.

Figure 7: Behavior of the methane production in dynamics (19) with and without recirculation for Monod
kinetics. The order of the trajectories is preserved for a range of recirculation parameter values from 0
to 0.1, leading to an increase in asymptotic methane production as the leachate recirculation parameter
u increases.

Figure 7a illustrates that initially the curves show a rapid increase, but as they approach their asymptotic
regions, the order among them becomes more pronounced. As expected, the methane produced at a time for
which the methane production is close from its asymptotic value is quite high in the case of leachate recirculation
(v > 0). Thus, we conclude that in the context of Monod kinetics, recirculation enhances methane production.
Over time, this leads to an overall increase in methane yield, demonstrating that recirculation is a beneficial
strategy for optimizing bioreactor performance under Monod kinetic conditions. Focusing on asymptotic pro-
duction, the Figure 7b shows that methane production increases with the leachate recirculation parameter u up
to approximately 0.05, after which it levels off. The rate of increase slows and eventually saturates beyond this
point, indicating that higher values of u do not significantly boost methane production further. Therefore, while
increasing u enhances methane output, its effect diminishes after a threshold. To maximize methane production
efficiently, it is best to optimize u within this range, as further increases offer minimal additional benefits. This
approach can lead to significant cost savings and improved resource efficiency.

Haldane kinetics

When u is large, the recirculation scenario may not significantly impact methane production, suggesting that the
simplified model from [40] effectively captures the system’s essential dynamics in such cases. However, since our
model generalizes the one introduced in [40], it shows that even a small leachate recirculation rate u can affect
the asymptotic production on both sides of the switching value of Xg ..

We first study the time evolution of the methane production. We present the three cases in Figure 8 for
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different scenarios of recirculation in the case of Haldane kinetics.

Case 1l
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Figure 8: Methane behavior as a function of time in dynamics (19) for different values of u from 0 to
0.1 and for the three cases with Haldane kinetics . While methane production continues to increase over
time, the production curves are not ordered with respect to u.

Case 1: X, < X§. & X§ < X§ .

We choose the initial state as (X§, So, Bo) = (250,0,2) with a final time 7" = 1000 and X3 = 50. In Figure
8 (Case 1), the methane production behavior is shown for three different values of the recirculation parameter
u :0,0.01; and 0.1. The plot indicates that the methane production reaches a high asymptotic value about 160
units regardless of the recirculation rate. The curves for u = 0 and u = 0.01 converge quickly to this asymptotic
value, while for u = 0.1, the convergence is slightly slower but still reaches the same asymptotic value. This
suggests that in Case 1, recirculation has a minimal impact on the final methane production, indicating a final
methane production which is robust with respect to the recirculation rate u.

Case 2: Xo > X§. & X§ < X§ .

In this case, we choose X§ = 300 with X§ = 60. As it is seen in Figure 8 (Case 2), the methane production
shows more variability with different recirculation rates. For u = 0 (blue curve), methane production reaches
an asymptotic value about 160 units, similar to Case 1. For u = 0.01, when increasing slightly the value of w,
the asymptotic value of methane increases. However, for v = 0.1 (green curve), the asymptotic value is lower,
resulting in the lowest production level. This indicates that higher recirculation rates negatively impact methane
production in this scenario, due to inhibitory effects and suboptimal conditions. According to the considered
case, since we start with an initial solubilized matter less than the critical value Xg ., it is important to carefully
choose the recirculation rate u that ensures the solubilization of X* without accumulating in a way that exceeds
the critical threshold X¢ .. This behaviour can be explained by the existence of an optimal u that achieves a
solubilization of X" such that we remain in the left interval of the attractor (Case 1).

Case 3: Xo> Xj,. & X§ > X(,.

Here, we choose X3 = 400 with X§ = 100. In the third case of Figure 8, the impact of recirculation on methane
production is even more pronounced. For v = 0 (blue curve), the methane production reaches an asymptotic
value about 43 units. As the recirculation rate increases to u = 0.01 (red curve) and u = 0.1 (green curve),
the asymptotic values decrease significantly, up to v = 0.1 producing the lowest amount of methane. This
trend indicates that higher recirculation rates adversely affect methane production in Case 3, suggesting that the
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system might be highly sensitive to recirculation, due to substrate inhibition at higher recirculation rates. Thus,
an unavoidable scenario of poor methane productivity emerges.

In the case of Monod kinetics, recirculation tends to enhance methane production (Figure 7), but in Haldane
kinetics, which considers substrate inhibition at high concentrations, the interaction is more complex. While
methane production continues to increase over time, the production curves are not ordered with respect to u
and can even intersect, as illustrated in Figure 8. These differences highlight the critical role of recirculation in
optimizing methane production in bioreactors, emphasizing the need to tailor recirculation strategies according
to the specific growth kinetics of the microbial community involved.

To illustrate the results provided in Subsection 4.1.2 (large recirculation rates), we present a numerical
comparison between the methane production of system (15) and the reduced model (17) (Figure 9). We choose
the initial state and the final time for each feeding scenario as presented in Figure 8, with a value of u = 0.1.
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Figure 9: Comparison of methane production with the dynamics (17) (left) and (15) (right) for u relatively
large under Haldane kinetics in the three cases. When the recirculation parameter is high, the difference
in methane production between the two models becomes negligible.

For the three feeding scenarios, there is no significant difference in methane yield between the models (17)
and (15) when recirculation is very large. For instance, the asymptotic values of methane produced in systems
(17) and (15) are about 67 units and 73 units, respectively for the second scenario of feeding (see Figure 9),
indicating that the difference between these values is on the order of 1/u. In most cases, the solubilization of
X" occurs rapidly. Therefore, when the recirculation parameter is high, the difference in methane production
between the two models becomes negligible. This suggests that the impact of recirculation is minimal in this
context, as the dynamics with the absence of recirculation (introduced in [40]) closely approximates the behavior
of the generalized model (1) under high recirculation conditions. Thus, the impact of recirculation is more notably
observed for small values of .

Finally, we highlight the influence of the leachate recirculation on the asymptotic methane production for
the Haldane response in the three cases. We keep all parameters the same as in Figure 8 and plot the curve of
methane production as a function of the recirculation rate u. We keep the following bounds on the parameter
Umin = 0 and Umaz = 0.1.
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Figure 10: The impact of recirculation rate on asymptotic methane production for three different initial
substrate concentrations with Haldane kinetics.

In Case 1, methane production in Figure 10 (a) shows a positive response to increasing recirculation rate. As
u increases from 0 to 0.1, the asymptotic methane production (MS°) also increases, up to 155-160 units. This
indicates that in this scenario, higher recirculation rates enhance methane production.
Case 2 represented by Figure 10 (b), shows a different trend. Initially, for very low recirculation rates (up to
approximately u=0.01), methane production is high and remains close to 200 units. However, as the recirculation
rate increases beyond this point, there is a significant decrease in methane production, dropping to about 60
units at u=0.1. This suggests that while a small amount of recirculation can be beneficial, higher rates lead to
diminished methane yields, potentially due to substrate inhibition.
In Figure 10 (c), the effect of recirculation on methane production is negative. As the recirculation rate u increases
from 0 to 0.1, the asymptotic methane production decreases steadily from about 44 units to approximately 28
units. This trend indicates that higher recirculation rates systematically reduce methane production in this case,
due to inhibition and high concentrations of substrate created by high recirculation.

To summarize, as seen in Figure 10, the figures illustrate the impact of recirculation rate on methane produc-
tion for different initial substrate concentrations. In Case 1, increasing recirculation enhances methane produc-
tion, while in Case 2, there is an optimal low recirculation rate beyond which production declines. In Case 3, any
further increase in recirculation rate results in a decrease in methane production, making the no-recirculation sce-
nario the most effective. These observations emphasize the importance of choosing recirculation rates accordingly
to the specific system dynamics and initial conditions to obtain a good methane production.

5.3 Effect of both initial condition and leachate recirculation on methane
production

This subsection offers a global visualization of how methane production is affected by both variations of the
initial unsolubilized matter X§ and the recirculation parameter u for Haldane kinetics. As shown in Figure 11,
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the parameter u strongly inhibits methane production, and thus keeping u low is crucial for maximizing methane
output.
The 3D plot allows us to draw the following observations:

e General trend: The graph shows a lowering surface as u increases, indicating that methane production
decreases with increasing u. When u is near to zero, the methane production is higher, especially for lower
values of Xj.

e Behavior at low u: At low values of u (near 0), the methane production is maximized when X¢ is also
low. As X§ increases, the methane production decreases gradually even at low wu.

e Behavior at high u: At high values of u, the methane production is significantly lower for all values of
X§. The surface becomes almost flat at higher u, indicating an inhibitory effect.

e Optimal regions: The highest methane production is observed at low u and low Xg, presenting a peak.
As either u or X increases, methane production drops, showing a valley.

Finally, we conclude that the combined effect of u and X{ suggests a non-linear interaction where both parameters
should be chosen together for the best methane production.
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Figure 11: Methane production as a function of initial unsolubilized matter and leachate recirculation
rate for Haldane kinetics (3D plot).

6 Conclusion and perspectives

We have studied a five-dimensional, two-step anaerobic digestion system under perfect organic mixing considering
the presence of unsolubilized organic matter. Taking into account the leachate recirculation, we have considered
two components: the first is unsolubilized matter, which undergoes a solubilization process, transforming into the
second component—solubilized matter that is converted by methanogenic bacteria to produce the methane. Our
model is general, encompassing a broader range of dynamics compared to previous formulations. In particular, the
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model proposed in [40] appears as a specific case of our framework, as it considers only solubilized organic matter
and neglects recirculation. This extension allows a more comprehensive representation of the digestion process,
providing deeper insights into the interplay between solubilization dynamics, microbial activity, and methane
production. We have taken benefit of a partial cascade structure of this model to analyze the global behavior of
the system and estimate the theoretical methane output. Furthermore, we studied the asymptotic behavior of
the solutions and characterized its global attractor composed of non-hyperbolic equilibria. By demonstrating how
a partial order of the solutions can be preserved under monotonic growth conditions, we have provided insights
into the impact of recirculation rate on system behavior.

The mathematical analysis of the problem was followed by numerical simulations. We have investigated the
sensitivity of the residual substrate with respect to the initial organic loading X¢o. Our primary objective was to
focus on the total methane production and measure sensitivity for Monod or Haldane kinetics. Depending on the
proportion of unsolubilized matter within the total initial organic matter and in the presence of substrate inhi-
bition, our numerical results reveal a range of possible operational scenarios, from organic matter underfeeding,
causing an average production of methane, to organic matter overfeeding, leading to a poor methane production.
Additionally, we identified conditions where a minimum level of recirculation enhances gas production, offering
valuable guidance for optimizing anaerobic digestion processes.

Beyond its mathematical contributions, this work has significant implications for the optimization of biogas
production in real situations. Through our analysis, particularly regarding the value of asymptotic methane
production under the combined effect of recirculation and organic distribution using a 3D representation, we have
drawn key insights for practitioners about the effect of recirculation on methane production in biodegradation
processes under different initial conditions and growth kinetics. An interesting perspective would be to consider
a time-dependent recirculation rate and to determine an optimal strategy for leachate recirculation in order
to maximize the methane production in the presence of an inhibition phenomenon. Since multiple cost sources
come into play in the solubilization process, it would also be more realistic to consider maximizing gas production
while accounting for recirculation operation costs. The study of the optimal recirculation strategy constitutes
an interesting challenge. Beyond optimizing recirculation, future research could focus on extending the model
to account for additional microbial interactions, variable environmental conditions, or stochastic perturbations.
Additionally, it would be relevant to take into account the spatial distribution of matter inside the landfill
and investigate reaction-diffusion models in terms of systems of partial differential equation systems. Finally,
experimental validation of our theoretical predictions would help refine the model and enhance its applicability
to real-world digestion systems.
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