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Abstract

The gut microbiota (GM) is a dynamic ecosystem intricately linked to human health, including metabolic, immune, endocrine, and
gastrointestinal functions. Exercise is recognized as a significant modifier of this microbial ecosystem, yet the complexities of this
relationship are underexplored. Here, we delve into the multifaceted interactions between structured physical activity and the GM,
emphasizing the role of exercise-induced stressors in shaping microbial composition and function. Unique to our review, we discuss
the acute effects of different forms of exercise-induced stress on the GM and explore how these responses may influence long-term
adaptability, stability, and resilience. Furthermore, we address critical junctures in microbial dynamics leading to shifts between
different stable states. Finally, we explore the implications of host-controlled factors such as diet, exercise training, and nutritional
supplementation in modulating the microbial community in the gut to optimize athletic performance. We conclude that while the
potential to harness the synergistic effects of exercise-induced stressors, dietary interventions, and microbial adaptations appears
promising, current evidence remains preliminary, highlighting the need for additional targeted research to guide future strategies

that manipulate the GM for optimal health and athletic performance.

Keywords: microbiome; athlete; acute stress; microbial ecology; precision health; gut-muscle axis

Introduction

The gut microbiota (GM), comprising bacteria, archaea, viruses,
eukaryotes, and fungi within the gastrointestinal (GI) tract, plays
a critical role in human health due to its complex genetic makeup
and functional diversity. Advances in combinatorial multiomics
research have enabled detailed analysis of the GM’s taxonomic
structure, functions, and metabolic profiles, including the com-
munity’s development after birth (Chu et al. 2017), differences
across health states (Turnbaugh et al. 2008), and utility for pre-
dictive disease modeling (Liu et al. 2022b). Viewed broadly within
the systems biology framework, the GM responds to environmen-
tal changes created by interventions, behaviors, infections and
diseases, and host factors (Fassarella et al. 2021). Indeed, taxo-
nomic profiles of the GM in an adult human can change within
days when challenged with extreme dietary alteration (David et al.
2013). Over longer periods, sustained adherence to specific dietary
patterns may significantly shape these communities with impli-
cations for health outcomes (Fackelmann et al. 2025). Addition-
ally, large perturbations such as antibiotic administration (Fish-
bein et al. 2023) or chronic stress (Franzosa et al. 2019) can move
the ecosystem into different stable states—"healthy” or otherwise
(Lozupone et al. 2012). However, the GM of adults also demon-

strates resilience—determined by the ability to bend upon expo-
sure to significant stress or perturbation (resistance) before break-
ing toward a trajectory leading to a similar/different equilibrium
state (recovery) (Lloyd-Price et al. 2016, Ingrisch and Bahn 2018).
Thus, the resilience of the microbiota to biotic and abiotic stres-
sors is thought to have important implications for health and wel-
fare, ensuring its ability to withstand disturbances and still main-
tain its essential functions, structures, and processes.

Recently, physical activity has emerged as an abiotic hormetic
stressor with potential to shape the GM. Significant physiological
changes occur within and around the GI tract during a single bout
of physical activity. For instance, prolonged exercise at >60% max-
imum oxygen consumption rate (VO, max) redistributes blood
flow, resulting in gut hypoxia and hypoperfusion, with reperfu-
sion after the exercise (Costa et al. 2017). These acute perturba-
tions modify the luminal milieu by changing transit rate (Strid
et al. 2011), temperature (Yeh et al. 2013), redox balance (Yoon
et al. 2024), and—critically—epithelial permeability (Chantler et
al. 2021) , thereby permitting the translocation of microbial prod-
ucts and host-derived metabolites into the circulation (Keirns et
al. 2020). Repeated exposure to these effects, akin to the allo-
static load theory (McEwen 2000), suggests that the host adapts
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to such stress through physiological changes that promote re-
silience. Over time, this may result in the GM evolving into a state
that supports the demands of frequent physical activity, align-
ing with allostasis, where continuous stress leads to adaptation
and potentially a new equilibrium in the host’s systemic and mi-
crobial environments (Fig. 1). Therefore, similar to the concept of
“training the gut” (Jeukendrup 2017), the hormetic stress of exer-
cise that promotes physiological adaptation within the host (i.e.
the Gl-tract), a parallel and reciprocal process may occur within
the GM, aiding in the formation of a distinctive and functional
athletic microbiota and a level of ecological resilience (Mohr et al.
2020).

Considerable differences in GM composition and function be-
tween athletes and sedentary individuals have been uncovered
(Clarke et al. 2014, Barton et al. 2018, Fontana et al. 2023). Thus,
the combination of exercise and coinciding behaviors likely influ-
ences the gut microbial ecosystem of athletes and other trained
individuals. In turn, the GM appears to play roles in fuel avail-
ability, muscle function, motivation, overall health, and exercise
performance in animal (Dohnalova et al. 2022) and small-scale
human research (Clarke et al. 2014, Barton et al. 2018). Notably,
germ-free and antibiotic-treated models show that a fully intact
GM is crucial for effective muscle adaptation and endurance ca-
pacity (Lahiri et al. 2019, Nay et al. 2019). In these studies, re-
moving or disrupting gut microbes reduces running capacity, al-
ters muscle protein synthesis, and impairs the regulation of key
metabolic signaling pathways (Lahiri et al. 2019, Valentino et al.
2021, Uchida et al. 2023). Moreover, gut-derived metabolites such
as bile acids and neuroendocrine molecules can influence muscle
function and motivation (Morville et al. 2018, Sasaki et al. 2018,
Qiu et al. 2021, Dohnalovéa et al. 2022). Exploring how structured
physical activity affects the GM and how this microbial commu-
nity can be influenced by specific inputs or utilized for various
health benefits has therefore become a significant focus for exer-
cise researchers, clinicians, trainers, and practitioners (Clark and
Mach 2016, Jager et al. 2019, Mohr et al. 2020, 2022b, a, O’Brien
et al. 2022). How exercise stress might, through effects on the
GM, potentially accumulate to influence health, welfare, and ath-
letic performance over time, and what happens if this ecosystem
goes awry has not been reviewed in detail. In this review, we dis-
cuss the features of an exercise-associated GM and synthesize ev-
idence on how exercise and related factors impact GM composi-
tion, function, plasticity, and resilience. In addition, we empha-
size endurance exercise, largely based on the availability of pri-
mary research, to elucidate how associated stressors may com-
pound over time and their systemic repercussions in relation to
the holobiont, that is, the assemblage of the host and their as-
sociated microbes interacting with each other (Simon et al. 2019).
Improving understanding of the exercise-related factors that con-
dition these initial microbial shifts may have important impli-
cations for improving physical performance and human health,
reducing disease risk, and informing new prospects for restoring
dysbiotic ecosystems.

The athletic GM: linking the GM to an
exercise-associated state

Establishing exercise as an influential factor in shaping the GM
has largely been driven by observational research attempting to
identify GM features and ecological traits characteristic of habit-
ual exercisers compared with sedentary or less active populations
(for definitions, see Table 1; Fig. 2). Seminal work in rugby athletes

with an overweight body mass index suggested intense physical
activity and related factors, such as high-energy/protein dietary
intake and circulating markers of muscle damage (i.e. creatine ki-
nase) are associated with greater microbiome richness (Clarke et
al. 2014). A metagenomic survey using the same cohort revealed
an enrichment of gut mucus-associated bacteria Akkermansia, and
exercise-related energy pathways and fecal metabolites in the
athletes (Clarke et al. 2014, Barton et al. 2018). Similarly, a growing
body of research has shown that athletes and regularly active in-
dividuals harbor a more diverse GM with enhanced functional ca-
pacities than their sedentary counterparts [for in-depth reviews,
see Mohretal. (2020), Cataldi et al. (2022),and O’Brien et al. (2022)].
This is particularly evident in endurance athletes, whose physi-
cal activity and dietary patterns may jointly contribute to high
microbial diversity and enrichment of specific taxa and unique
functions (Petersen et al. 2017, Scheiman et al. 2019, O’'Donovan
et al. 2020, Li et al. 2023, Shalmon et al. 2024, Huminska-Lisowska
et al. 2025).

The rich microbial diversity of the athlete GM encompasses
a variety of microbes and functions that may support physi-
cal activity. For example, Akkermansia, often enriched in athletes
(Clarke et al. 2014, Petersen et al. 2017, Martin et al. 2025), pro-
motes gut mucin degradation and regeneration, enhancing en-
ergy metabolism, immunity, and barrier function (Ottman et al.
2017). Aerobically trained athletes exhibit higher levels of Bifi-
dobacterium (O'Donovan et al. 2020), a genus widely regarded as
health-promoting that can degrade host mucins (Ruas-Madiedo
et al. 2008, Ruiz et al. 2011, Milani et al. 2015), promote mu-
cus layer growth (Gutierrez et al. 2023), gut barrier function (Ab-
dulgadir et al. 2023), and positively modulate the immune sys-
tem (Gavzy et al. 2023). Furthermore, Bacteroides uniformis, as-
sociated with improved exercise performance in both mice and
humans, exhibits strong glycolytic capabilities, converting di-
etary and endogenous glycans into short-chained fatty acids (SC-
FAs) like acetate and propionate, which can boost hepatic glu-
coneogenesis and fatty acid oxidation, thereby supplying addi-
tional glucose for working muscles (Morita et al. 2023). Addi-
tionally, Methanobrevibacter smithii, reported to be more abun-
dant in athletes (Petersen et al. 2017), enhances methane pro-
duction and energy and carbohydrate metabolism, potentially in-
creasing energy availability and reducing recovery times (Clark
and Mach 2023). Athletes’ GM also show greater potential for
producing compounds like vitamin B12, amino acid derivatives
(Fontana et al. 2023), and endocrine metabolites and neurotrans-
mitters (Dohnalova et al. 2022), all of which may promote exercise
performance.

Recent research indicates that the GM of athletes may be
tailored to their specific discipline and exercise demand, sug-
gesting that exercise patterns (i.e. mode, intensity, and duration)
rather than or in addition to exercise alone critically influence
the ecosystem (Li et al. 2023). For instance, athletes involved in
high-dynamic sports (e.g. marathon and field hockey) exhibit a
distinct microbial composition with higher levels of genera such
as Bifidobacterium, Lactobacillus, Prevotella, and Faecalibacterium com-
pared to those in lower-dynamic sports (e.g. judo and taekwondo)
(O'Donovan et al. 2020). A recent comprehensive metagenomic
study by Fontana et al. (2023) analysed 185 high-level athletes,
69 mid-level athletes, and 166 sedentary individuals, revealing a
microbial pattern dominated by SCFA-producing microbes and a
significantly higher number of carbohydrate-active enzymes in
athletes. Collectively, these studies demonstrate that the GM of
athletes and other trained individuals is more taxonomically and
functionally diverse than those of less active counterparts, and
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Figure 1. Hypothetical dynamics of exercise-induced GM stability and resilience. (A) Acute exercise acts as a stressor on the host, triggering
physiological responses that feed back to and are influenced by the GM. (B) Repeated exercise “hits” can follow a normal adaptation trajectory or an
enhanced adaptation capacity. (C) The concept of allostatic load is shown, including maladaptive scenarios such as lack of adaptation, prolonged
stress responses, or inadequate recovery. (D) The longitudinal impact of consistent exercise-induced stressors may cumulatively foster significant
microbial community shifts, acting as tipping points that trigger transitions to new stable states. These states likely have variable degrees of stability
and maintenance of homeostasis, based on the acute ecological pressures for microbial survival (i.e. allostasis). Overtime, conditioned by consistent
exercise stress (eustress), the GM may adapt by forming increased resilience, in concordance with a normal allostatic response, and enhancing overall
health and performance. Such shifts may be amenable to identifying specific microbial taxa or community structures, which may act as indicators or
catalysts of these adaptations. In addition, understanding GM trajectories that may not be optimal, based on different allostatic loads (adapted from
McEwen 2000), is also an important consideration in contextualizing stability, resilience, and potential maladaptation. Created with BioRender.com.
Abbreviations: SCFAs, short-chain fatty acids; BAs, bile acids; and FAAs, fatty acid amides.

within athlete populations, differences in exercise patterns and
demands may further drive ecological differences.

Different athletic disciplines can also dictate different dietary
patterns, which in turn affect the GM. Aerobic athletes typically
consume more carbohydrates and fiber (Vitale and Getzin 2019)
compared to anaerobic athletes, who often have higher protein
and fat intakes (Antonio et al. 2015). Such dietary differences
can impact the GM, as evidenced in a comparison of aerobic and
anaerobic athletes, where significant differences in protein and
fiber intake potentially confounded microbiome results (Jang et
al. 2019). Similarly, a longitudinal study of rowing athletes showed
that despite greater microbial diversity and enhanced metabolic
functions in elite rowers, up to 29% of the interindividual vari-
ation was attributed to differences in daily nutrient intake (Han
et al. 2020), supporting that diet can overshadow exercise effects.
The role of dietary fiber is particularly notable, as various fibers
differentially influence GI motility, transit time in the colon (Gear
et al. 1981), mucus layer thickness and nutrient cycling (Desai et
al. 2016), factors that are crucial in shaping the GM’s diversity, ge-
nomic regulation, and intra- and interkingdom communication
(Roager et al. 2016, Asnicar et al. 2021, Steenackers et al. 2022).
Additionally important is colonic pH. Human colonic pH spans
roughly 5.0-7.5 and, independent of transit time, is now recog-
nized as a key selector of microbial ecology; mildly acidic condi-
tions (<6.5) favor saccharolytic, butyrate-producing taxa, whereas
neutral or alkaline pH shifts metabolism toward proteolytic path-
ways, branching-chain fatty acids, and other alkaline metabo-
lites (Brinck et al. 2025). Because fecal pH is remarkably stable
within individuals yet varies widely between them, pH differences

can explain a measurable fraction of interindividual variation in
both microbiota and metabolome profiles (Brinck et al. 2025). Ex-
ercise itself has been found to accelerate GI transit time (Keel-
ing and Martin 1987, Jensen et al. 2023), contrasting with seden-
tary behavior, which is often linked with constipation (Huang
et al. 2014). Additionally, metabolites commonly produced in an
athlete-associated GM, such as butyrate (Haschke et al. 2002),
lithocholic acid (Li et al. 2021), and histamine (Chen et al. 2019),
can stimulate gut motility, affecting transit time. As such, disen-
tangling the specific contributions of exercise and diet to the GM
is challenging due to overlapping effects and the multifactorial
nature of these influences.

Considered together, cross-sectional findings of studies indi-
cate that athletes and physically active individuals exhibit dis-
tinct fecal microbiota profiles compared to sedentary populations.
However, the observational nature of most studies and poten-
tial confounding (such as diet) leave open questions of causality.
Further, interpreting fecal bacterial profiles as definitive indica-
tors of gut health requires caution since microbial communities
vary considerably along the GI tract and may not be fully rep-
resented in stool samples. Many studies profiling athletes have
also relied on 16S rRNA sequencing (Clarke et al. 2014, Jang et
al. 2019, Kulecka et al. 2020), which offers less resolution than
whole metagenomic/transcriptomic analyses, further limiting the
granularity of these observations. Therefore, while provocative,
these studies cannot answer the question of whether exercise it-
self drives GM differences between physically active versus more
sedentary population, or whether observed differences are pri-
marily related to diet, initial GM composition, or other phenotypic
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Table 1. Glossary of exercise-related terms relevant to included studies.

Acute exercise

Short-term exercise

Long-term (chronic) exercise

Exercise intensity

Exercise mode

Endurance exercise

Resistance exercise

Aerobic exercise

Anaerobic exercise

VO, max

Lactate threshold

Functional capacity

High-intensity interval

training (HIIT)

Muscle fiber type 1

Muscle fiber type 2a

Muscle fiber type 2b/x

This refers to a single session of structured physical activity. It can vary in duration and intensity,
triggering immediate physiological responses like increased heart rate, energy expenditure, and muscle
activation. The effects are temporary, subsiding as the body recovers postexercise.

This involves repeated sessions of exercise over a shorter period, such as days or weeks (3-4). It can lead
to adaptations like improved muscle strength, cardiovascular efficiency, and metabolic changes that are
more significant than those from a single session but not as profound or durable as those from
long-term exercise.

This is characterized by regular, ongoing structured physical activity extending over months or years.
Chronic exercise leads to long-term physiological adaptations, including increased cardiovascular
capacity, muscle hypertrophy, improved insulin sensitivity, and enhanced endurance. These changes are
durable and reflect the body’s response to continuous training stimuli.

The level of effort required by a particular exercise, categorized as low, moderate, or high. Intensity can
be measured through heart rate, oxygen consumption, and perceived exertion.

The form or type of exercise performed, which influences the specific physiological responses in the
body. Modes include aerobic, anaerobic, flexibility, and balance exercises.

A type of aerobic activity that involves prolonged physical effort to improve cardiovascular stamina.
Common forms include running, cycling, and swimming.

Exercise that involves muscle contractions against external resistance with the objective of increasing
strength, power, and muscle mass. Examples include weightlifting and resistance bands.

Exercise that use large muscle groups and can be maintained continuously, primarily enhancing
cardiovascular fitness by improving the body’s ability to oxygenate blood.

Intense physical activity that causes lactate to form, typically short bursts of high-intensity movements
like sprinting or weight lifting, relying on energy sources within the muscles.

The maximum volume of oxygen an individual can use during intense exercise, measured in milliliters
of oxygen used per minute per kilogram of body weight.

The intensity of exercise at which lactate begins to accumulate in the bloodstream, marking the
transition from aerobic to anaerobic metabolism.

The ability to perform tasks and activities efficiently, often improved through exercise tailored to
enhance physical strength, endurance, and flexibility.

A training technique involving quick, intense bursts of exercise followed by short, sometimes active,
recovery periods. This type of training gets and keeps your heart rate up and burns more fat in less time.

Slow-twitch fibers; more efficient at using oxygen to generate fuel for continuous, extended muscle
contractions over a long time.

Fast-twitch fibers; a hybrid of type I and type IIb, capable of using both aerobic and anaerobic
metabolism.

Fast-twitch fibers; excel at producing quick, forceful bursts of speed, and tire out quickly.

Abbreviations: VO, max, maximal oxygen consumption.

or physiologic attributes. However, as we discuss below, it is bio-
logically plausible for exercise to be an important driver of GM
composition and function based on physiologic and metabolic re-
sponses to exercise that may cumulatively, over time, shape the
GM ecosystem.

Hormetic stressors influencing acute effects
of exercise on the GM: the endurance model

Endurance exercise acts as a hormetic stimulus for the GI tract. A
single bout of moderate- or high-intensity work can transiently re-
duce splanchnic blood flow, raise luminal temperature, and loosen
epithelial tight junctions, producing a short-lived rise in gut per-
meability (Marchbank et al. 2011, Zuhl et al. 2014, Keirns et al.
2020). When the same stimulus is applied regularly and pro-
gressively, the gut adapts; barrier function improves, GI-disease

risk falls, and overall health markers rise (Peters et al. 2001).
This creates the familiar “J-shaped” relationship in which both
inactivity and excessive training load increase GI vulnerability,
whereas moderate, periodized exercise is protective (O'Brien et
al. 2022). In practice, however, many endurance athletes still re-
port GI symptoms during or after intense sessions (Oliveira et al.
2014, Pugh et al. 2018). As described below, intense physical activ-
ity exposes the gut to several acute stressors—mechanical, ther-
mal, and physiological—instigating a holistic holobiont response
(Fig. 3) that varies according to factors like modality, intensity, and
duration of exercise. Differences in these factors can elicit var-
ied protective or detrimental effects on gut health and metabolic
processes (e.g. substrate utilization, SCFA production, and energy
homeostasis), thereby providing an ideal framework for study-
ing short-term exercise-GM interactions that cumulatively shape
long-term GM adaptability, stability, and resilience.
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Redistribution of blood flow, immune activation,
and gut barrier function

During exercise, blood flow is significantly redirected from the
splanchnic circulation to working muscles and skin, reducing
splanchnic blood flow by up to 50% (Qamar and Read 1987, Osada
et al. 1999). This can cause gut ischemia and reperfusion that to-
gether increase brush border permeability (Wijck et al. 2012) and
cause gut barrier damage via increases in oxidative stress and in-
flammation (Otte et al. 2001). High-intensity or prolonged exer-
cise (i.e. 70% VO, max), in particular, often increases gut perme-
ability, especially when conducted in hot environments (March-
bank et al. 2011, Zuhl et al. 2014), allowing luminal components
to leak into circulation (Wijck et al. 2012, Costa et al. 2017), where
they stimulate an immune response and subsequent inflamma-
tion (Shing et al. 2014, Zuhl et al. 2015).

Changes within the GI environment resulting from oxidative
stress, inflammation, and gut barrier damage may influence the
GM, possibly promoting GM adaptations that may improve barrier
function over time. In support, ischemia/reperfusion can promote
increases in anti-inflammatory taxa such as Bacteroides vulgatus
in animal models (Deng et al. 2021). Bacteroides vulgatus gavage
in mice decreases gut microbial lipopolysaccharide (LPS) produc-
tion, suppressing proinflammatory immune responses (Yoshida et
al. 2018) and attenuating symptoms of dextran sodium sulfate-
induced colitis (Liu et al. 2022a). Further, specific strains of B. vul-
gatus (SNUG 40005) decreased gut permeability and increased the
abundance of Akkermansia muciniphila in mice fed a high-fat diet
(You et al. 2023). That response may reflect a cross-feeding in-
teraction as Bacteroides act on dietary carbohydrates and supply

other colonic bacteria with various digested glycan sources, creat-
ing a biocompatible GM environment (Sonnenburg et al. 2016). In-
deed, providing nutrients to A. muciniphila can indirectly improve
gut barrier integrity by supporting the mucus layer (Everard et al.
2013), upregulating tight junction proteins (Chelakkot et al. 2018),
and increasing antiinflammatory Treg cells (Shin et al. 2014).
Ultimately, GM responses caused by changes in the GI environ-
ment and resulting interactions within the community may com-
prise hormetic effects that enhance barrier function over time
(Keirns et al. 2020). In support, exercise regimens as brief as 2
weeks can positively affect epithelial cell and mucosal turnover
(Motiani et al. 2020), enhancing gut barrier resilience and sta-
bility (Pasini et al. 2019). Trained athletes often exhibit lower
baseline levels of gut permeability markers, such as LPS, than
sedentary individuals (Lira et al. 2010). This suggests that reg-
ular exercise fortifies barrier functions, possibly by enhancing
tight junction integrity, mucin production and quality, mucosal
immune responses, and anti-inflammatory and antioxidant de-
fenses (Hoffman-Goetz et al. 2010, Packer and Hoffman-Goetz
2012, Allen et al. 2018a). Improved barrier health may also be fa-
cilitated by promoting beneficial taxa within the GM, as described
above, in addition to shifting the GM towards butyrate-producing
communities enriched with taxa including Lachnospiraceae and
Faecalibacterium prausnitzii (Matsumoto et al. 2014, Campbell et al.
2016), that stimulate the production of butyrate and other benefi-
cial metabolites (Wang et al. 2012, Yan and Ajuwon 2017). Increas-
ing butyrate in the gut can enhance barrier integrity and exert
systemic anti-inflammatory effects, partly by inducing intestinal
T regulatory cells that produce anti-inflammatory cytokines like
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Figure 3. The hormetic effects of exercise on GM dynamics. Internal and external factors collectively orchestrate acute modifications in the GI tract
that impact the GM. Internally, factors such as mitochondria function, mucin secretion, gas levels, pH balance, blood flow redistribution leading to
intestinal ischemia, hydration status, redox balance, nutrient access, and inflammation may play a role. Externally, diet, thermic stress, medications,

and the intensity and duration of exercise all could contribute to the acute

modulation of the GI tract and GM. Overall, the immediate effects of

endurance exercise on the GM encompass a broad spectrum of mechanical, thermal, biochemical, and physiological shifts. These interactions
underline the nuanced response of the GM to varying degrees and types of physical stress, pointing to the importance of tailored exercise regimens for

optimal gut health and microbial resilience. Created with BioRender.com.

IL-10 (Furusawa et al. 2013, Lorén et al. 2015). Thus, acute exercise
reduces splanchnic blood flow leading to oxidative stress, inflam-
mation, and temporary increases in gut permeability. In contrast,
although many mechanistic details are unclear, chronic exercise
may foster a resilient gut barrier and complementary shifts in the
GM that reinforce those effects.

Thermal stress and hydration

During strenuous endurance sports, core body temperature can
rise from a resting range of 36.1°C-37.2°C (Hoffmann et al. 2012,
Huus and Ley 2021) to roughly 40°C, depending on environmental
conditions (Noonan et al. 2012). Elevated core body temperature
causes blood to be shunted toward the body surface to maximize
heat loss, resulting in vasoconstriction in the GI tract (Lambert
2009), ischemia, and increased gut permeability (Pires et al. 2017).
These physiologic responses to thermal stress reduce nutrient and
oxygen delivery to the intestinal lumen and alter local immune
signaling, which may contribute to exercise-induced shifts in the
GM.

Though research on the GM of heat stressed athletes is lim-
ited, one study of endurance-trained athletes running at 60% VO,
max in ~35°C conditions reported modest negative correlations
between core body temperature and Prevotellaceae and a positive

correlation between core body temperature and Ruminococcaceae
(Bennett et al. 2020). In animal studies, heat-stressed livestock ex-
perienced decreases in alpha diversity and Bacillota abundance
(Tajima et al. 2007, Zhu et al. 2019, Wang et al. 2020) and increases
in relative abundances of Pseudomonadota (Sciellour et al. 2019).
Rats exposed to constant temperatures of 35°C-38°C for 7 days
exhibited significant reductions in Lactobacillus and Bacteroides,
while Oscillospira and Clostridium levels rose (Qu et al. 2021). In
that study, shifts in GM community function were also noted, and
characterized by increased expression of genes related to carbo-
hydrate and amino acid metabolism, and membrane transport.
By contrast, when rats were subjected to intermittent heat stress
(35 £ 1°C and 60 + 5% humidity for 120 min/day over 28 days), al-
pha diversity and Lactobacillus relative abundance increased (Cao
et al. 2022). This rise in Lactobacillus differs from the decrease ob-
served under continuous heat exposure (Qu et al. 2021), suggest-
ing that exposure pattern (intermittent versus continuous) and
duration can yield distinct microbial outcomes. Notably, Lactobacil-
lus is known for its role in immune defense and protecting epithe-
lial cells, which may protect gut barrier function (Gareau et al.
2010).

In controlled settings, high ambient and core body tempera-
tures can lead to underhydration. In mice, underhydration di-
minishes colonic immune cell function and pathogen elimina-
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tion (Sato et al. 2024). Hydration also impacts intraluminal os-
motic pressure, stool consistency, and GM composition (Useros et
al. 2015). Notably, individuals with low compared to high water in-
take have different microbial community structures and greater
abundances of Campylobacter (Vanhaecke et al. 2021), a genus as-
sociated with GI infections (Igwaran and Okoh 2019). Thus, both
hydration and body temperature are likely crucial factors influ-
encing the hormetic effect of exercise on the GM.

GI transit time

In healthy individuals, transit times vary widely (Proch&zkova et
al. 2022), influenced by factors such as diet, body weight, height,
and sex (Degen and Phillips 1996, Nandhra et al. 2020). Intestinal
transit rate is also influenced by acute endurance exercise (Horner
et al. 2015), affecting the microbial environment due to changes
in pH and nutrient availability in the colonic lumen. While gas-
tric emptying appears to be delayed at higher exercise intensities
(i.e. above 70% VO, max) (Feldman and Nixon 1982, Horner et al.
2015), habitual physical activity, particularly aerobic exercise, en-
hances GI motility (Bingham and Cummings 1989), thereby reduc-
ing transit times and potentially improving irregular bowel habits
(Tottey et al. 2017). These variations in transit time alter substrate
availability within the colon, which, in turn, impacts microbial
growth dynamics, colonic pH, and stool output even under a con-
stant diet (Stephen et al. 1987, Asnicar et al. 2021). Specifically,
slow colonic transit reduces carbohydrate availability in the dis-
tal colon (Prochéazkova et al. 2022), favoring bacteria that utilize al-
ternative energy sources, such as dietary or host-derived proteins
(Roager et al. 2016). Resultantly, extended transit times have been
associated with increased microbial diversity, Akkermansia and
Methanobrevibacter abundance, pH levels, and GM-derived metabo-
lites associated with proteolytic metabolism (Tottey et al. 2017).
In contrast, faster transit times are associated with increased ca-
pacity for saccahrolysis and SCFA production (Prochézkova et al.
2022). Thus, theinterplay between physical activity and gut transit
time may be an additional factor influencing the effects of exer-
cise on GM stability and resilience.

Coordinated metabolic response to exercise:
connecting the GM to host tissues

Beyond the gut, acute exercise orchestrates a systemic adapta-
tive change continuum within the host (Gabriel and Zierath 2017).
This continuum influences host protein turnover, glucose uptake,
fat utilization, and skeletal muscle metabolism to maintain the
required rates of adenosine triphosphate (ATP) synthesis while
minimizing disturbances to cellular homeostasis. The GM con-
tributes to the host’s metabolic landscape, producing or alter-
ing a substantial portion of gut metabolites (>830 gut micro-
bial metabolites identified in humans) (Zheng et al. 2011). These
metabolites represent a vast pool of bioactive compounds cru-
cial for cross-feeding activities between microorganisms (Han et
al. 2021). However, GM-derived metabolites also influence host
physiology beyond the gut including within the brain and mus-
cle, which may link exercise-associated change in the GM to host
adaptations to exercise (Chow et al. 2022). Accordingly, a holo-
omic approach, which incorporates multiomic data from both the
host and microbiota domains, is increasingly being implemented
to untangle the interplay between the two.

Pivotal studies have demonstrated that transferring the mi-
crobiome of exercise-trained donors into germ-free mice en-
hances key metabolic pathways in muscle tissues, such as AMP-
activated protein kinase, calcium/calmodulin-dependent protein
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kinase II, and Akt substrate of 160 kDa (Aoi et al. 2023). An in-
tact GM is required for exercise-induced muscle adaptations, in-
cluding endurance exercise capacity (Okamoto et al. 2019) and
skeletal muscle hypertrophy (Valentino et al. 2021). Some of
the most prominent signaling agents contributing to microbiota—
gut-muscle communication are SCFAs. A significant fraction of
colon-derived acetate, and to a lesser extent propionate and bu-
tyrate, reaches systemic circulation and peripheral tissues, such
as the muscle and brain (Dalile et al. 2019), potentially influenc-
ing the physiological and psychological functioning of the ath-
lete via immune, endocrine, neural, and humoral routes. For ex-
ample, in exercise-naive mice, SCFA administration improved ox-
idative capacity and mitochondrial function (Ismaeel et al. 2023).
Other SCFAs, such as butyrate, inhibit glycolysis and switch cell
metabolism toward gluconeogenic conditions, thus promoting
lactate utilization (Morand et al. 1994). Butyrate can also shift
muscle fibers toward a more oxidative phenotype by inhibiting hi-
stone deacetylases and promoting PGC-1a-driven mitochondrial
biogenesis (Gao et al. 2009).

Emerging evidence shows that cross-talk in the gut-muscle
axis may also occur through communication between GM-derived
metabolites and the mitochondria. Mitochondria, which are
highly responsive to microbiota signaling, share maternal inher-
itance patterns with the GM, revealing a close evolutionary rela-
tionship, particularly evident in cytochrome lineage (Andersson
et al. 1998). Traditionally recognized for their role in bioenerget-
ics through pathways like oxidative phosphorylation and fatty
acid B-oxidation, mitochondria are now recognized for a broader
range of functions. Those functions include regulating cytoso-
lic calcium, maintaining cellular redox status, generating reac-
tive oxygen species (ROS), and participating in processes such as
steroid and heme biosynthesis, apoptosis, and inflammation ini-
tiation (Jackson and Theiss 2020).

The complex interplay between GM and the mitochondria oc-
curs principally through endocrine, immune, and humoral signal-
ing (Mottawea et al. 2016). Microbial metabolites, including SCFAs,
branched-chain amino acids, and secondary bile acids, are all im-
plicated in mitochondrial biogenesis and function (Andersson et
al. 1998, Clark and Mach 2017). Moreover, variations in the mi-
tochondrial genome are correlated with GM diversity, linking re-
duced microbial diversity to increased ROS production (Yardeni
etal. 2019). Evidence highlights the interdependence of mitochon-
dria and GM, particularly during exercise. For example, Mach et al.
(2021b) demonstrated that endurance athletes harbor function-
ally redundant butyrate-producing bacteria, such as those from
the Lachnospiraceae family, which are associated with mitochon-
drial gene regulation. Effects of butyrate on the mitochondria in-
clude promoting the expression of PPARy, facilitating fatty acid
oxidation (Gao et al. 2009), and possibly maintaining redox bal-
ance during strenuous exercise (Mottawea et al. 2016).

Beyond SCFAs, secondary bile acids and H, are essential for
mitochondrial-GM cross-talk. Secondary bile acids may interact
with mitochondria via the FXR-CREB axis (Seok et al. 2014), while
H, regulates mitochondrial function through the PPARy/Pgc-
la/Tfam pathway. Research by Luo et al. (2022) demonstrated that
H,-rich water enhances exercise tolerance in rats by promoting
GM diversity and upregulating mitochondrial biogenesis. Thus,
under conditions that enhance the colonization of a complex
functional microbiome capable of producing beneficial metabo-
lites, mitochondrial functionality and athletic performance may
be positively influenced.

Investigations by Yardeni et al. (2019) revealed that the GM
could be modulated by mitochondrial redox status and ROS pro-
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duction. They found significant differences in NAD+/NADH ratios
between mice with mtDNA variants associated with higher ROS
production and control mice. Since the NAD+/NADH ratio is criti-
cal for regulating mitochondrial metabolism, such changes could
influence gut microbial populations. The intermittent increase in
ROS during exercise may foster adaptive mechanisms within the
GM, alteringits composition and functionality. While mechanisms
underpinning direct effects of redox status on the GM are not fully
clear, exercise intermittently increases ROS. Such pulses on the
GM may promote adaptive and protective mechanisms, thus al-
tering the community composition and function.

Finally, within the context of coordinated responses to exercise-
associated factors (i.e. thermal stress, GI transit, ROS production,
metabolic milieu, and so on) microbial communities also adapt by
forming protective structures such as microcolonies and biofilms
in the gut. This response enhances resilience to the fluctuating gut
environment. Microcolonies are small aggregates of bacteria and
form under suboptimal conditions, providing a fitness advantage
over nonaggregated counterparts (Burmglle et al. 2014). These for-
mations represent some of the simplest multicellular assemblies
and can establish strong presences in small niches within the gut
(Tytgat et al. 2019). Biofilms, consisting of mixed microbial com-
munities encased within a matrix, adhere to biotic and abiotic
surfaces and facilitate nutrient exchange, stress resistance, and
cross-feeding, establishing a robust digestive consortium (Hooper
and Gordon 2001, Stoodley et al. 2002, Otto 2014). Repeated strenu-
ous exercise has been shown to stimulate microcolony and poten-
tially biofilm formation in sheltered areas of the gut like the ap-
pendix and crypts (Stoodley et al. 2002). Exploring microcolonies
and biofilms within GM in the context of physical activity is a rel-
atively uncharted area of research that holds potential for novel
insights.

Plasticity of GM: short-term responses to
exercise

Over time, the exercise-induced physiologic and metabolic re-
sponses described above, along with accompanying factors like
dietary intake, can induce measurable changes in GM structure,
function, and dynamics (Mohr et al. 2020). In line with the con-
cept of hormesis, those changes can potentially foster a health-
associated state within the host wherein “healthy” microbial com-
munities maintain self-regulation in the long term. Conversely,
when training loads are excessive or recovery is insufficient, the
cumulative stress can temporarily destabilize the ecological state
of the GM and potentially impair host health (Karl et al. 2017, Pugh
et al. 2017, Craven et al. 2022, Lian et al. 2024). Thus, the GM’s re-
sponse to acute and shorter-term (~3-4 weeks) exercise-induced
perturbations offers insight into the resilience mechanisms of in-
dividual microbial ecosystems that ultimately are pivotal in es-
tablishing a foundation for long-term physiological (Dawson et al.
2018) and potential GM adaptations (Grosicki et al. 2023a). Below
we discuss evidence from both animal and human studies that
demonstrate how exercise-induced physiologic and metabolic re-
sponses manifest within the GM ecosystem.

Animal models: exercise-induced impacts on the
GM

Research in rodent models has generally shown that exercise
can significantly alter the GM’s composition and function. These
changes are evident within weeks and vary depending on the du-
ration and type of exercise (Choi et al. 2013, Queipo-Ortufio et al.

2013,Evans et al. 2014, Allen et al. 2015, Denou et al. 2016, Carbajo-
Pescador et al. 2019, Fernandez et al. 2021, Yang et al. 2021, Imdad
et al. 2024). For example, several studies have reported increased
abundance of Lactobacillus, Bifidobacterium (Queipo-Ortufio et al.
2013), and Turibacter spp. (Allen et al. 2015), alpha diversity (Choi et
al. 2013, Denou et al. 2016, Imdad et al. 2024), and cecal butyrate
(Matsumoto et al. 2014) following exercise intervention. However,
other studies have reported no significant changes in overall di-
versity and GM structure with exercise alone (Zhang et al. 2013,
Lamoureux et al. 2017, Brandt et al. 2018, Ribeiro et al. 2019). Those
inconsistencies highlight a need for further research on factors in-
fluencing effects of exercise on the animal GM include different
exercise patterns, dietary conditions, host characteristics (e.g. sex,
obese status, and so on), forced versus voluntary exercise, and an-
alytical techniques (e.g. Gl region, sequencing method, and so on).

Results from studies using larger mammals like horses are sim-
ilarly inconsistent. For example, participation in a 1900 m race
significantly altered levels of certain microbial taxa like Bacil-
lota and Bacteroidota in Thoroughbred racehorses (Gérniak et
al. 2021). However, intense acute exercise or prolonged train-
ing showed no effect on the fecal microbiome of Standardbred
racehorses (Janabi et al. 2016). Other work suggests endurance
horses maintain a stable microbiota composition after racing,
though their metabolic functions show significant shifts, as in-
dicated by changes in plasma metabolites (Mach et al. 2021b).
Mach et al. (2022) also mapped the metagene catalog of the base-
line GM in elite endurance horses to better understand any role
in fatigue resistance and performance enhancement. Their find-
ings highlighted a negative correlation between the presence of
Lachnospiraceae taxa and cardiovascular capacity, whereas more
complex and functionally diverse microbiomes were linked to
higher glucose concentrations and lower levels of long-chain acyl-
carnitines and nonesterified fatty acids in plasma. Interestingly,
methane-producing taxa and mucin-degraders were more preva-
lent in the GM of fitter animals. While these animals cannot ab-
sorb methane (Shabat et al. 2016), it may exert anti-inflammatory,
antiapoptotic, and antioxidative effects in the gut (Boros et al.
2012). This suggests that methane-producing taxa, typically asso-
ciated with energy waste, might contribute to protecting the gut
from the inflammatory effects of endurance exercise. Addition-
ally, the higher intestinal abundance of Verrucomicrobiota (e.g.
A. muciniphila) and the enrichment of carbohydrate enzymes able
to cleave host mucin glycans illustrated the possibility that the
makeup of the GM and their functional capacity in racehorses are
primed for gut mucosa repair (Mach et al. 2022). Such characteris-
tics imply that repeated exercise stress could select for microbial
traits that enhance gut barrier repair and resilience, wherein suc-
cessive exposures prime the microbial community to better with-
stand similar future stresses (i.e. ecological memory).

As summarized in Table 2, these and other findings support the
interplay of exercise, diet, and host factors in shaping the struc-
ture and function of the GM in animal models, as well as the po-
tential for certain microbial taxa or metabolic profiles to confer
resilience and performance benefits.

Human research: exercise and GM dynamics

Research on acute and short-term endurance exercise in hu-
man athletes has revealed dynamic GM changes. For instance, a
study of amateur runners demonstrated rapid shifts in the fe-
cal metabolome after a half-marathon, including an expansion
of Coriobacteriaceae involved in bile salt and steroid metabolism
(zhao et al. 2018). Conversely, the pentose phosphate pathway,
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Table 2. Thematic overview of exercise-induced GM changes in animal models.
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Theme

Key observations

Representative supporting evidence

Exercise in rodents

Equine models:
species-specific
responses

Exercise-diet
interactions

Butyrate production

Resilience

® Even brief exercise (6 days-5 weeks) can modulate
GM composition and function

® Longer exercise regimens (>12 weeks) more
consistently increase alpha-diversity and beneficial
taxa

® Some rodent studies show no significant changes
in overall diversity with exercise alone, highlighting
interstudy variability

® Horses, especially endurance breeds, often exhibit
GM resilience, with minimal compositional changes
pre- versus postrace

® Metabolic activity shifts significantly, as seen in
plasma metabolite profiles

® Thoroughbreds versus standardbred responses can
differ, highlighting individual variation

® Exercise partially counteracts high-fat
diet-induced dysbiosis

® Maintains intestinal barrier function, improves bile
acid homeostasis, and modulates metabolic profiles
under dietary restriction

® Restricted feeding plus exercise alters bile salt
hydrolase-expressing microbes

® Exercise increases the abundance of
butyrate-producing microbes

® Butyrate improves gut integrity, supports mucin
synthesis, decreases epithelial permeability, and
reduces serum ghrelin

® A higher baseline microbial diversity and
functional redundancy may foster GM resilience
under physical and emotional stress

® Metrics beyond alpha-diversity (e.g. metagenetics,
gene flow, and functional capacity) could better
capture ecosystem stability

® Microbiota-targeted interventions could modulate

® 6 days of exercise modulated Lactobacillus and
Bifidobacterium in rats (Queipo-Ortufio et al. 2013)

® 5 weeks of voluntary exercise shifted GM
abundance and composition (Choi et al. 2013)

® 12 weeks increased alpha-diversity, improved
bacteroidota/bacillota ratio (Imdad et al. 2024)

® No major GM changes in some studies (Zhang et al.
2013, Lamoureux et al. 2017, Brandt et al. 2018,
Ribeiro et al. 2019)

® Endurance horses show stable GM composition but
altered metabolite profiles (Mach et al. 2021b)

® Participation in a 1900 km race 1 Bacillota and
Bacteroidota in thoroughbreds (Gérniak et al. 2021)

® No significant changes in standardbred faecal
microbiome after acute intense exercise or 12 weeks
of training (Janabi et al. 2016)

® Exercise preserved GM composition versus high-fat
diet imbalance (Carbajo-Pescador et al. 2019)

® 6 days of exercise + restricted diet altered
Lactobacillus and Bifidobacterium (Queipo-Ortufio et al.
2013)

® High-intensity interval training restored
Bacteroidota/Bacillota ratio in mice on a high-fat diet
(Denou et al. 2016)

® 12 weeks of voluntary exercise 4
butyrate-producers (Evans et al. 2014)

® Butyrate’s effects on gut barrier and mucin
(Burger-van Paassen et al. 2009, Lewis et al. 2010,
Peng et al. 2009)

® Lower ghrelin levels with butyrate (Lin et al. 2012)

® 14 weeks of continuous exercise altered core
bacterial activity (Yang et al. 2021)

® High diversity linked to better metabolic health,
performance, and lower levels of inflammatory
markers (Mach et al. 2022)

® Recommendations for next-generation resilience
metrics (Mach et al. 2022)

exercise outcomes, but more research is needed

crucial for nucleotide synthesis (Alfarouk et al. 2020), and path-
ways for essential amino acids like phenylalanine, tyrosine, and
tryptophan were reduced, aligning with the energy demands of
prolonged physical activity and possibly influencing mood and fa-
tigue (Strasser et al. 2016)). A common finding reported from pre-
to post-event in marathon and ultramarathon runners has been
an increase in Veillonella species (Grosicki et al. 2019, Scheiman
et al. 2019), known for converting lactate into SCFAs such as ac-
etate and propionate via the methylmalonyl-CoA pathway (Ng
and Hamilton 1973). Notably, V. atypica supplementation has been
shown to preserve exercise performance during strenuous ac-
tivity (Gross et al. 2023). Other acute exercise responsive taxa,
such as B. uniformis, can facilitate hepatic gluconeogenesis, sup-
porting the theory that microbial adaptations to strenuous exer-
cise may bolster endurance (Morita et al. 2023). Collectively, these
findings reinforce the “form fits function” hypothesis wherein
host metabolites produced during exercise, such as lactate, may
serve as substrates for specific bacterial taxa who transform
those compounds into other metabolites that may benefit the
host.

Methanobacteria, the archaeal inhabitants of the gut, appear
to be a cornerstone for understanding the intricate symbiosis be-
tween host and microbe during exercise. For example, M. smithii
has been reported to be the dominant methanogen in the human
GM (Dridietal. 2009) and has been associated with increased com-
munity diversity and metagenomic richness (Lahti et al. 2014). As
noted in cyclists, M. smithii enrichment has been found primar-
ily in the most competitive participants. The organism’s high ca-
pacity for methane production has broad implications for other
metabolic processes, including those related to SCFA production.
By consuming H, and CO, byproducts of bacterial fermentation,
to produce methane M. smithii enhances abundances of ferment-
ing bacteria and fermentative efficiency within the GM (Vander-
haeghen et al. 2015) through trophic interactions with fermenters
like B. thetaiotaomicron (Catlett et al. 2022). Large-scale metage-
nomic surveys further show that M. smithii, Prevotella, Ruminococ-
cus, and Collinsella often form a syntrophic guild, facilitating com-
plex polysaccharide degradation (Bai et al. 2022). Additionally,
a meta-analysis of metagenomes across populations found that
the bacterial family Christensenellaceae and the archaeal family
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Methanobacteriaceae often cooccur and are more prevalent in in-
dividuals with a lean body mass index (Ruaud et al. 2020), and
increase during weight loss (Mohr et al. 2024). Coculturing experi-
ments suggest a syntrophic relationship between Christensenella
species and M. smithii, possibly through interspecies hydrogen
transfer (Ruaud et al. 2020). Such interactions favor the produc-
tion of acetate over butyrate, potentially promoting a lean pheno-
type. Indeed, under controlled feeding conditions, methane pro-
duction by methanogens has been reported to contribute to a net
negative energy balance (Corbin et al. 2023). Therefore, coopera-
tion among microbes likely aids in balancing hydrogen content in
the gut for optimized fermentation of carbohydrates and methane
producers may be critical in driving an exercise-associated GM.

Acute shifts in the GM following extreme physical activity can
also induce changes perceived as likely less beneficial. For ex-
ample, a 4-day cross-country ski march in Arctic conditions led
to higher alpha-diversity but also increased GI permeability, in-
flammation, and a rise in less dominant taxa, including poten-
tial pathogens, alongside reductions in beneficial groups such as
Bacteroides, Faecalibacterium, Collinsella, and Roseburia (Karl et al.
2017). Moreover, in response to ultramarathon events, significant
increases in potentially pathogenic taxa have been noted in a
highly fit runner (Grosicki et al. 2019) and an individual with obe-
sity (Saragiotto et al. 2024). These alterations indicate a complex,
allostatic response of the GM to the stress of extreme physical
exertion, which may influence the incidence of postexercise in-
fections and inflammation. Despite these changes, the highly fit
athlete reported no severe GI complaints, which may highlight re-
silience within the gut system under extreme conditions. At the
same time, it raises intriguing questions about the implications of
the proliferation of potentially pathogenic bacteria in response to
allostatic load from extreme endurance exercise, especially be-
cause many marathon and ultramarathon runners experience
acute deterioration and inflammation of the GI mucosal barrier
during or after exercise.

At the opposite end of the spectrum, physical inactivity
presents an opportunity to explore how the GM adapts and re-
sponds to different allostatic loads. In humans undergoing severe
hypoactivity (via dry immersion, a method to simulate the effects
of weightlessness by immersing a subject in a specially designed
tank or bed filled with water), muscle atrophy occurred along-
side changes in the GM, including increased Clostridiales and Lach-
nospiraceae, anaerobic glycolysis pathway impairment, and de-
creased fecal propionate (Jollet et al. 2021). As previously men-
tioned, Lachnospiraceae taxa correlated negatively with cardiovas-
cular capacity in an animal model and occupied niches of noncore
taxa that contributed to performance (Mach et al. 2022). Thus,
hypoactivity may drive taxonomic and functional changes in the
GM that potentially impair host metabolic capacity, contrasting
sharply with the adaptive benefits often seen in physically active
populations

While the overall composition of the GM often remains re-
silient to acute bouts of high physical demand, the community’s
metabolic activity is much more responsive. In a study assessing
the GM in response to an Ironman triathlon, despite stability in
microbial composition, significant changes were noted in the fecal
metabolome, particularly in bile and fatty acid profiles (Grosicki
et al. 2023b), which parallels findings observed during a 4-day
cross-country ski march (Karl et al. 2017). There were notable de-
creases in both free and secondary bile acids, such as deoxycholic
acid and 12-keto-lithocholic acid, and SCFAs, like butyric and pi-
valic acids. These metabolic shifts were closely linked to race per-
formance and the athletes’ training histories. This demonstrates

that while the GM composition might remain unchanged in highly
trained individuals, its metabolic functions, primarily related to
bile, fatty and amino acid metabolism, are dynamically respon-
sive to physical stress. As summarized in Table 3, these findings
reinforce the nuanced interplay between exercise, gut microbial
ecology, and host physiology, emphasizing the need for more com-
prehensive multiomics approaches (e.g. metatranscriptomics and
metabolomics) to clarify the metabolic adaptability and restora-
tion capacity of the GM under different exercise intensities and
regimens.

The athletic GM: resilient and stable, yet
challenged by stressors

While generally stable over time (Faith et al. 2013), the GM tends
to be most unstable during sudden lifestyle changes or upon ex-
posure to other microbiome-modifying factors. GM instability, in
turn, may lead to, or be an indicator of, negative health outcomes.
As discussed previously, multiple factors associated with exer-
cise bouts at the acute scale may initially disrupt GM stability.
Such factors may compound over time to increase microbial di-
versity and functional redundancy (Chatelier et al. 2013) poten-
tially producing a GM with the ability to more readily restabilize
its original state following exercise-induced perturbations. This
functional redundancy allows microbial communities with sim-
ilar roles to compensate for the loss of beneficial strains, main-
taining ecosystem functions despite changes in community com-
position (Blakeley-Ruiz et al. 2019).

Resilience traits within the GM have implications for coping
with the stress of exercise (Table 4), and how that stress may cul-
minate over time to shift ecological states. Characteristics of an
exercise-associated GM are shaped by a variety of internal and
external stressors, both intermittent and continuous. However, di-
rectly confirming if an athletic GM shows increased resilience rel-
ative to the GM of other populations (which also tend to show re-
silience) is challenging, in part, because it is often not possible
to expose the different populations to the same exercise-induced
stressors. This challenge also extends to determining the extent
to which exercise modulates the resilience threshold of the GM.
Another important issue is that GM resilience can be a double-
edged sword. A dysbiotic but resilient GM is undesirable and can
be difficult to revert to a health-associated state. Such resilience
may be linked to an increased allostatic load, reflecting a poten-
tial trade-off in the holo-genome’s fitness. This highlights that re-
silience alone does not necessarily confer health and performance
benefits; a highly diverse and functional microbiota is also essen-
tial. In line with this hypothesis, Mach et al. (2020) studied elite
sport horses exhibiting high levels of apathy and chronic stress
due to continuous physical and emotional pressures from compe-
titions and intensive training. Findings demonstrated that these
horses developed a highly resilient microbiota that was not ben-
eficial and could not be reversed even when exposed to positive
environmental challenges, such as a temporary period in a more
natural environment (i.e. out to pasture with conspecifics) (Mach
et al. 2021a). Hence, the acquisition of a gut ecosystem that has a
high resilience potential may make the management of interven-
tions to reshape the community difficult.

Better understanding of conditioning roles (specific functions
that certain microbes perform to adapt and modulate the gut en-
vironment), such as those exhibited by individual microbes like
Veillonella (Scheiman et al. 2019) and Akkermansia (Fernandez et
al. 2021), appear to be critical for understanding traits of GM re-
silience. These keystone microbes exemplify the adaptive capabil-
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Table 3. Thematic overview of exercise-induced GM changes in humans and potential implications for athletic performance.

Theme

Key observations

Representative supporting evidence

Lactate-metabolizing
bacteria and
performance

Role of gut archaea

Extreme physical stress
and allostatic load

Physical inactivity and
GM changes

Metabolic versus
compositional
resilience

® Veillonella species proliferate
postmarathon/ultramarathon, converting lactate to
SCFAs (e.g. acetate, propionate)

® V. atypica supplementation preserves or enhances
exercise performance

® B. uniformis supports endurance via hepatic glucose
production

® M. smithii prevalent in >95% of humans, especially
in athletic or lean phenotypes

® High methane metabolism influences SCFA
dynamics and overall fermentative efficiency

® Cross-feeding with fermenting bacteria can
enhance energy extraction and maintain gut
ecosystem stability

® Ultraendurance events can trigger blooms of
potentially pathogenic taxa

® GI permeability and inflammation may increase
under harsh physical/mental stress

® Host resilience varies; not all athletes report GI
distress

® Dry immersion and other severe hypoactivity
models show shifts in GM composition such as
increased Clostridiales and Lachnospiraceae, reduced
fecal propionate

® GM composition often remains relatively stable in
highly trained individuals, but metabolic functions
(e.g. bile acid, fatty acid, amino acid pathways) shift
significantly

® Changes in bile acid profiles and SCFAs correlate
with performance metrics and training history

® Significant Veillonella increase after endurance
races (Scheiman et al. 2019, Grosicki et al. 2019)

® V. atypica supplementation study (Gross et al. 2023)
® B. uniformis promoting endurance (Morita et al.
2023)

® M. smithii presence linked to increased diversity,
observed in competitive cyclists (Dridi et al. 2009,
Petersen et al. 2017)

® Correlations with SCFA production, synergy with
Bacteroides thetaiotaomicron (Catlett et al. 2022)

® Association with lean BMI and weight loss (Ruaud
et al. 2020, Mohr et al. 2024)

® Marathon/ultramarathon: 1 potentially pathogenic
microbes (Grosicki et al. 2019, Saragiotto et al. 2024)
® Ski march study: 1 alpha-diversity but higher GI
permeability and inflammation (Karl et al. 2017)

® Dry immersion: muscle atrophy, altered GM (Jollet
et al. 2021)

® [ronman triathletes: stable composition but altered
metabolome, notably bile and fatty acids (Grosicki et
al. 2023b)

® Similar findings of stable composition but changed
metabolites in Arctic ski march (Karl et al. 2017)

Table 4. Proposed key traits of exercise-associated GM resilience.

Taxonomic diversity

Functional diversity

Keystone taxa

Metabolic products

Metabolic flexibility

Stress response genes

® Enhanced diversity in athletes suggests a robust ecosystem capable of resisting pathogens and
adapting to environmental stressors, improving health and performance stability.

® High functional diversity means that the microbial community has a broader metabolic capacity to
respond to and recover from physiological challenges. In athletes, this can translate into more efficient
nutrient metabolism, enhanced energy production, and improved recovery processes after intense
workouts. This functional adaptability under stress is a key aspect of resilience, as it ensures that the
microbiome can maintain homeostasis and support the host’s health and performance under varying

conditions.

® These taxa may support enhanced performance and recovery by stabilizing microbial communities
against stressors associated with intense physical activity. They facilitate essential processes such as
nutrient cycling, pathogen inhibition, and the maintenance of microbial diversity, ensuring the
microbiome’s ability to adapt and respond to environmental and physiological changes.

® SCFAs such as butyrate, propionate, and acetate play a role in maintaining gut barrier integrity,
modulating inflammation, and providing energy to colon cells. In athletes, increased production of
these products can enhance energy metabolism and recovery processes, contributing to a more resilient
GM capable of quickly adapting to the stresses induced by intense physical activity.

® Adaptive shifts in bile acid profiles in athletes support increased energy demands and recovery,
influencing the gut environment and fostering resilience against exercise-induced changes.

® Fatty acid amides stimulate sensory neurons in the gut that link to the brain’s reward system,
potentially enhancing the desire and capacity for exercise by increasing dopamine levels during

physical activity.

® The GM'’s ability to adjust metabolic pathways is crucial for optimizing energy production and
nutrient absorption, supporting endurance and recovery.

® The presence of microbial genes that are activated during physical stress can indicate a microbiome’s
readiness to handle and adapt to the stressors associated with intense exercise, contributing to the

overall resilience of the GM.
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Table 5. Future research directions in exercise-associated GM resilience and functionality.

Area of research

Goals and methods

Implications

Longitudinal studies

Resilience assessments

Sectional GI tract
analysis

Mechanistic studies

Diet, supplementation,
and exercise interplay

Personalized
approaches in sport
science

Biomarker
development

Resistance training

Gut-brain axis

Environmental factors

State dynamics

Injury recovery and
rehabilitation

Travel and competition
environment

Conduct studies with dense sampling in both
sedentary and physically active populations to
observe long-term effects of various exercise
regimens on the GM, capturing temporal dynamics
during intense activity and recovery and their
relation to changes in health and performance.
Assess resilience to nonexercise stressors (i.e.
nutritional challenges, antibiotics, infectious disease,
and so on) in active versus sedentary individuals.

Implement methods to analyse microbial
communities and physiological responses along
different sections of the GI tract, moving beyond
fecal samples to better understand local variations
and their implications for health.

Elucidate the biochemical pathways and microbial
metabolites influenced by exercise, and identify their
links to metabolic and immune responses.

Examine how dietary strategies and
supplementation can enhance exercise-induced GM
adaptations, focusing on diets and supplements that
boost microbial diversity and microbial functions
linked to health and performance.

Explore individual variability in exercise response
due to GM, genetic, metabolic, lifestyle factors, age,
sex, and race/ethnicity to personalize exercise
recommendations.

Develop noninvasive biomarkers for real-time
monitoring of GM changes and related health
outcomes influenced by exercise.

Investigate the effects of resistance training on GM,
particularly regarding muscle mass, metabolism, and
aging-related health issues.

Study how exercise-induced GM changes affect the
gut-brain axis, focusing on microbial metabolites
that influence brain function, mental health,
cognitive function, and stress resilience.

Assess the impact of environmental conditions such
as heat, cold, elevation, and pollution on
exercise-induced changes in the GM.

Investigate the GM during states of detraining and
retraining to understand microbial transitions and
their functional implications.

Determine how exercise-induced changes in GM can
influence. inflammation, tissue repair, and recovery
times in athletes.

® Longitudinal sampling before, during, and after
travel across time-zones, altitudes, or climates.

® Record sleep/circadian markers, diet logs,
hydration status, stress hormones, stool
pH/consistency, and pathogen screening.

® Use multiomics (metagenomics and metabolomics)
and wearable tech to link circadian disruption,
dietary change, and environmental exposures to GM
dynamics.

Identify tipping points and time courses of change.
Determine if exercise-induced changes are transient
or lead to stable alterations in the GM.

Determine if features of GM resilience are
differentially influenced in an exercise-associated
GM and agnostic to the destabilizing perturbation.

Provide a more accurate picture of gut health in
athletes, informing targeted interventions and
dietary strategies.

Highlight potential therapeutic targets to enhance
gut health and systemic resilience.

Optimize GM modulation and maximize health
benefits of exercise through targeted nutritional
approaches.

Tailor exercise protocols to maximize microbially
associated health benefits, enhancing personalized
health care.

Provide tools for ongoing assessment of gut health

and resilience, supporting informed health decisions.

Extend understanding of exercise types beyond
endurance, offering broader insights into exercise
impacts.

Unveil mechanisms by which physical activity can
influence psychological and GI functions.

Understand how external stressors affect GM
adaptation and resilience, informing training in
varied climates.

Explore how fluctuations in training intensity
influence GM stability and resilience.

Gain a deeper understanding of the complex
interactions between exercise, GM, overall health,
ultimately leading to optimized strategies for
enhancing athletic performance.

Clarify how jet lag, altered food/water hygiene, and
location-specific microbes influence gut-microbiota
composition, resilience, and athlete performance;
inform mitigation strategies (e.g. timed light
exposure, targeted pre/probiotics, and phased diet
adjustments).
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Area of research Goals and methods

Implications

Holistic approach

Integrating the study of respiratory microbiota with
mucins, and GM research provides a more
comprehensive understanding of the microbiota’s

This holistic approach can lead to more effective
interventions and personalized strategies for
athletes.

role in overall health and performance. Athletes

often experience high respiratory demands,

especially during intense training and competition.

Microbial engineering
microbial communities.

The study of microbial engineering of athlete’s

Optimize nutrient absorption, boost immune
function, and improve metabolic efficiency.

Abbreviations: GI, gastrointestinal; GM, gut microbiota.

ities of the GM in response to the physiological demands of reg-
ular physical activity. In addition, microbes within the GM often
display cooperative behaviors to stay competitive. For instance,
bacteria use quorum sensing via signaling molecules called au-
toinducers to monitor and respond to cell density, environmen-
tal conditions, and community composition. This communication
system enables microbes to collectively adjust activities based on
the surrounding environment (Dejea et al. 2014). Even seemingly
less fit bacterial species may carry genomic adaptations that en-
hance their survival in environments scarce in micronutrients,
thereby increasing their fitness (Mach and Clark 2017). Addition-
ally, dynamics such as progressive amensalism or colonization re-
sistance can influence community structure by enabling domi-
nant species to inhibit the growth of other taxa, thus maintaining
ecological balance. Thus, shifting to another state may require a
level of depletion of the keystone, conditioning microbial features
to allow others to colonize, flourish, and support a distinct net-
work synergy as suggested by studies showing shifts in the Bac-
teroides/Prevotella ratio in response to physical activity in rodents
(Lambert et al. 2015).

In relation to conditioning roles, host-associated factors ex-
ert substantial influence over the GM’s responsiveness to exer-
cise including when physical activity is initiated in a lifespan.
For example, exercise in young animal models showed increased
alpha-diversity, Bifidobacteria and methanogens abundance, and
lean body mass, which persisted after stopping exercise, suggest-
ing early adaptations (Mika et al. 2015). This period of develop-
mental plasticity in young hosts mirrors a similar susceptibility
to change in their developing microbial ecosystems. In humans,
early exercise in children with obesity shifted microbiota profiles
toward healthier states (Quiroga et al. 2020), while adult micro-
biota shows resistance to long-term changes, even with increased
exercise (~40%) and especially in disease states (Knoll et al.
2023). This suggests that early interventions might facilitate fos-
tering a beneficial microbial state that could have lasting health
impacts.

Additional host factors also significantly determine the GM’s
resistance and resilience to changes. For example, Allen et al.
(2018b) discovered that previously sedentary, lean, and obese
adults responded differently to short-term endurance exercises.
While lean participants experienced increases in fecal concen-
trations of SCFAs, individuals with obesity did not show these
changes (Allen et al. 2018b). This difference illustrates how the
sedentary GM may possess inherent resilience that prevents sub-
stantial microbial shifts without prolonged or intense exercise
stimuli. Supporting these findings, even though acute and short-
term exercise typically shows limited impact on microbial diver-
sity in highly fit individuals (Grosicki et al. 2023b, Zhao et al. 2018,
Tabone et al. 2021, Sato and Suzuki 2022, Fernandez-Sanjurjo et
al. 2024), it can lead to rapid metabolic adaptations that enhance

performance and facilitate recovery, including notable changes in
fecal bile acid and fatty acid profiles (Grosicki et al. 2023b), organic
acids (Zhao et al. 2018), and tryptophan, tyrosine, and phenylala-
nine (Tabone et al. 2021). Such changes have implications for sup-
pressing fatigue (Liu et al. 2017) and increasing bacterial fitness,
as tryptophan is vital for survival and its biosynthesis is gener-
ally ubiquitous across taxa (Merino et al. 2008). Collectively, these
studies suggest that even if exercise stress on a short time-scale
has little impact on GM diversity, the GM can rapidly respond with
metabolic outputs that could impact certain taxa and host func-
tions.

Overall, the dynamics of an exercise-associated GM and its
resilience can be categorized into two main areas: host con-
trol and GM characteristics. Host control, involves selective pres-
sures such as genetic background, metabolism, nutrient provision,
immune tolerance, the protective function of the mucus layer,
mitochondria-microbe interactions, peristaltic movements, and
redox status regulation. These factors are crucial in determin-
ing, which microbial species thrive or diminish, thereby shaping
the GM’s composition and functionality. GM characteristics in-
clude microbial diversity, functional redundancy, metabolic out-
put and flexibility, microbial interactions, and colonization per-
sistence. These elements enable the GM to withstand and adapt
to the physiological and environmental stressors of an active
lifestyle. Future studies probing GM resilience on multiple time-
scales may enable microbiota-targeted strategies to mitigate high
physical and emotional stress in athletes. Moreover, more nu-
anced resilience metrics—including metagenetic diversity, gene
flow, and interkingdom interactions—may better capture ecosys-
tem stability and recovery than traditional diversity indices alone.
Continued research is necessary to unravel the complexities of the
GM in active individuals, focusing on identifying patterns of sta-
bility and resilience and understanding how short-term responses
to exercise stress inform long-term health implications.

Individual factors cor;tribute to GM
response heterogeneity

Despite numerous studies, significant discrepancies remain in
the reported GM modifications following exercise, reflecting the
complexity and variability of individual responses. While acute
and short-term stressors might not always prompt substantial
shifts in a resilient adult GM (Grosicki et al. 2023a), the cumu-
lative effects of these stressors, especially when combined with
dietary adjustments, could progressively mold a GM character-
istic of those observed in athletic populations. The longitudinal
adaptation of previously sedentary individuals to regular physi-
cal activity and the corresponding physiological and microbiome
changes, however, remains an underresearched area. A case study

G20z Joquieydas |0 Uo 1sanb Aq 6G9ZEZS/ZE0NENI/RISWAY/EE0L 0 L/I0P/loIUE/RISWaY/ W00 dNo-ojwapese//:sdny Wwoly papeojumoq



14 | FEMS Microbiology Reviews, 2025, Vol. 49

by Barton et al. (2021) tracked two unfit males over 6 months of
progressive exercise training, documenting biweekly changes in
the GM. The study observed increases in GM alpha-diversity after
~18 weeks of training, suggesting a need for consistent exercise
over a prolonged time period to achieve sustained enhancements
in microbial diversity. Notably, exercise-induced taxonomic shifts
in the GM were highly personalized, suggesting that the pretrain-
ing GM along with the host genome, its genetic and epigenetic
variants, and its expression can contribute to phenotypic varia-
tion in the GM and the ability of the GM to cope with varying en-
vironmental pressures.

An intriguing question arises (modified from Olbricht et al.
2022) regarding the dynamics of these microbial communities
in the context of exercise-induced modification: Are exercise-
associated microbiota growth-limited or colonization-limited?
This question delves into understanding whether all microbes are
inherently present in all individuals, awaiting conducive condi-
tions for growth, or if bacterial colonization events primarily con-
strain the GM's composition. Scheiman et al.’s (2019) research sug-
gests that the high-lactate environment of athletes provides a se-
lective advantage for the growth of lactate-metabolizing organ-
isms such as Veillonella. However, exercise-induced effects on the
GM may depend on baseline composition (Bycura et al. 2021, Mach
etal. 2022),implying that GMs are likely colonization-limited, with
the existing microbial community playing a crucial role in shaping
the response to environmental changes. Thus, the introduction of
exogenous microbes as a strategy to foster microbial adaptation is
an emerging field (i.e. strains of Veillonella; Gross et al. 2023) garner-
inginterest as a means to manipulate the microbiome for exercise
performance benefits.

A vital aspect of this dynamic is understanding the difference
between responders and nonresponders to exercise interventions.
For example, a study on untrained individuals revealed that GM
composition could predict the efficacy of exercise regimens in en-
hancing both resistance and cardiovascular fitness, with specific
microbial taxa correlating differently with each exercise modality
(Bycura et al. 2021). Similarly, some individuals may not respond
or may even react adversely to exercise in terms of insulin sensi-
tivity and glucose homeostasis (B6hm et al. 2016). That variabil-
ity may be related to GM functional changes during exercise in-
terventions independent of major shifts in community structure.
For instance, a 12-week study involving overweight men with pre-
diabetes demonstrated that exercise responders experienced en-
hanced SCFA production and branched-chain amino acid break-
down, while nonresponders exhibited increased levels of metabo-
lites like indole and p-cresol, suggesting distinct metabolic pro-
cessing (Liu et al. 2020). Notably, fecal microbial transplantation
from exercise responders alleviated insulin resistance in obese
mice, indicating that functional microbiota changes are crucial in
mediating exercise benefits. In subsequent research using sam-
ples from Liu et al. (2020), proteomic analysis differentiated be-
tween responders and nonresponders, revealing that responders
exhibited activation of metabolism-related proteins and suppres-
sion of inflammatory markers, whereas nonresponders showed
increased stress-related proteins (Diaz-Canestro et al. 2023). Fur-
thermore, proteins like trefoil factor 2, positively associated with
changes in insulin resistance and fasting insulin and GI mucosal
Immunity, were increased in nonresponders, suggesting modula-
tion of the microbiota via regulating genes involved in innate host
antimicrobial defense (Baus-Loncar et al. 2005).

These insights reveal the complexity behind the responder and
nonresponder dichotomy, suggesting that while exercise may im-
pact health and the GM, the nature and extent of these effects

are highly individualized and depend, in part, on the initial GM.
Indeed, the stability of individual species, genes, and transcripts
over time is generally correlated with average baseline relative
abundance and prevalence (Mehta et al. 2018), but also depends
on the host’s genetic make-up and epigenetic factors. Admittedly,
this is not always the case, as in the example of M. smithii, which,
despite their stable presence, appear to be dominant contributors
to the expression of unstable genes, suggesting specialized roles
associated with targeted, highly variable activity over time (Mehta
et al. 2018). Regardless, it is not merely the presence of certain
microbes that matters in the context of exercise-GM interactions,
but the functional potential of the GM and the interaction with
host genome, metabolism, and immune function.

Toward improved understanding of GM
resilience and stability in response to
exercise

Capturing temporal dynamics to model potential
microbiota configurations

To deepen understanding of how consistent exercise shapes the
GM over time, comprehensive longitudinal studies that capture
the nuanced temporal shifts induced by regular exercise are
needed. The concept of accumulated stress suggests that even
small, regular stimulations can cumulatively drive significant
shifts in GM community dynamics when applied intermittently
or continuously (Fig. 4). This is particularly relevant when consid-
ering stochastic dynamical systems, which posits that alternative
stable states in an ecosystem are often separated by an unstable
intermediate, known as a tipping point (Lahti et al. 2014). Here, mi-
nor perturbations can catalyse a rapid and self-sustaining tran-
sition to a new state (Guchte et al. 2020). The notion of tipping
elements within the GM suggests that specific functional com-
ponents or taxa may act as critical indicators or facilitators of
these transitions, reflecting broader shifts in ecosystem stability
and host physiology (Lahti et al. 2014). Modeling these dynamics
could illuminate the conditions under which the GM exhibits re-
silience or vulnerability, highlighting how specific microbial taxa
or community structures play a pivotal role in maintaining com-
munity stability or dictating shifts in composition. Predicting and
influencing these microbiota transitions from state to state may
involve using probability densities of bacterial abundance to esti-
mate basins of attraction, which might indicate under what con-
ditions the microbiome is most resilient or susceptible to change
(Levy et al. 2020). Indeed, to shift a GM to a configuration, one may
need to overcome substantial ecological gradients or barriers into
areas of permissivity (population bottleneck in which both are rel-
atively depleted) based on exclusionary occurrence across intesti-
nal habitats (Zhang et al. 2016). Identifying these ecological gra-
dients or barriers that need to be overcome to transition between
states has tremendous implications for “engineering” the GM. For
example, diminishing certain features or clusters of features to
make the ecological landscape conducive for desired features.

In addition, exploring cooccurrence relationships, community
network structures, and functional outputs will provide a more
systemic understanding of how the entire GM assembles and re-
mains or moves to alternative stable states in response to exercise
training. Identifying microbial tipping points requires a nuanced
approach, considering not just the presence or abundance of cer-
tain microbes but also the complex interplay of host factors, envi-
ronmental exposures, and intrinsic microbial community dynam-
ics. As a proof-of-concept, Shaw et al. (2019) utilized stability land-
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Figure 4. Dynamic shifts in GM across different exercise states. Conceptualization on how sustained exercise stress influences the GM, leading to
shifts in ecological states over time. Contrasting alternative stable states in sedentary versus exercise-trained individuals, exercise can push the GM
across ecological thresholds or tipping points, resulting in a transition to a new stable state. These transitions are influenced by basins of
attraction—keystone features like dominant taxa or specific microbial community structures. Not only do these basins dictate community
composition and diversity, but they also contribute to the stability and resilience of these states, reflecting the allostatic load of the holobiont and its

management through exercise. Created in BioRender.com.

scape analyses to demonstrate how the human GM, conceptual-
ized asresting in the equilibrium of a stability landscape of all pos-
sible states, can be perturbed into alternative states by interven-
tions like antibiotics. By modeling the microbiome’s stability land-
scape (via analytical impulse-modeling of alpha-diversity), they
could predict recovery or transitions postantibiotic treatment, of-
fering insights into how to potentially guide the microbiome back
to health or maintain its resilience against disturbances. How-
ever, to our knowledge, similar approaches have not been used in
the context of exercise stress. Moreover, it is crucial to recognize
that while such models provide valuable insights, they simplify
the microbiome’s incredibly complex and dynamic nature. Each
microbial community is more than the sum of its parts, with in-
tricate interactions and dependencies that influence its function
and stability. Therefore, while stability landscape frameworks and
impulse-response models are powerful tools, they are just start-
ing points for understanding the multifaceted dynamics of the GM
in the context of exercise and other interventions.

Generalized Lotka-Volterra (gLV) models and associated vari-
ants could further enhance our understanding by describing
changes over time in a population of species based on their in-
trinsic growth rates and interactions (Gonze et al. 2018). These
models can capture several commonly encountered network
structures, including food chains, modularity, scale-freeness, and
small-world networks. They provide valuable insights into the

ecological dynamics within the gut, potentially identifying key-
stone species that significantly influence community composition
and stability and those that impact health, such as by inhibit-
ing pathogens. However, gLV models primarily focus on pairwise
interactions and assume that they are additive, which may not
capture the full complexity of microbial interactions that are of-
ten nonlinear and influenced by a range of biotic and abiotic fac-
tors. Moreover, these models typically do not account for immi-
gration or emigration events within the community (assuming a
closed system), which might not reflect the dynamic nature of mi-
crobial ecosystems. The assumption of homogeneity in popula-
tions is another limitation. In reality, microbial communities are
incredibly diverse, with variations in genetic and functional at-
tributes within species. Despite these limitations, gLV models are
still valuable for making broad predictions about factors govern-
ing microbial community stability and dynamics. They provide a
framework to understand how each species’ abundance changes
over time and how other community members influence these
changes. By learning from these models, researchers can identify
critical community members and interactions essential for main-
taining a healthy and stable microbial ecosystem or contributing
to its perturbation.

Understanding these dynamic community states is crucial for
identifying when subtle shifts in exercise routines, dietary pat-
terns, or other factors push the microbiome from one stable state
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to another, potentially leading to variations in health outcomes
or physical performance. Many factors associated with exercise
bouts at the acute scale may initially shift GM stability, includ-
ing hyperthermia, change in blood flow, inflammation, hydration
status, and kinetics of the GI tract. Other important considera-
tions are related to the confounding host factors, such as genetics,
diet, sleep, medication use, health status, stress, and environmen-
tal exposures. This can further feedback to the ecosystem level, as
the resulting changes in the community composition may influ-
ence the GI processes and environment.

The inseparable dynamic of diet

Diet is fundamental in shaping microbiota composition and
metabolic outputs (Sonnenburg et al. 2016). Ecologically, diet ex-
erts strong selective pressures on gut microbial communities
(Byndloss et al. 2018), driven by competition for nutrients and in-
creased fitness through cross-feeding interactions (Morris et al.
2013). Leveraging diet for improving the mediatory mechanisms
of the GM on athletic performance has been the topic of recent,
detailed reviews (Hughes and Holscher 2021). Briefly, complex car-
bohydrate metabolism, performed by gut microbes, seems crucial,
as elite athletes often derive much of their energy intake from
poly- and monosaccharides (Mach and Fuster-Botella 2017, Mur-
taza et al. 2019). Endurance athletes are often advised to consume
higher energy and carbohydrate diets, often with a lower abso-
lute fiber load (in soluble and insoluble forms), impacting tran-
sit time and GM turnover. Complex carbohydrates are particu-
larly beneficial, increasing the production of SCFAs like butyrate.
From a fermentation standpoint, the type of substrate an athlete
supplies to the colon governs the physicochemical environment
that, in turn, shapes microbial ecology. Microbiota-accessible car-
bohydrates are rapidly fermented, lowering luminal pH and fa-
voring butyrate-producing commensals; many taxa thrive only if
they can also tolerate this acidified milieu (Hughes and Holscher
2021). A consistently acidic colonic environment supports SCFA
production, reinforces tight-junction expression (Blachier et al.
2017), and suppresses opportunistic pathogens and proteolytic
bacteria (Zhang et al. 2020). When fermentable fiber is scarce and
protein intake dominates, metabolism shifts toward amino-acid
catabolism, raising pH and osmolarity and generating ammonia,
phenolic compounds, and p-cresol that can erode the mucus layer
and compromise barrier integrity (Mancin et al. 2025). Thus, high-
carbohydrate/adequate-fiber diets not only supply substrate for
SCFA synthesis but also create a biochemical landscape that se-
lects for health-promoting taxa, whereas low-fiber, high-protein
patterns can tilt the environment toward potentially deleteri-
ous proteolytic fermentation (Mancin et al. 2025). For example,
Furber et al. (2022) compared the effects of high-protein and high-
carbohydrate diets on the GM of 16 highly trained endurance run-
ners. Findings revealed that a high-protein diet led to performance
declines and significant shifts in the gut phageome. This included
reductions in bacteriophage diversity and changes in Sklvirus and
Leuconostoc populations. In contrast, the high-carbohydrate diet
enhanced performance and promoted populations adept at car-
bohydrate fermentation and metabolism. Notably, athletes with a
stable GM across both the high-carbohydrate and high-protein in-
terventions typically showed superior performance, highlighting
the interplay between diet, microbial adaptation and resilience,
and athletic output. Athletes who did not respond well to the high-
carbohydrate diet showed a sustained loss of bacteriophage func-
tional richness even after the dietary intervention ended, indicat-
ing a potential connection between a lack of functional micro-

bial plasticity and suboptimal performance. This contrasted with
the observed expansion of viral communities in the high-protein
diet group, possibly reflecting increased bacterial stress due to a
scarcity of fermentable carbohydrates.

As highlighted by Furber et al. (2022), the dietary patterns of
athletes and physically active individuals, which generally di-
verge from those of less active populations, merit consideration
when assessing the effects of exercise training on the GM. This
includes the common use of dietary supplements such as pro-
biotics, prebiotics, postbiotics, and other GM-modulating agents
among athletes (Jager et al. 2019, Hughes and Holscher 2021). Re-
cent controlled research suggests that probiotic supplementation
can complement diet-driven modulation of the GM in sport. A re-
cent scoping review of 45 randomized trials in athletes and phys-
ically active adults reported wide variation in strains, doses (10%-
10*! CFU/day) and intervention lengths, yet found generally low
risk of adverse events and frequent assessment of GI or immunity-
related outcomes (Mohr et al. 2022b). A 2023 systematic review of
13 RCTs concluded that certain single-strain or multistrain probi-
otics improved endurance-performance metrics and reduced fa-
tigue and muscle pain (Dio et al. 2023). Parallel evidence shows
reductions in upper-respiratory and GI illness incidence, largely
via immune modulation and barrier support (Diaz-Jiménez et
al. 2021). The International Society of Sports Nutrition position
stand further stresses that probiotic benefits are strain- and dose-
dependent and highlights mechanisms—such as enhanced gut-
barrier integrity and increased amino-acid absorption—that are
directly relevant to recovery and performance (Jager et al. 2019).
Collectively, these findings indicate that evidence-based, strain-
verified probiotic strategies may augment athlete health and, in
certain contexts, performance.

Beyond probiotics, accumulating work indicates that diet itself
may have a stronger influence on the GM than exercise alone. For
instance, Cronin et al. (2018) observed that increased protein con-
sumption, either alone or combined with exercise, had a more
substantial effect on shaping the virome over 8 weeks than ex-
ercise alone in previously sedentary humans. Similarly, Yun et al.
(2022) reported that diet had a more pronounced effect on gut mi-
crobial richness and diversity than exercise in adult mice, indicat-
ing that dietary factors may drive more significant changes in the
GM than physical activity. In a similar way, the gut community
microbial structure observed in endurance horses was primarily
influenced by diet, with host properties, exercise distance, and ex-
ercise effort showing minimal impact (Plancade et al. 2019). More-
over, early-life diet was found to have a lasting impact on the GM,
reducing bacterial diversity in selectively bred exercise-adapted
mice (76 generations of exercise) (McNamara et al. 2021). There-
fore, the intricate interplay between diet and the GM likely influ-
ences GM responses to exercise and GM impacts on athletic out-
comes. Understanding and harnessing this dynamic relationship
will be important for optimizing health and performance, making
it a critical area of focus for future research and practical appli-
cations in sports and exercise nutrition.

Research priorities for assessing resilience in
exercise-associated GM

Focused research directions to enhance our understanding of re-
silience within the exercise-associated GM are outlined in Table 5.
Robust longitudinal studies are crucial for assessing the long-
term impacts of different exercise modalities and intensities on
the GM. In these studies, dietary intake should be carefully tracked
or controlled to reduce the confounding influence of varying nu-
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trient patterns on GM shifts. These studies should document tem-
poral microbiota composition and functional changes during var-
lous training phases, including intense activity and subsequent
recovery periods, to determine if exercise-induced shifts are tran-
sient or lead to stable alterations. Indeed, it is likely that increased
alpha-diversity observed in athlete GMs relative to less active pop-
ulations occurs over a longer time scales and/or may be apt to in-
crease in less fit and younger individuals. We suggest that the gut
microbial diversity observed in athletes is likely the result of the
coevolution between microbial ecosystems and their hosts, where
a top-down selection favors gut ecosystems with stable commu-
nities and a high degree of functional redundancy, and bottom-up
selection drives microbial cells to become functionally specialized
(Ley et al. 2006).

Further investigations are needed to compare active individu-
als directly to other populations, using detailed longitudinal de-
signs that capture a wide array of ecological metrics such as sta-
bility, plasticity, resistance, resilience, and community variabil-
ity. While many studies reveal clear GM distinctions between
athletes and sedentary controls, it is noteworthy that a recent,
large-scale pooled metagenomic analysis did not reveal “sport-
specific” signatures (Fontana et al. 2023). This reinforces the con-
cept that, despite regular training and shared exercise stress,
additional interindividual variables (e.g. genetics, dietary pat-
terns, lifestyle, and training load) may, in some studies, obscure
discipline-specific clustering. Consequently, the proposed model
of exercise-induced gut microbial resilience should be viewed as a
broad framework, rather than an absolute predictor of clustering
by athletic discipline. The lack of distinct sport-based clustering
supports the need for more uniform, controlled cohorts, and mul-
tiomics approaches to identify finer-scale microbial adaptations
that might otherwise be masked by confounding factors. These
studies should also consider the biochemical pathways affected
by physical activity and account for individual variability (i.e. ge-
netics and epigenetics) in exercise response. It is also critical to
leverage and develop methodologies that capture microbial com-
munities along the entire GI tract, not just from fecal samples. The
prevalence of GI symptoms among athletes, for instance, high-
lights the limitations of using fecal samples to infer gut health, as
these symptoms may reflect localized disturbances not captured
by fecal microbial profiles. Thus, caution is warranted in interpret-
ing these profiles as comprehensive indicators of gut health.

Additionally, most research related to the exercise-associated
GM is related to endurance-type physical activity. Resistance
training offers opportunity to address other important research
questions, especially pertinent to muscle mass accretion and thus
offsetting cardiometabolic derangement and the sarcopenic ef-
fects of aging. For example, recent research has provided evidence
that a 6-week resistance training exercise program (3 days/week)
in sedentary adults with overweight and obesity can increase GM
diversity, SCFA-producing taxa, and microbial pathways related to
carbohydrate metabolism and cell motility compared to seden-
tary controls, paralleling improvements in glucose metabolism
(Cullen et al. 2024). Thus, investigating the mechanisms underly-
ing the resilience of the GM in response to different types of exer-
cise is crucial. Those studies should focus on how microbial com-
munities adapt and maintain stability under physical and emo-
tional stress to identify key factors that contribute to resilience.
Additionally, determining how specific dietary components and
supplements can enhance microbial resilience and overall health
in athletes could lead to optimized and, perhaps, personalized di-
etary recommendations. Finally, environmental factors such as di-
etary intake and demographic variables like age, sex, stress loads,
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and race/ethnicity are crucial in shaping host-GM dynamics in
response to exercise. Elite competitors also face repeated long-
haul travel, rapid time-zone shifts, and abrupt changes in alti-
tude, climate, and local food-water hygiene—stressors that can
transiently disrupt circadian rhythms, immune tone, and gut-
microbiota stability. By understanding these factors, we may even-
tually optimize health benefits of exercise and enhance athletic
performance through GM-targeted strategies.

Conclusion

The interaction between the host and the GM under the influence
of exercise is complex and bidirectional, involving metabolic effi-
ciency, immune regulation, and even endocrine functions. Regular
physical activity serves as a hormetic stressor that not only chal-
lenges but also appears to enhance the diversity and functional
capacity of the microbial ecosystem, which aligns with allostatic
principles. These effects are likely mediated by exercise-induced
changes in immune activation, thermal regulation, metabolism,
and alterations in hydration status and oxidative stress that col-
lectively drive the long-term adaptation of the GM. By foster-
ing a resilient and diverse GM, consistent exercise may prepare
this community to withstand and adapt to various physiological
stresses, thus reducing allostatic load over time. Host-controlled
factors like diet, training regimens, and lifestyle choices also sig-
nificantly shape these dynamics, underscoring the interconnect-
edness of lifestyle, exercise, and gut health. Ultimately, by al-
tering gut microbial communities, exercise has far-reaching and
long-term impacts on the gut ecosystem and systemic health. As
we continue to uncover the intricate relationships between ex-
ercise and the GM, it becomes increasingly clear that leveraging
this knowledge could lead to innovative approaches in enhanc-
ing health and athletic performance through targeted microbial
interventions. Harnessing a new-genome level understanding of
individual microbial taxa, microbe-host and microbe-microbe in-
teractions, and functional capacities that might operate at the mi-
crobial community level is essential to the success of resilience
and ecological restoration following exercise.
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