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Abstract

The problems of observability and identifiability have been of great interest as previous steps to estimat-
ing parameters and initial conditions of dynamical systems to which some known data (observations) are
associated. While most works focus on linear and polynomial/rational systems of ODEs, general non-
linear systems, including non-analytic systems have received far less attention and, to the best of our
knowledge, no unified constructive methodology has been proposed to assess and guarantee parameter
and state recoverability in this setting. Some symbolic tools provide automated analyses for rational or
nonlinear, analytical systems, offering qualitative identifiability and observability verdicts that are some-
times incomplete. In this work, we introduce a family of efficient and fully constructive procedures that
can enable explicit recovery of the unknown parameters and/or initial conditions, whenever possible, for
a large class, not necessarily rational or analytic, nonlinear ODE systems. Each procedure is tailored to
different observational scenarios and based on the resolution of linear systems. As a case study, we apply
these procedures to several epidemic models, with a detailed focus on the SIRS model, demonstrating its
joint observability-identifiability when only a portion of the infected individuals is measured, a scenario
that has not been studied before. In contrast, for the same observations, the SIR model is observable
and identifiable, but not jointly observable-identifiable. This distinction allows us to introduce a novel
approach to discriminating between different epidemiological models (SIR vs. SIRS) from short-time data.
For these two models, we illustrate the theoretical results through some numerical experiments, validating
the approach and highlighting its practical applicability to real-world scenarios.

Key words: Nonlinear epidemiological models; Joint observability-identifiability; Parameter identifiability; State ob-

servability; SIRS model analysis; Epidemiological model discrimination; Epidemic data reconstruction.

1 Introduction

Mathematical modeling has been widely used for studying epidemics for a long time. Some of the most
popular models in epidemics generated by infectious diseases are compartmental models, whose theory was set
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up in the early 1900s (see |48]), and have been regularly used since then to estimate the dynamics of different
diseases (for example, influenza [9} |15], tuberculosis 28] 44|, Ebola [22|73], or vector-transmitted diseases such
as malaria [72], dengue fever or the Zika virus |11, 29]), with a significant surge in applications in recent years
due to the COVID-19 pandemic (see, for example, [2, 8l 41, |64} 67]). These models are usually deterministic
systems of nonlinear ODEs, which include the class of systems that we are going to address from now on.

Given a disease and some information on the different biological processes that are involved, we need to
set up a model that captures the most important features of its dynamics, being careful not to complexify it
up to a point that may result intractable from a mathematical perspective. To these dynamical models there
are associated data, available in the literature (e.g., parameter values) or collected over time (e.g., how many
people are hospitalized or vaccinated at certain dates). This information is partial most of the time, in the
sense that they are related to some of the parameters and state variables of the model, but rarely to all of
them. For instance, the sizes of susceptible or asymptomatic compartments are often hard or even impossible
to measure (they are hidden variables), and the transmission rate of a new virus is often not known in advance.

Once we have settled a model and know some information about the parameters and compartments,
a question arises: Can we uniquely reconstruct all the unknowns of the model from partial observations?
The ability to accurately reconstruct key aspects of disease dynamics from observed data is fundamental
to understand epidemic trajectories and design effective control strategies. Thus, determining whether the
parameters can be uniquely identified or the states can be precisely reconstructed from available data is
essential. We thus face an inverse problem. Such identification and state reconstruction problems are often
met in automatic control for linear and nonlinear dynamics. Although many successful applications have
been recorded in aeronautics, automotive, electronics, or chemistry, among other domains, comparatively
much less has been investigated for epidemiological models. Moreover, despite substantial research addressing
these questions, significant challenges remain, particularly in nonlinear models, where exact reconstruction of
parameters and states is often elusive and requires sophisticated analytical approaches.

In this context, the determination of a feasible set of parameters and an initial condition that align with
observed data falls into two key problems: The parameter identification problem and the state observation
problem in automatic control literature. These have been addressed in many different ways (see, for instance,
(13} 116, |37, [20} |71, |61, |76]). However, before attempting to determine these unknowns, it is crucial to assess
the extent of recoverable information from the available epidemic data. For example, can we determine the
disease contact rate if we know the data of hospitalized people? What about the loss of immunity rate? How
many people were infected when the data started to be reported? Of course, these are not issues related only
to epidemiological models. In general, given a phenomenon we want to model (e.g., physical, biological, or
mechanical), we will have some parameters, a state vector (in the epidemiological case, these states are the size
of the population in each compartment, or a portion of this size), and some observed data of this phenomenon
(also called measurements, outputs of the model, or signals [46]). The theories of identifiability and observability
provide the foundation for addressing these questions. Let us briefly introduce these concepts.

Identifiability theory is the one in charge of deciding, given an initial condition and some observed data, if
we can determine uniquely all the unknown parameters that govern our system. If it is not possible, we can
possibly recover them partially (some of them or some combination of them).

Observability theory is the one in charge of deciding, given the parameters and some observed data, if we
can recover the initial condition; in other words, if there exists a unique initial condition such that the solution
starting from this initial condition matches our observations, and hence we can distinguish different states
from partial measurements of the state vector.

If one is interested in both identifying and observing the system, i.e., if it is jointly observable-identifiable (see
[19]) it is common to extend the system by considering the parameters as part of the state vector (with a null



dynamics), and then considering the observation problem of this extended system. The most commonly used
technique to decide whether a system is observable or not is the Hermann-Krener condition, or Observability
Rank Condition, that consists in studying the separability of a set composed by the observations and its
Lie derivatives with respect to the vector field of the system (see [39]); this computation may be sometimes
simplified by exploiting symmetries or groups of invariance of the system (in particular, for mechanical and/or
robotics systems, see e.g. [58]). If we conclude our system is observable, then we can make use of several
techniques that may help us estimate practically the unknowns; in particular, to perform this task, we can
try to construct a state observer, as for example the Luenberger observer [56], high-gains observers [32], or
the Kalman filter [45]. These techniques aim to estimate the state vector at a certain speed with a certain
accuracy, minimizing the estimation error at a given time, such that it is usually asymptotically null, but do
not guarantee exact reconstruction. Sometimes, however, one can treat the system algebraically and try to
reconstruct exactly the unknowns in terms of, for example, the derivatives of the data whenever they exist and
are known (or can be computed) perfectly (see |19, Chapter 3]).

The theories of identifiability and observability extend beyond the epidemiological context and are relevant
to any phenomena modeled through ODE systems with measurable outputs or functions of the states (see
|4, 16, |33} 140, 42, |77]). In particular, the literature about joint observability-identifiability of epidemiological
models has increased in recent years (see [19, [27) 55, 138, [59] and the references therein).

Several works have emphasized the importance of initial conditions for identifying the parameters of a
general system, and not every initial condition is suitable, i.e., some initial conditions can produce the same
output when considering different parameters (see, e.g., [23,70]). While there are fields where one can perform
different experiments with chosen initial conditions in order to identify the parameters (see, e.g., |23} 43]), in
disciplines such as Epidemiology this is not possible, and hence we need to study which initial conditions are
not suitable, and if we can avoid them. In this paper, we build on the theory developed in [52], and extend the
results by considering the existence of non-suitable initial conditions which are dependent on the parameters.

On the other hand, most of the research carried out in observability and identifiability of nonlinear dynamics
is centered on polynomial and rational systems of equations (see, e.g., [5} [24] [25] [34] 135, |36]), and the study of
nonlinear, non-rational systems is scarce (see |1}, 3]). For rational systems, a typical goal is finding the input-
output (I0) equations in order to determine if the parameters are identifiable. These are structural equations
of the system under study computed through a (classical) “elimination” step which consists in finding an
expression that relates the outputs and their derivatives, the inputs and their derivatives (if any), and the
parameters, independently of the state variables. However, we consider that in these works there lacks a
direct, unified argument to conclude that the parameters can be effectively recovered from these equations.
In [25], the authors perform a second step which aims to answer this question. The authors do it using
probabilistic search, which turns out to be often efficient but that could miss some isolated singular points.
For analytic nonlinear systems, we can find the software STRIKE-GOLDD developed in [75], which assesses
on local identifiability relying on a generalization of the ORC aforementioned, typically requiring high-order
derivatives. In [52], general nonlinearities, not necessarily analytic, are considered, and it advances the state
of the art by minimizing reliance on high-order derivatives, improving robustness with respect to noisy and

sparse datasets, and offering novel techniques to address joint observability-identifiability in nonlinear systems
of ODEs.

In [52], we addressed several of the mentioned gaps; in particular, the lacking argument ensuring recover-
ability of unknowns is also covered by considering an assumption about linear independence of functions of
the observations and their derivatives. This assumption of linear independence was already tackled in 23] to
prove identifiability alone, however, it is framed in the case of rational systems and it assumes knowledge of
initial conditions and having data at the initial time; these last assumptions are not feasible in some fields such
as Epidemiology. It is as well mentioned in [62] for linear ODE systems, which do not cover epidemiological



models either.

This paper is structured as follows. In Section[2] we motivate through the SIRS model the application of this
framework to epidemiological models. Then, in Section [3] we revisit and extend the theoretical part presented
in [52], and establish different constructive algorithms to recover the parameters and/or initial condition. We
also extend the theory to incorporate higher-order derivatives, and highlight that this framework can be suited
to scenarios with piecewise constant parameters, provided that the time instants of parameter changes are
known or the time intervals with constant values are large enough.

In Section [4] we validate this approach by applying it to the SIRS model, proving joint observability-
identifiability under partial observations of the infected compartment, an example that we have not seen
considered in the literature. We will observe that in this case it is crucial considering initial conditions in
parameter-dependent sets. Furthermore, although this is a rational model which can be studied through
classical techniques, using our methodology allows for early-stage model discrimination between SIR and SIRS
structures, enabling the detection of immunity loss directly from observational data. This distinction addresses
a key gap in the literature, to the best of our knowledge, where theoretical studies often overlook model
selection based on limited data. After this, we present in Section [5| other epidemiological examples to highlight
the interest of the proposed approach. Finally, we perform in Section [6] different numerical experiments using
the SIRS and the SIR models in two different scenarios that illustrate our approach.

2 DMotivating framework: Insights from the SIRS model

Compartmental models, such as the SIRS model, strongly depend on real data to determine their parameters
and the current state of the disease. These data are typically scarce and noisy, making it crucial to develop
methods to estimate the unknown parameters and/or initial condition from partial observations. For this,
we are going to follow two different approaches, depending on the type of available data: identifiability and
observability, both formally defined in Section [3]

Let us consider the following classical SIRS model together with an output, given by an unknown fraction
k € (0,1] of the infected individuals at time ¢ > 0, represented by y:

S = —BSI+ puR,

I = BSI—~I,

5 t>0. 1
R = ~I—puR, viz0 (1)
Yy kI,

Here, 3, v, and p denote respectively the transmission, recovery, and immunity-loss rates. This model is
particularly relevant for understanding the dynamics of diseases such as influenza or some coronaviruses. It
is also of interest in different realistic situations, such as performing random tests among the population, or
considering that a fraction 1 — & of the infectious people are asymptomatic and hence we do not measure those
cases, where the parameter k is typically unknown. For instance, during the COVID-19 pandemic, one of the
main challenges when studying the prevalence of the disease was estimating the asymptomatic cases, whereas
governments also conducted randomized testing to estimate this prevalence (see, for instance, [66)).

Given this model, we are interested in knowing whether it is identifiable, observable, or jointly observ-
able-identifiable. To address this, in Section [3| we revisit and extend the general framework of [52]. The
presented SIRS model with output y = kI fits within the class of systems described in Section [3| and serves
as a motivating example. Indeed, in Section [4] we make use of this approach to prove its joint observabil-
ity—identifiability when p > 0. Moreover, we compare these results to those obtained for the (a priori simpler)



SIR model, which can be considered as a limiting case of the SIRS model with p = 0, under the same observa-
tional data (i.e., a fraction of infected individuals). Our analysis reveals that the SIR model is both observable
and identifiable, but lacks joint observability—identifiability, highlighting a key distinction between these two
models that allows us to distinguish them at an early stage. We will illustrate this difference through the
numerical tests presented in Section [6]

3 A general framework

In this section, we extend the general framework established in [52] for analyzing observability, identifiability
and joint observability-identifiability of dynamical systems, particularly focusing on systems modeled by au-
tonomous differential equations with unknown parameters. We provide conditions under which the parameters
and/or initial condition of such systems can be uniquely determined from observations of the system’s output.
To this end, we first introduce the mathematical formulation of the model and provide formal definitions of
the key concepts: Identifiability, observability, and joint observability-identifiability. Unlike in [52], when dis-
cussing identifiability, we will consider the possibility of parameter-dependent initial conditions that impede
identifiability; this is a typical situation in epidemiological models. Additionally, we revisit some concepts on
Lie derivatives that are instrumental in the theoretical analysis. Building on this foundation, we extend the
key results from [52], taking into account these parameter-dependent initial conditions, that enable to establish
different constructive methodologies to recover the initial condition and/or the parameters, whenever possible.
Moreover, we present a third approach using higher-order derivatives to recover the unknowns in cases where
the system is proven to be jointly observable-identifiable.

3.1 Mathematical formulation and definitions

Consider a phenomenon that can be modeled by a system of first order autonomous differential equations,
which depends on some unknown parameters vector 6. Together with an initial condition £, we assume the
model provides some output y¢ g), described by a suitable function h. The mathematical formulation of the
model and its output is given by

dx
E(t’gaa)_f(x(t’gvg)aa)v x(O,f,@)—g, (2)

Yee,0)(t) = h(x(t;€,0),0),

where f(-,+) : 2 x© — R™ is a known function of (x,#) which is locally Lipschitz-continuous w.r.t. z € Q C R"
(to guarantee uniqueness of solutions) and continuous w.r.t. § € © C R®; @ are the constant parameters of
the system; (2 C R” is a positively invariant set with respect to the system of ODEs of System , for any
0 € © (i.e., solutions starting in Q remain in Q during all its definition time); x(-;&,0) : Z —  C R™ denotes
the unique solution of the system of ODEs of System with initial condition & € Q and we assume it is
globally defined, i.e., Z = [0,400); and the output y ¢)(t), t € S C Z, is described by some known function
h(-,): Q2 x O —R™.

We aim to answer one question: given the output y(z, g,)(-) for certain (zo,6p) € Q x ©, can we uniquely
determine z( (given 6y), Oy (given zg) or both of them?

We present now formal definitions of the identifiability and observability concepts mentioned in the Intro-
duction. As previously mentioned, some parameter-dependent initial conditions may not allow to distinguish
different parameters. Hence, we will consider, for each 6§ € ©, a subset 0y C Q positively invariant w.r.t. the



ODE system in System , and the set I'e = Uycg Qo x {0}. Notice that, if Qy = Q, for each § € O, then
F@ =0 x6.

Definition 1 (Identifiability in a time set). System is identifiable on © in S C T with initial conditions
consistent with the family {Qo}oco if, for any Oy € O, for any & € Qqp,, a different 6, € © produces a different
output at some time t € S, i.e.,

h(x(t:€,60),00) # h(x(t;€,05), 05).-
Equivalently, if h(z(¢;€,60),60) = h(z(t;€,0p),00), for allt € S and any & € Qy,, then 0y = 0. Moreover, if
Qg = Q, for each 0 € ©, we say that System is identifiable on © in S C I with initial conditions in ).

A typical initial condition which may not allow identifiability are the equilibrium points that depend on
the parameters, in the case that different parameters vectors generate the same constant observation. This
phenomenon will be illustrated in Section [4]

Definition 2 (Observability in a time set). System is observable on ) in & C I with parameters in ©
whether, for any 6 € ©, any two different xo, x, € Q produce a different output at some time t € S, i.e.,

h(x(t; xo,0),0) # h(x(t; z(,0),0).
Equivalently, if h(z(t; x0,0),0) = h(z(t; xy,0),0), for allt € S and any 0 € O, then xy = x{).

Definition 3 (Identifiability). System is identifiable on © with initial conditions consistent with the family
{Qo}oco if Deﬁm’tion is satisfied for S = Z. Moreover, if Qg = Q, for each 0 € ©, we say that System
is identifiable on © with initial conditions in Q.

Definition 4 (Observability). System is observable on ) with parameters in © if Deﬁm’tion@ is satisfied
forS=1T.

Notice that identifiability (resp. observability) in a time set S implies identifiability (resp. observability)
in any time set A such that S C A. However, the converse is not necessarily true, as demonstrated by the
following examples.

Example 1. Consider the following system:

{ () =k 2(0)=¢

Ye,k) (t> = max(l, l’(t)),

(3)

where k € © = (0, 1] is unknown. Let Q = Qg = [0,00), k € O, be the positively invariant set w.r.t. the ODE
given in , €€ N, 7 =1[0,00), and f(x,k) =k (which is Lipschitz-continuous w.r.t.  and continuous w.r.t.
k). The unique solution of the ODE is x(t) = kt + &, t > 0. The system is identifiable on © in Z with initial
conditions in €2, since, for any £ € €, considering different k1, ks € ©, we have that

maX(l,k‘lt + f) =kt+&+kot+€= max(l,kgt +€),
for all ¢ > 1/ min{k, ko}. However, if S =[0,1/2] CZ, £ € [0,1/2] and k1, ke € O, with ky # ko, then
max (1, kit + &) = 1 = max(1, kot + &),

for any t € §, and hence the system is not identifiable on © in S with initial conditions in (2. O

Example 2. We consider the same case as the one shown in Example [I The system is observable on 2 in
7 with parameters in ©, since, for any k € ©, considering different zg, 2, € 2, we have that

max(1, kt + xg) = kt + xo # kt + x{, = max(1, kt + xj),



for all t > 1/k. However, if S = [0,1/2] C T and zo,xj € [0,1/2] C Q, with 2 # x{, then
max (1, kt + o) = 1 = max(1, kt + zj),

for any k € ©, t € S, and hence the system is not observable on €2 in § with parameters in ©. O

A natural extension of this framework consists in treating the parameters as part of the states of an
augmented system. If one extends the dynamics with 6 = 0, then both the identifiability and observability
properties can be studied as a particular case of observability in higher dimension: If the extended system is
observable, then the original system is both observable and identifiable. However, the reverse implication is
not generally true. This is related to the joint observability-identifiability of a system (see |19, 74]).

We are now going to consider that we need to recover both zq and 6.

Definition 5 (Joint observability-identifiability in a time set). System is jointly observable-identifiable on
T'e in S C I if, for any (x0,6p) € To, a different (zy,0() € Q x © produces a different output at some time
tes, e,

h(z(t; 20, 00), 00) # h(x(t; 20, 0), 05).

Equivalently, if h(x(t; o0, 600),60) = h(z(t; xp, 00), 0) for allt € S, this implies that xo = x( and 6y = 6}).

Definition 6 (Joint observability-identifiability). System is jointly observable-identifiable on I'g if Defi-
nition [3 is satisfied for S =T.

Furthermore, joint observability-identifiability in a time set S implies joint observability-identifiability in
any time set A such that S C A.

Note that recovering the parameters and initial condition from the data up to time t is equivalent to
reconstructing the parameters and state at current time ¢, because the dynamics is deterministic and reversible.

Our main focus will be on joint observability-identifiability; however, we will present the results in a way
that they may be applicable separately to observability or identifiability. In particular, as commented before,
it is clear that joint observability-identifiability implies both observability and identifiability independently.

In the following, we recall the well-known concept of Lie derivative, which is commonly used for studying
observability and identifiability. We briefly review it here for completeness.

3.2 About Lie derivatives

For completeness, we briefly recall the well-known concept of the Lie derivative and the way it is computed,
since it will be used repeatedly throughout the paper. This concept is fundamental for identifiability and
observability analysis, as it provides a way to express the time derivatives of the output as functions of the
state variables and parameters of the system.

Let Ng = NU {0}. Consider ¢ € CHQ;R™), F € ¢™>{0:d=1}((): R™), for some d € NU {0}, and the map

LF,@,d: Q — Rmx(dJrl)
¢ — (Lre(&), Lye(8), -, Lip(9)) .

where L%¢ = ¢ and, if d > 1, LLp € C4~1(Q; R™) is the Lie derivative of ¢ with respect to the vector field
F,ie., for any £ € Q,
Lipp(€) = Dp(§)F(€),



where Dy is the m x n Jacobian matrix of ¢. In particular, if z(-; ) is a solution of
A(t:€) = F(2(:€)), 2(0;8) =¢&, (4)
such that Q is positively invariant with respect to this system, then, for any ¢ > 0,
d
Lpp(2(t;€)) = Dp(2(t:€)) F(2(t:€)) = — o(2(t:€))- (5)

Then,
Lkpl6) = o8|

If d > 2, we also define LYo € C4=*(Q;R™), for k € {2,...,d}, by recursion as follows:
Lo =Ly (Li ).

Lemma 1. Let ¢ € CHQ;R™), d € Ny, £ € Q, and consider System , where F € C™@40:4=1}(Q: R™) and Q
is positively invariant with respect to the system. Then, fort >0, k € {0,...,d},

dk dk
bp(2(t:6) = Lro((6) and, in particalar, To(€) = < o(=(6:6))

t=0

Proof. For any £ € Q, t >0, if d > 1, we know that —@ is true. By induction, if d > 2, assume that

L o(2(€)) = d;c 11 @(2(t;€)) is true for some k € {2,...,d}, and hence LE 1 p(€) = %@(z(t;f))

t=0

Then, for k, we have

d* d . d*
Cole(5:6) = S LEo(o(1:)) = DLE p(a(1: ) P(=(t: ) = La(:6)), and Lol€) = Soati)|
t=0
as we wanted to prove. O
Let us now compute Lp g 4 for System (2). Given 6 € ©, denote hy(-) = h(-,0) and fy(-) = f(-,0), and

assume hy € CHQR™), fo € Cmed0d=1}(; R™), for some d € N U {0}. Then, y ) € C%(Z;R™), since

Uie,o)(t) = %h(w(t;&@)) = Dhg(x(t;€,0)) fo(x(t:€,0)) = ie,0)(t) = L, ho(z(t;€,0)), Yt > 0.

By Lemma we have, for all ¢ > 0 and k € {1,...,d},

k k

d d
y§§>9)( ) = T h(z(t:€,0)) = L ho(2(t;€,0)) and, hence, y&}e)(o) I h(z(t;€,0)) S Lk ho(),

dk
where we denote y(¥) = ﬁ, k € N, when y € C*(Z). Then, denoting 3©) = y, define Lty hgd: 2 — R (d+1)
as

0 d
Ly na(€) = (40 (0), - y{e (0)) .

This property underlies most observability and identifiability analyses, as it allows reconstructing states or
parameters from instantaneous measurable outputs and their derivatives.

In the following, we denote y¢ g, ¥(¢,0) and y((?e) as y, y and y*), respectively, when the context is clear.
We also let hg = (ho1,...,hom), where m € N is the number of scalar outputs.

We now proceed to present the main theoretical results and corresponding algorithms for recovering both
parameters and initial conditions.



3.3 Main results

We revisit and extend some results from [52] to establish sufficient hypotheses for System (2)) to be observ-
able, identifiable or jointly observable-identifiable. These results generalize classical approaches (see [52] for a
thorough review).

We start recalling a classical result on observability based on Lie derivatives ([19, 32, [39, [56]). This result
is of particular interest in the nonlinear context (for which the Cayley-Hamilton theorem is not available, see
|19, Section 2.2]). We present the result and a short proof adapted to our framework.

Theorem 1. Let Q) C R™ be positively invariant with respect to the ODE system given in , hg; € C4(Q;R)
for some d; € NU{0}, i € {1,...,m}, and fp € C41(Q;R™), where d = max{1,dy,...,d}, for any 0 € ©. If

QO — Rmtdit-tdm

§ (‘Cfeyhe,l,dl (5)7 s ’Efe,he,m,dm (6))

Lty ho {ds,....dm}

is injective in ), then System is observable on Q) in any semi-open interval [a,b) C T with parameters in

©.

Proof. Given 0 € 0O, let xg,z( € Q such that
h(z(t; zo,0),0) = h(z(t;xp,0),0), VteE [a,b).

Given t € [a,b), let £ = z(¢;70,0) and & = z(f;zf,0). Since  is positively invariant w.r.t. the ODE system
given in (2), &, ¢ € Q. Then,

hx(t;€,0),0) = h(z(t;€',0),0), Vte[0,b—1)
Notice that 0 € [a —,b — ) and [0,b — ) C Z is non-empty. This implies that

Y =yt g (), YEe0,b—1D), ke{0,....d}, ie{l,...,m},

k k k . k k .
where yég,)e) = (ygg,)e),lv'"’ygg,)e),m)' In particular, y&’)e)yi(O) = ygg,),g)’i(()), ked{0,...,d;}, i € {1,...,m}.

Then,
Ly ho{drsedm}(€) = Lgy hofdsdim} ()
Since £f3,h87{d1,~..,d"i} is injectiveNin Q, for any 6 € ©, and £,¢£’ € Q due to the positive invariance, this implies
that & = &', ie., x(t;zo,0) = x(t;z(,0). Due to the uniqueness of solutions of System , this implies that
/
ZTo = Tg-

Hence, System is observable on  in any [a,b) C Z with parameters in ©. O

Theorem |I| states that a system is observable if the mapping Ly, », (d,.....d,,}» Which collects the outputs
and their successive Lie derivatives up to some finite order, is injective in the state space (or some positively
invariant subset). Intuitively, each derivative of the measured output provides new information about the
hidden variables; if no two distinct states can produce the same sequence of derivatives, the state of the system
can be uniquely reconstructed from the observations. This can be viewed as the nonlinear analogue of the
observability rank condition in linear observability theory.

For (¢,0) € Te, {d;}™, C Ny, we define the notation

(d1,eeesdm) — (0) (d1) (0) (dm)
Y0 (t) = (y(gﬂ)’l(t), ce 7?/(,5,9),1(15)1 ce 7y(5,9)7m(t)7 e ay(g,g)’m(t)) s



and may use the shorthand notation y(4:~9m) when there is no ambiguity.

The following is the main result in [52], which we now adapt to Definition [I| and provides a sufficient
condition to ensure recoverability of parameters.

Theorem 2. Let hy; € C%(Q;R), for some d, € Nf'| i € {1,...,m}, and fo € C*~Y(QR"), d' =
max{1,d},...,d.}, forany® € ©. Consider D C Ru++dm+m gych that, for all (£,0) € T, y(d-dn)(t) € D,
forallt € Z. Let S C T be such that every connected component of S contains an open interval. Assume there
exist g : D — RITP and r : © — RY, for some q,p € N, satisfying:

(C1) g=1(910,- G115+ 39p.0s -1 Ipiagp) ANAT = (P15, T1gyse 3Tl 5 Tpgy)s With @1 + -+ +qp = ¢,
satisfy that

9
gi.o(y“tm)) = s 1(0) gy (y ! tn)), (7)
=1

inS, forall j€{1,...,p}, for any (§,0) € T,

(C2) r is injective, and

(C3) for any j € {1,...,p}, (£,0) € To, we have that {g;,(y\F-d) (¢}, are linearly independent func-
tions with respect tot € S.

Then, System is identifiable on © in S with initial conditions consistent with the family {Qo}oco-

Proof. Given 0y € ©, £ € Qq,, let 6 € © such that
hay (x(t: €, 00)) = hoy (2(£:€,6p)), VEES,

ie.
Yie.00) () = Yeo)(t), VEES.

Then, since every connected part of S contains some open interval, this implies that

k k .
Yienyi®) = Yien) (8, VeS8 ke{0,....di}iefl,...,m}
Since
(d1,-yn) (d,din)y —
gj,O(Y(gygo) ) — gj,O(Y(E,%) )=0
in S, we obtain, from ,
9
A N
> (ra(80) = r50(00) g5y ) = 0,

=1

in S, for every j € {1,...,p}. Given the linear independence of {gj,l(y(dll """ d;n))}?il, in § C Z, for every
je{1,...,p}, (§0) € To, then r(6y) = r(0). Since r is injective, we have 0y = 6. Hence, System is
identifiable on © in § C Z with initial conditions consistent with the family {Qg}oco. O

Theorem [2] formalizes how the model outputs and their derivatives can determine identifiability of the
system. The key idea is to separate the time dependence, represented by the functions g;;, from the parameter
dependence, encoded by the coefficients 7;;(0). If {gj,l(y(dll’;d:")) 7., for any j € {1,...,p}, are linearly
independent over time and the map r is injective, then we can ensure that all outputs are generated by a

unique parameters vector.

IWe use a different notation with respect to Theorem [1|to explicitly state that these orders may be different.
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Remark 1. It is important to remark that Theorem [d gives only sufficient conditions for identifiability, but
in Section we will see an example of a system which is identifiable and does not satisfy these conditions.
Nevertheless, as we will see in Algorithm[1], the conditions presented in Theorems|[1] and[3 will allow us to have
joint observability-identifiability of System . In [25, Proposition 2.1], the authors propose a result similar
to Theorem[d, giving conditions for it to be also necessary, in a context of rational equations and under the
availability of observations at initial time.

Remark 2. For rational systems, the equations obtained from System are equivalent to the so-called
input—output equations produced by the DAISY algorithm [5|], which derives differential polynomial equations
linking the model outputs and their derivatives, the model inputs (if any) and their derivatives, and the unknown
parameters using characteristic sets and Grébner bases. Our formulation is equivalent modulus a convenient
rewriting that allows us to verify conditions (C2) and (C3). We will illustrate the importance of this rewriting
throughout Sections[{| and[3, On the other hand, the software Structuralldentifiability. 51 [25] concludes
the recoverability of parameters using a probabilistic search. However, this search may miss particular states and
parameters that give linear dependence, which will be as well important in the previously mentioned sections.

Therefore, given a system of ODEs, along with some (partial) observations, we can check the hypotheses
in Theorems [T]and [2]in order to determine the observability, identifiability or joint observability-identifiability
of our model and recover the initial condition and parameters vector. Notice that we need to be careful when
choosing the positively invariant sets we are going to work with, so that the hypotheses mentioned above are
satisfied. Next, we present a theorem which shows that, under certain conditions, given y(,, g,) in some time
set, we can recover (xg,0p) € To.

Theorem 3. For each 0 € O, let Qg C Q be positively invariant with respect to the ODE system in . Let
(w0,00) € T'e. Assume we know y(z,9,) in S C I, S such that every connected component contains an open
interval. If the hypotheses of Theorems and are satisfied, then System is jointly observable-identifiable
in S and we can reconstruct the pair (xo,00) uniquely using the values of Yz, 0, and its derivatives at, at

most, ¢ +1=q1 + -+ qp + 1 suitable values of t € S.

d),...d, . . ;
Proof. Let ¢;,(t) = g]-’l(ygw:)ﬂo) )(t)), te S, 1e€{0,...,q}, j€{l,...,p}. By hypothesis, {¢;;}}°, are
linearly independent in S, for each j € {1,...,p}. Then, for every j € {1,...,p}, there exist (see [52, Lemma
1]) g; different time instants {t;,};°, C S such that

det((¢5,1(t5,0))1,0=1,....q;) # 0.

Then, there exists a unique solution o to

(ij,l(tj,l) e ¢j,Qj (tj,g)) g = ¢j70(tj,g), V Z S {1, ey QJ} (8)

Attending to , it satisfies 0;; = r;;(60), l € {1,...,¢;}, 7 € {1,...,p}. Since r is injective, such that
r~1:7r(0©) — ©, we can recover our original parameters vector

90 = 7"_1(0'1’1, e ,O'p’qp).

Finally, to recover z, take some time £ € S, which can be some £ € {t1,1,...,tpq,}. Since Lg, o (dy.....ds}
is injective in ©, there exists a unique € € Q such that

c_ p—1 (d1yeesdm) (3

£= Lfeo,heov{dh--wdm}(y(-”foﬂo) (t))’
(d17'~~;d'm) N\ (dlx“'7dm)
(zo00) ()= Y (€.00) :
integrating backwards the ODE system in System knowing &, t and 6 (since fp, is Lipschitz in Q and, in
particular, in Qg, positively invariant w.r.t. the ODE system of (2))). If 0 € S, we directly choose ¢ = 0.

noticing that y (0). Since it is unique, it must satisfy £e Qp,. We can recover xg € (g,

11



This is, we have recovered 0y and x¢ from the data uniquely knowing y,, ¢,) in S, using its value and the
value of its derivatives at ¢ + 1 (at most) different time instants. ]

In Algorithm [T] below, we present a procedure to recover the unknown quantities from given observations,
following the proof of Theorem [3] and emphasizing the importance of selecting appropriate sets for the initial
conditions.

Algorithm 1. Assume that we know (., 4,) (satisfying System ) in § C Z, such that every connected of
S component contains an open interval, and zg € Q and/or 6y € © are unknown. The procedure to recover
the unknowns is the following:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

If xg is unknown, find €y C Q positively invariant with respect to the ODE system given in such
that xg € Qq, and dy, ..., d,, € Ny such that, for any 6 € O, the following function is injective in €;:

Lofdy,...dm} & yggfg’;”’d"‘)(o)-

Note: According to Theorem this ensures that System is observable on {27 in any semi-open interval
[a,b) C Z with parameters in ©.

If ) is unknown, find Q3 ¢ C €2, for any § € ©, positively invariant with respect to the ODE system given
in (2)) such that zo € Q24,, and maps g : D — R?"? and r : © — RP, for some suitable D C R+ d+m
dy,...,d,, € Ng, ¢,p € N, such that (C1), (C2) and (C3) of Theorem [2] are satisfied.

Note: According to Theorem [2 this ensures that System is identifiable on © in S with initial
conditions consistent with the family {Qs g}oco.

If we have defined 2, and €23, set g = Q1 Ny, for all § € ©. If we have only defined €2, redefine
Q = Q. If we have only defined Q5 g, set 29 = 2 9, for every 0 € ©.

If B is unknown, for each j € {1,...,p}, find ¢; different time instants ¢;1,...,%;,, € S such that
det (¢;1(t5.0)1,0=1,....q;) # O,

dysenydly,
Where (bj,l = gj,l (ygzéﬁo) )>
Note: These time instants exist due to condition (C3) of Theorem [2| which is verified in Step 2, and 52|
Lemma 1].

If 6y is unknown, for each j € {1,...,p}, solve the following linear system which, according to Step 4,
has a unique solution o; = (01,...,0j4;):
Gialtin) o Big, (i) 51 $j0(tj1)
: - : : = : , (9)
qu’l(tj’q]‘) T (b]}qj (tj’q]‘> 03j,q; ¢j’0(tj7q]’)

dy,..,dl,
where ¢;0 = gj.0 (ygxé,f)o) ))'

If 0y is unknown, recover 6y solving the equation

7"(00) = (0'1, PN ,Jp).

Note: We are taking into account that r is injective and () is solution of System @, according to
conditions (C1) and (C2) of Theorem |2, which are verified in Step 2.

12



Step 7. If zg is unknown, choose some ¢ € S (which can be some ¢ € {t11,...,4,4,} if we performed Step 4) and
solve for £ the equation

z dydl) o
Loy (st} (6) = Yo (1),

Note: We are taking into account that Lg (4, .. 4,.) 18 injective in © and, in particular, in {2y, for any

0 € O, according to Step 1, and ygz()) 80) () = yé?eo) ;(0), for all k € {0,...,d;}, i € {1,...,m}.

Step 8. If 2 is unknown and # # 0, integrate backwards System from £ to 0 with initial condition £, knowing
o, in order to recover zg.

Recall that the time instants required in Step 4 may be anywhere in S C Z, and hence may be difficult to
find in practice. Nevertheless, in Lemma we give sufficient hypotheses such that System is identifiable
in any semi-open interval [a,b) C S; this will imply that we will be able to choose this set of time instants in
any of these semi-open intervals. Then, an analogous procedure to this one will be presented in Algorithm [2]

Remark 3. Notice that, in order to be able to recover (xq,0y) following the procedure in Step 4 of Algorithm
for each set {¢;.}}2,. j € {1,...,p}, we need to find q; different suitable time instants. However, some of
these time instants may coincide among different sets of linearly independent functions. Thus, the number of
different time instants we need to find is between § = max{qi,...,qp} and ¢ = q1 + - - -+ qp, along maybe with
t = 0, which we can use to recover the initial condition if 0 € S and could be one of the other time instants.

Recall, moreover, that we do not necessarily need Yz, 00)(t), for all t € S, but it would be sufficient having
the values of Y(x,,0,) and its derivatives at the aforementioned different time instants, where the order of the
derivatives that we need are the same as for Algorithm [1}

Note: Although the idea of selecting a suitable number of time instants was already mentioned in [50] and
[70, Remark 3], no formal proof nor method to choose these times were provided.

Lemma 2. Assume the hypotheses of Theorem@ are satisfied for some S C T and, for any j € {1,...,p},
le{l,...,q;} and (§,0) € To, the functions ng(y(d/l """ d:n)) are analytic on L. Then, System is identifiable
on O in any semi-open interval [a,b) C S with initial conditions consistent with the family {Q}oco. If S is

connected, it is sufficient for {g;,(y(@%))},Z1 ., to be analytic on S.
I=1,...,q5

Proof. Given 6y € ©, £ € Qy,, let 6 € © such that
heo(aj(t;&eo)) :h%(x(t;gaeé))v Vit e [a‘7b)7
ie.,
Ye.00)(t) = yieap)(t), Vi€ [a,b).
Then,
k k
y((f,)eo),i(t) - yE{,)O(’)),i(t)7 Vi€ [a,b),

ke {0,....d}, i € {1,...,m}. Since, for any j € {1,...,p}, L € {1,...,q;} and (£,0) € I'e, the functions
gj’l(y(d/lv“"din)) are analytic in Z, then the function

Gjo(y @mdm))y =" 1 (6)gj(y Drdm))

)

is also analytic in Z. Given that [a,b) C S,



in [a,b), for any 6 € ©. Since

(diyenndy)y (df,--dy,)
gjvo(y(Eﬂo) ) = gj,O(Y(g’eé) ),

in [a,b), we have
(d,.d)y (d,....d.)
G0 (Y(E}(;O) )= Gjo (Y(gfgé) ),

in [a,b). This implies that, for every j € {1,...,p},

el

dyrendl )\ _
Rj=Y" (rja(00) — r(00)) g (yiay ) = 0

1=1
in [a,b). Due to the analyticity of {ng(y(dll*""din))}?il in Z, R, is also analytic in Z. If R; = 0 in [a, b), then
R; = 0in Z (|69, Theorem 8.5]). Therefore, since {g;;(y(% d:n))}?il are linearly independent in S C Z, they
are also linearly independent in Z, and hence, for R; to be 0 in Z, for all j € {1,...,p}, we need r(6y) = r(6y).
Since r is injective, this implies 6y = 6.

If S is connected, {g;;(y(®~9m))} ¥ analytic in S implies R; is analytic in S, and R; = 0 in [a,b) C S
implies R; =0 in S (if S is not connected, we can only assure R; = 0 in the connected component containing
[a,b)). Thus, we conclude analogously using the linear independence of {gj,l(y(dll""’d:"))}?il, in S. Hence,
System is identifiable on © in any [a,b) C S with initial conditions consistent with the family {Qp}gco. O

Taking into account Theorem [I]and Lemma [2] we present a lemma that shows that we may recover o and
6o knowing y(z,,g,) only in some [a,b) C T.

Lemma 3. For each 8 € O, let Qg C Q be positively invariant with respect to the ODE system in . Let
(w0,00) € Te. Assume we know y(z,.9,) i some [a,b) C . If the hypotheses of Theorem and Lemma
are satisfied for some S C I such that [a,b) C S, then System is jointly observable-identifiable in [a,b),
and we can reconstruct (xo,6) uniquely using the values of y(u,.0,) and its derivatives at a finite amount of
suitable time values in [a,b). In particular, the required number of time points is between ¢ = max{qi,...,qp}
and g =q + -+ qp.

Proof. We recover 6, analogously to the proof of Theorem [3| We only need to see that, given j € {1,...,p},
since the functions {ng(y(d/l"“’din))}?il are linearly independent in some S C Z and analytic in Z, they are
also linearly independent in [a,b) C S. Given j € {1,...,p}, assume that {gj,l(y(d,l ""fd/m))}?il are linearly
dependent in [a, b), i.e., there exist {a;;};~, C R not all of them null such that,

q;
G;(t) = Zajylgjyl(y(dh””dm)(t)) =0, Vt€[a,b).
=1

Since {g;(y @ %m))}% | are analytic in Z, then so it is G;. This implies that (see |69, Theorem 8.5]) G; = 0
in Z and, thus, {g;;(y(%>%))}¥  are linearly dependent in Z, and hence in S, which is a contradiction.

Moreover, if S is connected, it is enough asking for {gj,l(y(d/l""’d;n)) zqil to be analytic in S, since, then, so it
is G;. Therefore, G; =0 in [a,b) C S connected implies (see [69, Theorem 8.5]) that G; = 0 in S, which leads

to the same contradiction. Thus, for each j € {1,...,p}, the functions {ij,l}?ip with ¢;,; = ng(ij[l)’é(‘J’)d"")),
le{l,...,q;}, are linearly independent in [a,b) and we can conclude analogously to Theorem |3| along with

Remark 3| choosing t11, ..., tpq, € [a,b).
On the other hand, to recover the initial condition, we proceed as in the proof of Theorem [3]

Hence, we are able to recover (zo,0) uniquely when knowing y s, 9,) in [a,b), using its values and the
values of its derivatives at some finite set of time instants in [a, b); concretely, between ¢ and ¢ distinct suitable
time points. m|
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We present in Algorithm [2 a method to recover xzo and/or 6y knowing y (s, 6,) only in some [a,b) C Z,
based on the proof of previous Lemma [3| In particular, we will need to find between § = max{¢i,...,q,} and
qg=q + -+ g, different time instants in [a,b) when some analyticity properties are satisfied.

Algorithm 2. In a way similar to that of Algorithm [I} we describe here a slightly different constructive
method to recover o € Q and/or p € © assuming that we know y(,, g,) (satisfying System ) in some
[a,b) C T and some analyticity hypotheses are fulfilled. Since the procedure is similar to the one in Algorithm
[} we only state here the steps that change:

Step 2. If 6y is unknown, find Qs C €, for any § € O, positively invariant with respect to the ODE system
given in such that xy € Qa4,. Find maps g : D — RY™P and r : © — RP, for some suitable
D c Rhttdntm g g e NU{0}, ¢,p € N, such that (C1), (C2) and (C3) of Theorem [2f are
satisfied, being § C 7 in (C2) and (C3) a connected set satisfying [a,b) C S, and such that functions

{gj,l(y(dll""’d:”))}{:l,..,,p are analytic in S, for any (&,0) € I's.0 = Uyeo 2,0 X {0}
=1,...,q;

Note: According to Lemma [2| this ensures that System is identifiable on © in any semi-open interval
[a,b) C S with initial conditions consistent with the family {Q2¢}oco.

Step 4. Same as in Algorithm [1f but such that, for each j € {1,...,p}, {t;.}}2, C [a,b).

Note: These time instants exist due to condition (C3) of Theorem [2| (which is verified in Step 2), the
analyticity condition required also in Step 2, and [52, Lemma 1].

Step 7. Same as in Algorithm |1} but such that ¢ € {t11,...,t,4, }

) ¥P,dp

Notice again that we need to find in [a,b) the sets of time instants required in Step 4, and hence again
may be difficult to find in practice. However, we can reduce this quantity of time instants to 1 time if we use
higher derivatives of y, as will be shown next.

Remark 4. Recall that, as in Remark@ we may not need to know Yy, 0, in some interval [a,b), but only
the values of this function and its derivatives at the time instants indicated in Step 4 in Algorithm[3, where
the needed order of the derivatives is given by the same algorithm.

The use of these algorithms will be illustrated in detail in Section [4]

3.4 Using higher-order derivatives

In this section, we present a methodology which uses higher derivatives of y and may be more convenient
in some cases. Some classical differential algebra methodologies use higher-order derivatives and, once they
obtain the expressions of these derivatives, they study the identifiability of the system from a differential algebra
viewpoint (recall, for example, [34} 35, [63]). In the methodology presented in Lemma [4] and Algorithm [3] we
still determine the identifiability of System studying the linear independence, which in several cases will be
easier than what is performed in the other methodologies. The use we make of higher-order derivatives allows to
reduce to one the number of time instants that we need to find in [a, b) C Z to recover the unknown parameters,
once we know the system is identifiable. Therefore, notice that using these higher-order derivatives is an
alternative to recover the unknowns using less time instants but is not necessary for proving the identifiability
of the system, as it is in the aforementioned works.
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Lemma 4. For each 0 € O, let Qp C Q be positively invariant with respect to the ODE system in . Let
(w0,00) € T'e. Assume we know yz, 0,) in some semi-open interval [a,b) C I, and the hypotheses of Theorem
and Lemma@ are satisfied for some S C I such that [a,b) C S. If we further assume that hg; € Cd;"’q_l(Q;R),
ie{l,...,m}, fo € Cd’+‘772(Q;R”), for any 0 € ©, being ¢ = max{q,...,qp}, then System is jointly
observable-identifiable and we can reconstruct (xo, 0o) uniquely using the value of Yy, 9,y and its derivatives at
only one time in [a,b); in particular, this time can be almost any t € [a,b).

Proof. Let us take ¢;; = gj,l(y(d,1 """ ) d;"')) in [a,b), for all 1 € {0,...,q;}, j€{1,...,p}. Since

(z0,00
4
Bjo(t) = er,z(eo)%,z(t)» Vit € [a,b),
=1

where 7(6y) does not depend on time, we differentiate each of these equations, for j € {1,...,p}, ¢; — 1 times
such that

d*¢j0 z d* o).
i (0= 00— (), Vieab), ke{0,....q -1},
=1

By the proof of [52, Lemma 3], we know that {¢;;};2, are linearly independent in [a, b), and hence there exists
some t; € [a,b) (see [7]) such that

.....

d*¢;,
Wj(tj)—det ( atk (t]) —— +0,

where W; is the Wrotiskian of {¢;;}/”,, i.e., there exists a unique solution o; to

b51(t5) e Djq; (t5) b5.0(t5)
de; 1 dgjq, 951 dejo
dt (]) dt (]) Jj,2 B dt (])
du ;. A%, 7i.a; d% ;0
Tamer W) g () a1 )

Moreover, W is also analytic, and therefore it can only vanish at isolated points [69, Theorem 8.5], i.e.,
the previous equation is fulfilled for almost every ¢; € [a,b). Furthermore, since each W, j € {1,...,p}, only
vanishes at a countable set of times, then all of them are non-null simultaneously for almost every ¢ € [a,b).
Hence, we can choose almost any time £ € [a, b) such that the previous system has a unique solution considering
t; =1, for every j € {1,...,p}.

In a way similar to that of the proof of [52, Theorem 3], we may recover our original parameters vector 6
as
90 = 7’71(0'1’1, e 7Jp,qp)'
Having recovered 6y, we can recover zg in the same way as exposed in the proof of [52, Lemma 3].

Hence, we are able to recover (zg,6y) uniquely when knowing v, 60)(t), t € [a,b), using its value and the
value of its derivatives at one time in [a,b), which can be almost any ¢ € [a, b). o

Therefore, if we ask for higher regularity of the components of y(¢ g), (£,0) € T'g, than required in Lemma
we can recover xo and 6y choosing only one time in [a,b), instead of a number of distinct time instants
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between § = max{qi,...,qp} > 1and ¢ =q1 + -+ ¢p > p (see Remark . We present next the associated
algorithm.

Algorithm 3. In a way similar to those of Algorithm [I| and Algorithm [2] we describe here a different
constructive method to recover 2o € Q and/or fy € © assuming that we know y(,, 9, (satisfying System )
in some [a,b) C Z, some analyticity properties are fulfilled and 4, g,) is smooth enough. This method is
presented in the proof of Lemma 4] and it requires to choose only one time in [a,b). However, it needs the use
of higher derivatives of y(, g,), which are not necessary in the constructive methods explained in Algorithm |I|
and Algorithm [2] We only state here the steps that are different from those in Algorithms [1] and

Step 2. Same as in Step 2 of Algorithm along with y¢g); € C4ita-1 for every (£,0) € I'; o and each
ie{l,...,m}, with § = max{q1,...,qp}

Step 4. If 6y is unknown, for each j € {1,...,p}, differentiate with respect to time ¢; — 1 times the equation

4
®j0 = Z 75.1(00)9j.15

=1

dyyeenydl,
where ¢; 0 = g0 (ygmi’eo) )>7 e {0,1}.
Note: We can differentiate due to the analyticity condition on functions g;; and the regularity conditions
on y required in Step 2.

Step 5. If 6y is unknown, choose a time # € [a,b) such that

~ di - )
W;(t) = det ( el OF . #0, Vje{l,...,p}, (10)
k=0..q;—1
where W is the Wrotiskian of {¢;,}/2 ;.

Note: This time can be almost any time in [a,b) due to condition (C3) of Theorem [2] which is verified
in Step 2, and the analyticity condition required in Step 2.

Step 6. If 6y is unknown, for each j € {1,...,p}, solve the following linear system which, due to Step 5, has a

unique solution o; = (0j1,...,054;):
Giat) o g (1) ®j0(t)
doji = d9jg; > 5.1 dgjo -
) t 1] t Js t
dt ®) dt ®) 03,2 dt ®)
. . : = . (11)
du 1,1 - dqj—1¢A’ . 03,45 de_]-(b.’O 5
() e () —— (1)
dtd dtds dtd

Step 7. Same as in Step 6 of Algorithm [1} but considering that r(6p) is solution of System .

Step 8. Same as in Step 7 of Algorithm [2| but now the time we choose can be the same as ¢ in Steps 5 and 6 of
this algorithm.

Step 9. Same as in Step 8 of Algorithm

17



Remark 5. Notice that, as in Remark@ and Remark we may not need to know Yz, g,) tn some interval [a,b),
but only its value and the values of its derivatives (each component Yz, g,),i up to the max{d;,d; +q— 1}—th
derivative) at one time such that Step 5 in Algorithm@ is satisfied. Moreover, if 0 € § and y(q,,0,) and its
derivatives are known at t = 0, then we could choose t = 0 if Step 5 in Algorithm @ is satisfied and not need
to integrate backwards.

In practice, the recovery processes in the constructive algorithms presented above follow three main steps:
(i) determine whether the system is observable by checking the injectivity of a mapping of Lie derivatives;
(ii) verify identifiability through the linear relations in (7)), ensuring that the time-dependent right-hand side
functions are linearly independent; and (iii) use a finite set of outputs and derivative values at selected times
to solve explicit linear systems and reconstruct the unknown parameters and/or initial conditions. Algorithms
correspond to different ways of performing these steps, depending on whether multiple sampling instants
or higher-order derivatives are available.

Remark 6. Once obtained the parameters vector and initial conditions, one can integrate the system up to the
current time t to reconstruct the current state. Reconstructing parameters and initial condition or parameters
and current state are equivalent as already mentioned, provided the measurements to be error free. However,
when facing real data corrupted by some noise, the estimation might depend on the choice of the time instants
{t;e}iy, forj € {1,...,p}, or the timet, and is tainted by some error. Then, integrating the system backwards
up to time 0 and forward up to time t might propagate and amplify the estimation error on the initial condition
and the current state, respectively. A way to improve this estimation is to use a filter in the spirit of an observer
(see e.g. [45]). In this work, as the objective is to analyze the identifiability and observability properties, we do
not consider here the robustness issue with respect to corrupted data. This will be the matter of a future work.

Up to now, we have provided some hypotheses that ensure a system to be observable, identifiable or jointly
observable-identifiable, and some constructive algorithms to recover the initial condition and/or the parameters
vector. Besides, if we have some analyticity properties, we can use almost any time ¢ € Z to recover these
unknowns. Epidemiological models based on autonomous ODEs are typically analytic systems. In particular,
if f is a combination of linear and bilinear terms of the state variables, then f is clearly analytic in all R™.
Due to the Cauchy-Kovalevskaya theorem for ODEs (see [47]), each initial condition provides a unique locally
analytic solution. In an autonomous system, any point of a solution can be considered as the initial condition
of the same solution, and hence this solution is analytic everywhere. Moreover, in the example presented in
Section |2 the output is y = kI, which, since I is analytic, is also analytic.

Remark 7. We can apply the proposed algorithms to some systems with piece-wise constant parameters. If
the parameters vector is 05 in an interval [ts,ts+1), s € {0,1,2,...}, and we know ts, for all s, then we can
check the different hypotheses exposed in Algorithms @ and@ considering for each s that we know y.).0.)
in [ts,ts+1), and apply them respectively if the hypotheses are fulfilled.

3.5 Summary of the proposed methodology

For clarity, we provide here a concise and non-technical summary of the proposed framework to assess joint
observability—identifiability in nonlinear dynamical systems.

Model proposal. Consider a suitable ODE model along with measurable outputs:

S (46.0) = Falt:6,0),6), #(0:6.0) =€

Y(e.0)(t) = h(z(t;€,0),0),

(12)
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where x denotes the state variables, § € © the unknown parameters, and y the measurable outputs. Identify
an appropriate initial positively invariant domain 2 in which the states evolve.

Find a suitable observability map. Define a mapping Ly, 1, {d,,....d,.} that collects y and its derivatives
up to some order. If, for any chosen parameters vector in ©, it is injective in 2 or a positively invariant subset,
observability of the initial conditions is ensured.

Find structural equations of the system. Formulate relations of the type

aj
gj,o(y(dl,...,dm)) - Z rj,l(g)gj7l(y(d1,...,dm))7
=1

where g;; are functions of the measured outputs and their derivatives, and r;;() depend only on the param-
eters.

Identifiability conditions. If the functions g;; (y(d'l"'"’din)) are linearly independent over time for any initial
condition in £ or a parameter-dependent positively invariant subspace, and the mapping r is injective in O,
the parameters are identifiable.

Joint recovery of states and parameters. If the above conditions hold, the pair (zg,6y) can be recon-
structed from the outputs, a finite number of their derivatives and a set of time instants which depends on the
analytic nature of functions ¢;; = gj,l(y(d,l""’dlm)). In this case, we need to solve one of the following systems:

e Low-order derivatives, several time instants:

Gja(tin) o by (tin) oj1 bj0(ts1)
: : : = : . (13)
bialtig) - Pig;(tig;) Ojq; ®j0(tj.q;)
o High-order derivatives, one time instant:
b (t) e Gjq; (1) bj0(t)
doji - déj.q; - 0351 dojo -
—Do (¢ _ T Pd) >
dt (*) dt (*) 0j,2 dt (*)
) ) . = ) (14)
o L T o
de 1¢j’1 @ .. d4 1¢j,qj ® 3,45 dd %qu’O @
dai =t dtai—1 dtai—1

Once we have the parameters, we can recover the state at one of the previously chosen times inverting the
mapping £f97h97{d17~--7d7n}'

Let us now illustrate all the presented theory through the classical STRS model.
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4 Application to the SIRS model

In this section, we study the observability, identifiability and joint observability-identifiability of the SIRS
model , previously presented in Section 2| under the observation of an unknown fraction k£ € (0,1] of
individuals. The associated ODE system is conservative, i.e., S+ I + R = 0; in particular, S is the fraction of
susceptible individuals, I is the fraction of infectious individuals and R is the fraction of recovered individuals,
and then S+ I+ R =1, for all t > 0 (see, for example, [10, Chapter 10.4]). Then, we consider the following
reduced system:

S = —BST+u(l—-S-1),
I = BSI—~I, vVt >0, (15)
y = ki,

for some initial condition (S5(0),1(0))T = (S, Io)T € Q = {(&1,&)T € [0,1)2 : & + & < 1}. We assume that
the four parameters, k, 8, v and p, and/or the initial condition are unknown.

In this system, 8 > 0 (days™!) is the disease contact rate, v > 0 (days™!) is the transition rate from com-
partment I to compartment R, and u > 0 (days™!) is the transition rate from compartment R to compartment
S. The following results are well-known ([10, Chapter 10.4], [49]):

e The system of ODEs of System with initial condition in 2 has a unique solution.
o The set (2 is positively invariant with respect to the system of ODEs of System .

o The basic reproduction number is defined as Ry = 3/, which is an approximation of the number of cases
that one infected person generates on average over the course of its infectious period, in an uninfected
population and without special control measures.

o The (unique) disease-free equilibrium (DFE), which is P; = (1,0)T, is globally asymptotically stable
when Ry < 1 and unstable when Rg > 1; in particular, in this case, it is a saddle point whose stable
manifold is T = 0.

e When Ry > 1, there exists an endemic equilibrium (EE) in  given by P.(0) =

(1 1—1/730)T
RO, M ’Y""M )

which is globally asymptotically stable out of I = 0.

Having done this quick wrap-up on the main characteristics of the SIRS model, we may start to study if
it is observable, identifiable or jointly observable-identifiable. Notice that, in particular, the solutions of this
system are analytic and, hence, so it is the output.

4.1 Identifiability and observability

Notice that the solutions and observations of System are analytic in Z. We will see that the procedure
described in Algorithm [2|is appropriate for this case, and gives more general results than Algorithm [l Hence,
in the following, we are going to focus on Algorithm considering we know y 4, g, in [a,b) C Z. In particular,
to check the observability, identifiability or joint observability-identifiability of System , we are going to
follow Steps 1 and 2 and see if the required conditions can be satisfied. First of all, notice that the number
of state variables of System is n = 2, the number of unknown parameters is b = 4 and the number of
observations is m = 1. Let £ = (So,Io)T € Q, 0 = (k,B,v,)* € © = (0,1] x (0,00)3, z = (S,I)T. Then,
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System can be consider as a system of the form given in 7 with

F(z,0) = ( —Briwy + pu(l — 21 — 22) )  h(2,0) = k.

Br1x — VT2

In the following, we will find different suitable sets 2; and 3¢, for any 6 € ©, for the above mentioned
Steps 1 and 2, respectively. We will do it constructively.

Step 1. In this case, since m = 1, we have to find d; € Ng such that, for any 6§ € ©, the following function is
injective in some suitable set 1 C §2 positively invariant w.r.t. the ODE system given in :

d
Loy € (52 (0 5fE )

For any (£,6) € Q x O, letting x(t;£,0) = (S(t;€,0),1(¢;£,0))T be the solution to System with initial
condition £ and parameters vector 6, we have

yég,)(?)(t) = ho(x(t;€,0)) = kI(t;€,0), Yt>0.

Notice that Lg(§) = yég)g)(O) = k&, is injective in a set 3 C Q if, and only if, there exist Z C [0, 1] and

some function G : Z — [0,1] such that Q; = {(G(£2),&2) € Q@ : & € E}. A set 2 that has this form is
positively invariant with respect to the system of ODEs of System if, and only if, for any initial condition
&€y, St;¢,0) = GI(tE,0)), for all t > 0. Two examples of such orbits are (S,I) = P; and, whenever
Ro > 1, (S,1) = P.(0).

These type of sets are very restrictive and not very useful in applications. Therefore, let us consider d; = 1
instead of d; = 0. We will show that this is a more convenient choice since the positively invariant set w.r.t.
the ODE system given in that we will derive from it is less restrictive.

Differentiating ygg)a)(t) one time leads to the following equation:

y(Ly (1) = Dho(a(t:£.0) fo(a(t:€.0)) = (0.K) fol(1:€,0))
= k(BS(:€,0) = NI(HE,0)() = (BS(:€,0) = N)yley (1), Vt>0.

Let us consider Ql = {(gl,gg)T cQ : 52 * O} = {(£I’§Q)T € [0, 1) X (0, 1] : 61 —|—€2 < 1}

Lemma 5. For any 0 = (k, 3,7, u)* € ©, the following map is injective:

Lo — R & (4 (0), 50 (0)) - (16)

Proof. The proof is straightforward, since, given 6 = (k, 8,v, 1) € ©, £ € Qy,
U (0) = Ko, 4l (0) = k(5E1 — )éa.

Therefore, it is easy to see that is injective. O

Notice that, if we change €27 by {2 in Lemma E[, then the mapping Ly, is not injective.

To continue with Step 1 of Algorithm [2] we point out that €2y is positively invariant with respect to the
system of ODEs of System ([15]). Notice that Q; is the same set as €2 except for the manifold {(£;,0) : & € [0, 1]},
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which is also positively invariant w.r.t. the ODE system given in (recall that this is the stable manifold
associated to P when Rg > 1). Then, due to the uniqueness of solutions, €, is also positively invariant w.r.t.
the ODE system given in (15). Hence, System is observable on (2; in any semi-open interval [a,b) C T
with parameters in ©. If we know 6y € © and some observations y,, 9,)(t), for all ¢ € [a,b), then we can
determine o performing now Steps 3, 7 and 8 in Algorithm [2]

Step 2. We now need to find a suitable sets Q03 9 C €2, for every 6 € ©, positively invariant w.r.t. the ODE
system given in (15]), and maps g : D — R9*? and r : © — RP, for some suitable D C RO+ d) e NU{0},
¢,p € N, such that (C1), (C2) and (C3) of Theorem [2| are satisfied for some connected & C Z such that

[a,b) C S and {gjyl(ygg)g) t),... ,yggdllg)) (t))}j=1,...,p are analytic w.r.t. t €S, for any (£,0) € 'z 0.
’ ’ l:l,...,qj

In the following, for the sake of cleanliness, we make a slight abuse of notation and avoid the specification
of &, 8 and t when no confusion is possible; besides, we denote y(©) and y*) as y and g, respectively.
Let us start by checking (C1) of Theorem [2} Since
y=~kI, y=(BS—7)y, Vt=0, (17)

neither dj = 0 nor d} = 1 are suitable. In particular, we cannot obtain a function r injective in © suitable for
since we do not have any information on p in the expressions of y(®) and y(*) given in (I7).

Then, if we continue differentiating ¢, denoting y®) as 4, we obtain:

i = (8BS =i+ BSy= (8BS =7y +B(-BST+p(1—-S 1))y, Vt=>0. (18)
Notice that, if y # 0, which holds when we consider initial conditions in 4, we can define (S, I) in terms of y,

7 and 6 from as

1/(y y
S:f<f+ ) I=2, v¢>o0. 19
AR ’ (19)

Hence, substituting in and performing some computations, we obtain an equation in the form of
in (C1) of Theorem

TS 2B . B
y—g=—yu(v—ﬂ)—y Tt —gp—ygr, V0. (20)
Then, we can see that (C1) of Theorem [2 is satisfied with d} =2, p=1, ¢ = q =4,
“2

90y, 9, 9) =4 — o a1 (v 9,9) = —y, 92(y,9,9) = v, 93y, 9,9) = —0, 94(y,9,9) = —y¥,

and

r(0) = <M(W - B), %(v+u),u7 g) . Vheo.

Since p = 1, we have denoted g1; = gi, | € {0,...,4}, for the sake of simplicity.

Let us now check (C2) of Theorem [2} i.e., if the function r : © — r(©) C R* is injective. Indeed, given
some parameters vector 6 = (k,3,v,u)T € O, it is easy to see that we can invert the equation r(f) = o and

1
(k7/8777:u): (7 (@_03_ﬂ>7@_03_23@_03a03)'

04 \O4 03 04 03 04

obtain uniquely

Finally, we need to check (C3) of Theorem [2] i.e., if, for any (£,6) € Ty, the functions {g;(y, ¥, )},
are linearly independent with respect to time in some suitable S C Z, for initial conditions in some suitable
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sets Q29 C (2, for § € O, positively invariant w.r.t. the ODE system given in . Since these functions are
defined in all Z, we will consider § = Z. Then, if they are linearly independent in Z, given that they are clearly
also analytic, we will have linear independence in any [a,b) C Z. In the following Lemma [6] we will directly
prove linear independence for any [a,b) C Z.

Lemma 6. For any [a,b) C I, the functions {g;(y,79,i)}, are linearly independent in [a,b) if T o =
Upeco (21 \ {Pe(0)}) x {0} and (§,0) € I'zo, ie, Qa9 = Q1 \ {Pe(0)}, where P.(0) denotes the endemic
equilibrium point associated with 6.

Proof. Consider some [a,b) C Z. For some 6 € O, we consider £ € ), and assume there exist a1, as,as,as € R
such that
ary(t) + asy(t)® + azg(t) + asy(t)g(t) = 0, V1t € [a,b). (21)

We will prove that a; = as = a3 = as = 0if £ € Qy ¢, for some Qs 9 C Q. As mentioned in Step 1, if &, = 0,
then y = 0 in Z, and hence is true for values {ai}le not necessarily satisfying a1 = ao = a3 = a4 = 0,
which implies that the corresponding functions {g;(y, ¥, )}, are not linearly independent in [a, b).

Therefore, let us consider & # 0, i.e., £ € Q. In this case, if (S(¢), I(t))T is the solution of the ODE system
of with initial condition £ and parameters vector 6, recall that €, is positively invariant w.r.t. the ODE
system given in (15)), i.e., (S(t), I(t))" € €, for all t > 0. Then, we can rewrite as

ar1kI(t) + aok®I*(t) + askI(t)(BS(t) — ) + ask*T*(t)(BS(t) —7) = 0 =
(SDIEM 4 agkI(t) + as(BS() — 7) + askI()(BS(E) —7) = 0, Vte [a,b),

which leads to
(a1 — azy) + a3BS(t) + (agk — asky)I(t) + agkBS(t)I(t) =0, Vi€ [a,b).

Determining {a;}?_; not all of them null such that this is fulfilled is equivalent to determining A, B, C, D not
all of them null such that
A+ BS({t)+CI(t)+DSt)I(t)=0, tE€]la,b), (22)

since A= B =C =D =0 if, and only if, a; = as = ag = a4 = 0. That is, we will check whether 1,5, 1,51
are linearly independent functions in [a, b) considering initial conditions in ; or not.

If we consider that S or I are constant, is true for values of A, B,C, D not necessarily satisfying
A =B = C = D = 0, which implies that the corresponding functions {g;(y,9,%)}_; are not linearly
independent in [a,b). In ©, due to the analyticity of the system, this is only possible if (S,1)T = P,().
Indeed, I = 0 implies I = 0, which is excluded from Q;, or S = 8/ and hence (S,I)" = P.(6); on the other
hand, if S =0, then, S = & and
r=P1=8) gy o),
p+ B&

i.e., we are at an equilibrium point.

Hence, let us take Q99 = Oy \ {P:(#)} and check if, when & € Qs g, the corresponding functions 1, S, I, ST
are linearly independent in €9 ¢ for times in [a,b). Assume that holds and at least one between C' and D
is non-null. If we consider initial conditions in {25 g, we obtain the following expression for I:

A+ BS(t)

I =-z% DS(t)’

where C' + DS(t) is non-null for almost every t € [a,b), since S is analytic and non-constant in Qg . Without
loss of generality, assume C + DS(t) is non-null for all ¢ € [a,b). We can hence differentiate this expression for
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I(t) and obtain

A+ BS(t) BC — AD

pe_ b 7 =~ ((55@ Jﬁu)m —p(l - S(t))) C+ DM Vt € [a,b).

I(t) = fS(t)m

On the other hand,

A+ BS(t)

1(t) = BSOI(t) — 7I(t) = (v — ﬁS(t))m, Vi€ [a,b).

If we equal both expressions for I(t), we get

A+ BS BC — AD A+ BS
<(5S(t) +M)C:DSS&; —p(l— S(t))) (C+DS0)? =(v- 55(”)011758’

for t € [a,b). After some computations in order to get rid of the denominators, we reach the following
polynomial on S(t):
caS()* 4+ c3S(t)? + caS(t)? +c1S(t) +co =0, Vi€ [a,b),

where

co = pABC — pA*D + pACD — yAC? — uBC?,

c1 = pAD? — BA%D — (2y+ p)ACD — pABD — uBCD + BAC? — (v — u)BC? 4+ uB?C + BABC,
¢ = BBC?—(2y—p)BCD — (y+ p)AD? — BABD + 2BACD + BB?C,
¢3 = BAD? —~yBD?+2BBCD,
ca = [BD2
Since S is analytic non-constant in [a, b), for this polynomial to be 0 in [a, ), we need that ¢ =--- = ¢4 = 0.

We have assumed that at least one between C and D is non-null. We have two subcases:

e Assume D # 0. Then, it is straightforward observing that ¢ = ¢4 = 0 implies A = B = 0. But then,
this implies that I = 0 in [a, b), which cannot happen for solutions in Q5 g. Hence, D = 0.

e Assume C # 0, and D = 0 due to the previous argument. Then, co = 0 implies B=0or B = —C. If
B =0, from ¢; = 0, we obtain A = 0, which again cannot happen for solutions in € g. If we consider
B = —C, ¢; = 0 implies 7C3 = 0, which is not true since v > 0 and we have assumed C # 0.

Hence, we must have C' = D = 0. Then, equation is
A+ BS(t)=0, Vte€]a,b).
But S is analytic non-constant for solutions in €25 9, and hence A = B = 0.

Therefore, for any § € ©, 1,5, 1, SI or, equivalently, {g;(y, 9, %)}, are linearly independent in any semi-
open subinterval [a,b) C Z if we consider £ in the following set:

Qg ={(&,&)" €10,1) x (0,1] : & +& <1}\{P(6)} Cc 1 C Q.

To continue with Step 2, we need to check if the set €2 g is positively invariant with respect to the system
of ODEs of System .
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Lemma 7. Let 0 € ©. The set Qa9 = {(£1,6)T € [0,1) x (0,1] : & +& < 1}\{Pe(0)} is positively invariant
with respect to the system

S

I

Proof. As said at the beginning of Section [ the set

Q={(&, &) €[0,1]*: G+ & <1}

—BST+p(l—-5-1I),
BSI —~I.

(23)

is positively invariant with respect to System .

Let Py = (1,0)T be the disease-free equilibrium of System and, given 0 € ©, P.(0) = (1/Ro, u(1 —
1/Ro)/ (1t +7))T the endemic equilibrium (which is inside € if, and only if, R¢ > 1). Since the solution of this
system given an initial condition is unique in ¢ > 0, then the set Q\ { P, P.(6)} is still positively invariant with

respect to System .

On the other hand, if an initial condition £ is such that £ # 0, then I(¢t) > 0, for all ¢ > 0, due to the
uniqueness of solutions. Indeed, since S(t) > 0, V¢ > 0,

I(t) = (BS(t) —NI(t) > —~I(t), Yt>0 = I(t)>&e >0, Vt>0.

Thus, {(£1,62)T €10,1) x (0,1] : & +& < 1}\{P.(0)} is also a positively invariant set with respect to System
(23). m

Hence, Step 2 is finished, which allows us to conclude that System is identifiable on © in any semi-
open interval [a,b) C Z with initial conditions consistent with the family {Q3}oco. Actually, if we know
To € Q9, and some observations y(,, g,)(t), for t € [a,b) C Z, then we can determine 6 performing Steps 3-6
in Algorithm [2]

Step 3. Set Qp = Q1N g = Qs g, 0 € O. Then, this is a positively invariant set, and we assume xy € (g, .

Notice that, for any 6 € O, not considering initial points in {(£1,0) : &1 € [0,1]} U {P.(6)} is not restrictive
with respect to the observations we can work with, since y = 0 would mean there is no disease and therefore
no point of study, and y =constant# 0 means the disease is already endemic and it will not vary unless we
perturb the system (e.g., with migration or vaccination).

Hence, System is jointly observable-identifiable on I'g in any [a,b) C Z. If we had some particular
observations (g, g,y in [a,b) C Z, we could continue with Steps 4-8 in Algorithm or Steps 4-9 in Algorithm

Remark 8. Applying the DAISY algorithm [5] to this model yields the following differential relations between
the states, the output, and the parameters:

0 = y—kI,
0 = 9y—pBSy+y,
0 = kyj—ki®+ Byy + kpyy + B(y + )y + ku(y — B)y>.

These equations are equivalent to and when y £ 0. The importance now is finding a suitable rewriting
of the last equation such that (C2) and (C3) of Theorem[d can be checked. In particular, it is clear that all
functions in this equation are linearly dependent, so (C3) is not satisfied if we consider the equation written
this way. This moreover highlights that may not be the unique suitable rewriting. This example illustrates
how our methodology complements symbolic approaches such as DAISY.
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4.2 A limiting case: The SIR model

Another basic compartmental model is the SIR model, where the considered populations are the same as
for System , but there is no loss of immunity, i.e., p = 0. Again, we can consider the observation of an
unknown portion of infected individuals and hence obtain the following system:

S = —BSI,
I = BSI—~I, (24)
y = kI,

where we have already simplified the dimension taking into account that the quantity S+1+ R = 1 is preserved.

If one thinks of whether System is observable, identifiable or jointly observable-identifiable, it seems
it will satisfy the same properties as the previous System , and it will be easier to prove them, since we
got rid of parameter u. However, this is far from being true.

If we perform the same computations as for the SIRS model, we obtain the same result for Step 1, which
implies that System is observable on ; = {(&1,&)T €[0,1) x (0,1] : & +& < 1} in any [a,b) C T with
parameters in © = (0,1] x (0,00)?. Regarding Step 2, as in and with u = 0, we obtain that

_Yy o _1(y
=7 S—ﬂ(er'y) (25)
and ) 5 5

. y__i 2 P

i (26)
Then,

T(kaa >_ (%7%)7

which is clearly not injective in ©, and hence we cannot complete Step 2 using . However, recalling Remark
System is indeed identifiable considering a suitable positively invariant subset of {21, as we can see in
the following Lemma , which does not need the injectivity of r.

Lemma 8. System is identifiable on © = (0,1] x (0,00)? in any [a,b) C I, with initial conditions in
Q={(€.&)Te(0,1)? : &+&<1f]

Proof. System will be identifiable on © with initial conditions in € if, given any initial condition & € Q
and some observations y in [a,b), we can determine 6 € © uniquely.

First of all, one can prove, similarly to Lemma [7} that Q is positively invariant with respect to the ODE
system in System . Equations and are still valid. Therefore, if we prove that y? and yy are
linearly independent w.r.t. ¢ € [a,b), then there is a unique solution o = (o1, 02) to

g — % = —01y® — 02y, (27)

where o1 = fv/k and o9 = 8/k. To see that the linear independence holds, let us consider a;,as € R such
that
a1y’ +asyy =0, Yt ]a,b).

Since  is positively invariant, then I # 0 in [a,b), and hence y # 0, which implies

a1y + a2y = 0.

2Note that € is independent of the choice of 6.
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This is equivalent to
a1 kI + agkI(BS —7) =0, ¥Vt € [a,b), which implies a3+ a2(8S —7) =0, VtE [a,b).

Since S is analytic, a; or ap are non-null if, and only if, S is constant. Given that S = —A3SI, this can
only happen if S(t) = 0 or I(t) = 0, for all t > 0, which cannot occur in Q. Hence, 3 and yg are linearly
independent when we consider & € Q and 6 € O, and therefore there is a unique solution o to . Then, we
can determine uniquely 8/k = o9 and v = 01 /03.

If a = 0, taking into account that &, & # 0 in ©, we can conclude directly determining

o~ Y0 _ o1 1 (Q(O)+g).

y(0) o2

& oy’ 3

If a > 0, notice now that we can make the following change of variables in the ODE system in System :
X =pS and Y = kI. Then,

X = —0,XY,
Y = Y(X - ’Y)a
and we can recover 5&; and k&y integrating backwards considering as initial condition
yla) o1
X(a)=—+—, Y(a)=yla).
(@)= 205+ 72 Y0 = ta)

Once we know X (0) = 8¢, and Y (0) = k&, taking into account that &, & # 0 in Q, we can determine uniquely

k, 8 and vy as
p=X0 0, X0 o
&2 & P

Therefore, System is observable on 21 with parameters in © and identifiable on © with initial conditions
in Q C Qy, in any [a,b) C Z. Nevertheless, it is not jointly observable-identifiable on Q x ©. Actually, in
[19], the authors treat this case and prove that, assuming both o = (So,Ip) € Q and 6y = (ko, Bo,70) € ©
unknown, we can only determine 7o, 5o/ko, B80S0 and kolo, i.e., it is partially jointly observable-identifiable.
This can be as well checked with DAISY and Structuralldentifiability.jl softwares. In fact, considering

(25) and (26)), if (01, 02) is the solution to
.Y 9 .
y_g = -0y — 029y

(which we know is unique due to the proof of Lemma and (ko, Bo, 7o) is any solution to r(ko, Bo,v0) = (01, 02),
notice that our method matches this result, since we have

1 .
I:£7 S:*(g‘i‘VO)a M_ BO
0

k() =01, ?0 = 02,
and hence, if we know y(0) and y(0), it is straightforward checking that we can recover vo, Bo/ko, 5050, kolo

uniquely as follows:
o1 Bo y(0) o1
0o="—, T =02, poSo="=+—, kolo=y(0),
75 ke y(0) o2 v(0)
and we cannot obtain more information. If a > 0, then we can proceed as in the proof of Lemma [§] performing

the change of variables X = (yS and Y = kgl and integrating backwards from ¢y = a to 0.

One could also not know at first if some given observations y,, g,) correspond to an SIR or an SIRS model
when both zy and 6y are unknown, and wonder if the same data might be reproduced with two different sets
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of parameters (k1,31,71,0)T and (kg, B2, 72, u2)T, 2 # 0. To tackle this question, we consider an eztended

SIRS model with parameters
0:=(k,B,v,n)" € 0" =(0,1] x (0,00)* x [0, 0).

Notice that the SIR model is a particular case of this extension of the SIRS model, and can be regarded as a
limiting case of the SIRS model when p — 0.

Then again, in Step 2 we would obtain

B
K

r(k, B, 1) = (u(v = B)s 7 (v + 1), s %) ,

which is not injective in ©* and hence we cannot complete this step with this function r. Nevertheless, this
extended model can help to distinguish whether the observations come from an SIR model or an SIRS model,
as illustrated in Section Let us first do a quick comparison between both models in Section [4.2.1

4.2.1 Comparison between SIR and SIRS models

Although passing from p = 0 to 1 > 0 may change substantially the behavior of the solutions, since the SIR
model does not admit an endemic state, whereas the SIRS model does, they can be hardly distinguishable at
early stages if p is very small. We let zgir () and zsirs(t) be the solutions to the SIR given by the ODE system
of and the SIRS model , respectively, with the same initial condition, and we study the dependence of
[|zsir (t) — zsirs(t)|]2 on p. To do this, we are going to consider the same parameters 5 and 7 for both models,
and we will base ourselves on Theorem 3.4., Chapter 3 of [49], particularized to our autonomous context:

Theorem 4. [/9, Chapter 3] Let f be a Lipschitz map on W with a global Lipschitz constant L, where W C R™
is an open connected set. Let y(t) and z(t) be solutions of

U=1rW), ylto) =yo, and 2= f(z)+g(2), z(to) = 2o,
such that y(t), z(t) € W, for all t € [to,t1]. Suppose that
lg(@)l| < p, Vo eW,
for some p > 0. Then,

ly(®) = 2O < llyo — 2ol[ exp(L(t —to)) + %[exp(L(t —to)) = 1], Vi€ [to,ta].

Then, we are going to check the different conditions required in Theorem [f]in order to obtain an estimation
of [|zsir (t) — zsirs(t)||2-

Notice that both models share the same positively invariant set
Q={(&,8)" 0,1 : & +& <1},

which is compact, but the derivatives are well defined. Let zsir = (Ssir, Isir)T and zsirs = (Ssirs, Isirs) T
be the state variables associated to the ODE system of and , respectively. We are going to rewrite
these systems in the form presented in Theorem[d Let z( be the same initial condition at ¢, for both models,
n= (8,7, p)" and v = (3,7)T two parameters vectors, and the following function:

fsir(z,v) = ( —Prizz ) , xT€e.

Br1x2 — VT2
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Notice that fsir(x,v) is Lipschitz in z on the compact set €2, for some Lipschitz constant L > 0 which is
independent of u.

Let us also define

g(m,p) = ( ”(1_%1_"%2) > ze Q.

Then, g satisfies

<u, Vxel
2

ot )l = H( s )

We consider now the two following systems:

( SSIR(tJ To, V)

Isir (t; 20, 1)

> = fSIR(ZSIR(t; Zo, V)’ V)

and )
( Ssirs (t; zo, )

Isms(t;xo,n) ) fsm(xsms( 7$0,Tl)71/) +9($SIRS( 7560777),/0

Then, we are under the conditions of Theorem Let us make an abuse of notation and let zgr(t) =
:ZJSIR(t; Zo, l/) and ISIRS (t) = TSIRS (t; Zo, 77). It is fulfilled that

HISIR(t) - :ESIRs(t)HQ S %[exp(L(t - to)) - 1], Vi Z tg.

This is, for any € > 0, > tg, there exists some g > 0 small enough such that

[lzsir (t) — zsirs(£) ]2 < %[exp(L(t —t0)) —1] <e, Vte ot (28)

To illustrate this, we can observe in Figure [1] (Left) how both solutions are hardly distinguishable when
considering B = 2.5, v = 1, p = 0.001 and zgr(0) = xsrs(0) = (0.9,0.1)T. Moreover, the infectious
compartment Igrg presents a slow-fast behavior for the SIRS model when near to the invariant manifold
Isirs = 0; we observe in Figure [1] (Right, Bottom) how it takes a lot of time to move away from the manifold
and then approaches it very fast, and hence remains most of the time very close to the solution of Ig;r for
the SIR model. Hence, it is reasonable that p = 0 is hardly distinguishable from small values of p knowing
only the infectious compartment. Moreover, Figure [I] illustrates that this difficulty may not only be at initial
times, but also for intermediate intervals of time.

4.2.2 Distinguishing between SIR and SIRS models

Given the previous study, it is intuitive to think that, in a practical viewpoint, it may be difficult dis-
tinguishing an SIR model from an SIRS model with very small p if we look at short times. However, it is
theoretically possible. We present here two approaches to do this.

« Approach 1: One can check analogously to the SIRS case that {y, 42,9, yy} are linearly independent for
the SIR case in any [a,b) C Z in its positively invariant set Q = {(&1,&)T € (0,1)? : & +& < 1}. Then,
given some observations y(,,,6,), We can perform Step 3 of Algorithm 2} we know there exist different
time instants t1,to,t3,t4 € [0,], where ¢ is the one in , such that there exists a unique solution o
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Figure 1: Comparison between the solutions of an SIR and an SIRS models with same initial condition (0.9,0.1)
and parameters 8 = 2.5 and v = 1, 4 = 0.001 for the SIRS model. (Left) Phase plane of both solutions, the
SIR solution (dashed red) and the SIRS solution (continuous blue), along with the limiting line S+ 1 =1
(dashed black). (Right) Comparison of (Top) the solution for the susceptible compartment S of the SIR model
(dashed red) against the one of the SIRS model (continuous blue) and (Bottom) the solution of the infectious
compartment I of the SIR model (dashed red) against the one of the SIRS model (continuous blue).

fulfilling )
y(tr) y:m) z@ yy:(tn ) Z%(}Z)z_%(tl)
y(t2) y(t2) 9(ta) yy(ta) o\ _| i) —§(t2)
W) V) o) witts) |\ O P e
P (ta)

y(ta) y*(ta) 9(ta) yy(ts) o(ta) — §i(ta)

Given o, we obtain the following conclusions:

— if 01 = 03 = 0, we confirm that our observations correspond to an SIR model;
— if o3 # 0, then we are at an SIRS model;

— if o7 # 0 and 03 = 0, we conclude our observations do not match any of the two models.

e Approach 2: Another way to determine if there is loss of immunity or not consists in considering the
previous equality , ie.,

. d 7
4 — ¥ _ —@y2 — éyy, which may be rewritten as £y + &y + éy =0,
Y k k ty k

di
ie., {a? Y, y} are linearly dependent for the SIR model whenever Igjg # 0. However, this is not true
Y

for the SIRS model. Indeed, consider System . Let a1, as, a3 € R such that

dy
—= ) = 0.
aldty + a2y + azy
This is equivalent to

a1B(—BST + u(l =S —1)) 4+ askl + azkI(8S —~v) =0,
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which again reduces to study the linear independence of 1,S,1,SI, which we already know that are
linearly independent in any [a,b) C Z in each set Qy, 6 € ©, defined in Section Therefore, given v,

1 and ¢, studying the linear dependence of y, v, —ty may help us determine the model.

dty

These two approaches highlight the importance of the structural equations associated to our models, which
can be exploited for model discrimination in particular cases.

5 Some other applications

In this section, we present a series of additional examples to demonstrate the broader applicability of our
approach to other epidemiological models. In each case, we show how joint observability—identifiability can
be established using our proposed framework under different modeling assumptions and data limitations. For
clarity, we systematically omit the equation for the Recovered compartment when the total population is
constant, as it does not affect the theoretical results. To maintain focus on the theoretical aspects, detailed
computational steps are omitted but can be derived directly following the procedures outlined in previous
sections.

It is worth noting that the following examples can also be analyzed using symbolic tools developed for
rational systems, such as DAISY [5] and StructuralIdentifiability.j1 softwares |25], such as performed,

for instance, in |17} |55]. However, our interest here lies in explicitly determining the sets of initial conditions
for which joint observability—identifiability holds—information that these algorithms do not provide.

The SIR model with demography

In [26], the authors show that the following model is neither identifiable nor observable:

. SI
— 6N — B== _
S o 5N 09,
. ST
Io= g% —(+or V=0
N
y kI,

where § > 0 denotes the birth and death rates, assumed equal, N is the total population (constant), and 3, v,
and k represent the same parameters as in the previous models.

However, this model becomes jointly observable-identifiable when the total population N is known, allowing
us to normalize the population so that S and I now represent fractions of the total population:

S = §—pBSI-68S,
I = BSI—(y+&I, Vt>0, (29)
Yy kI,

for some initial condition (S(0),1(0))* € [0, 1]2.

For this normalized system, we set Q = {(&,&)T € [0,1]? : & + & < 1} and © := (0,1] x (0, 4+00)?
for 8 = (k, 3,7, 9). Performing computations analogous to those in Section during Step 1 and Step 2, we
obtain the following relations:

b

_ — (BS — _L(y _
y=kl, §=0BS-0+0y — 5—5(y+7+5)7 I=

ENS
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assuming y # 0, and

LU Lo 9B e B
y—;—y%@ 5—7) yk( +9) —yo i

Then, we consider dy =1, d} =2, p=1, ¢ = q =4,
92 5
gO(y’y, y) - y a E’ 9 (y7y’y) =Y, 92(117%3/) ==Y, 93(3/7.% y) = 7ya g4(y7yay) = 7yy

and 5 5
2o+9.60).

r(0) = (83— —9),

With these expressions, we confirm that the assumptions in Step 1 and Step 2 of Algorithm |2 are satisfied,

taking parameters in © and initial conditions consistent with the family {Qg}oco, with Qy = {(&1,&) €

[0,1) x (0,1] : & + & < 1} \ {P.(0)}, for each 0§ € O, where P.(0) denotes the equilibrium point associated

with 0, and 2y is positively invariant with respect to the ODE system of when we consider 6 as parameters
vector.

Therefore, we conclude that System is jointly observable-identifiable on I'g in any [a,b) C Z.

The SIRV model

We now analyze a Susceptible-Infectious-Recovered-Vaccinated (SIRV) model, where individuals gain per-
manent immunity after recovery, as in the SIR model. Additionally, we assume the existence of a perfect
vaccine that provides permanent immunity but is only effective for susceptible individuals. Importantly, this
vaccine has no effect on infectious or recovered individuals. However, since we cannot distinguish susceptible
individuals from infectious or recovered ones, all compartments are vaccinated indiscriminately. The observable
data are the rate of vaccinated individuals (including both effective and ineffective vaccinations). Hence, we
consider the following system, where S, I, and V are fractions of the total population, assumed to be known:

S = —BSI—vusS,

I = BSI—~I,

. t>

Vo— v Vit >0, (30)
y = v(1-V),

for some initial condition (S(0), 1(0),V(0))T € [0,1]2. We assume that the initial condition and all parameters
3, v, and v are unknown, where 3 and 7 are as defined in previous models, and v > 0 (days™!) represents the
vaccination rate.

For this system, we define Q = {(&1,&2,&3)T € (0,12 @ & +&+& < 1} and © = (0, +00)? for § = (8,7, v).
After some computations, we obtain the following relations:

y=v(1-V), g=-v2S, j§=—yBl+v) =— S=-=, I:——(y,—H/), V:l—%7

assuming ¢ # 0, and

..2

] . LB . P
y® — = = gy — P — iy — i
7 v v

Then, we consider dy =2, d} =3, p=1, ¢ = q = 4,

..2
9oy, 9,5,y =y — A v ==, 920,95, 5,9%) = —°,
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930, 0, 5,9 = —4,  9a(y,9,9,y?) = 94,

and

Following the procedures established in earlier sections, we confirm that the assumptions of Step 1 and
Step 2 in Algorithm [2]are met, with parameters in © and initial conditions in the revised set Q = {(&1,&,&3) €
(0,1] x (0,1) x [0,1) : & + &+ &3 < 1}, where Q does not depend on 6 € © and is positively invariant under
the ODE system defined by .

Thus, we conclude that System is jointly observable-identifiable on 2 x © in any [a,b) C Z.

The SIR model (with a different output)

As discussed in Section the SIR model observed through a fraction of infected individuals (i.e., System
(24)) is observable and identifiable, but not jointly observable-identifiable. Here, we consider the same SIR
model but with a different observation: the instantaneous incidence rate. Specifically, we examine the following
system:

S —BSI,
I = BSI—~I, (31)
y BSI,

for some initial condition (S(0),1(0)) € Q = {(&1,&)T € [0,1]2 : & + & < 1}, which is positively invariant
with respect to the system of ODEs given in . In this scenario, we assume that both 5 and ~ are unknown
parameters, defining © := (0, 00)? for § = (3, ). Following an approach similar to previous cases, we calculate
the first derivative of y to express S and [ in terms of y and ¥:

y = pSI,
y = —yBl+ypS—yy.

Notice that this system is nonlinear in S and I, making it challenging to directly apply Step 1 of Algorithm
2l To address this, let us differentiate once more:

i = —yBI — 2y*B + yByI + yBS — vy,

which results in a system that is linear in S and I. Therefore, we obtain:

g 1 (i 2 o

s = Yy (Y L)y 2,40

{y = (=BI+BS—)y, ﬂy+ﬁv(y y2>+7y+ﬂ’
g = (=BI+BS—7)y—2y°8+ybI, 1 (i 92\ 2
Y\y gy v

Assuming y # 0, we avoid further differentiation by substituting the expressions of S and [ into y = 8SI,

yielding the following equation after simplification:

dyf ydy g2 dy 20, 249
—==) =9===+2 40y—=+4 —=.
(dty Yydiy By + By7y + ﬂydty+ Boy” + dty

Then, we set dy =dj =2,p=1,q =¢q=6,

o d g\ R . . .
go(y,yyy)=—( > gy 9,.9) =>==, 9099 =9 9097 =y,

dy d
dty ydt

Q|
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o dy o 9 o dy
94(y,y,y)—ydty, 95y, 9, 9) = v~, ge(y,y,y)—dty,

and
r(0) = (7,287, 87%,4B,46%,7%) .

We confirm that the assumptions of Step 1 and Step 2 in Algorithm [2] hold, with parameters in © and
initial conditions in Q = {(£1,&) € (0,1)? : & +& < 1}, where Q does not depend on 6 € © and is positively
invariant with respect to the system of ODEs of System .

Consequently, we conclude that System is jointly observable-identifiable on Q x © in any [a,b) C Z.

The SIV model with demography and two outputs

Here, we consider a Susceptible-Infectious-Vaccinated (SIV) model with demographic dynamics. We as-
sume a perfect vaccine that is effective only for susceptible individuals, though infectious individuals are also
vaccinated indiscriminately, as in System . In this case, however, we model a permanent infection, which
can serve as a simplified representation of long-term infections, such as those associated with certain sexually
transmitted diseases (e.g., human papillomavirus (HPV)). We assume two observable quantities: the rate of
all vaccinated individuals (both effective and ineffective) and the rate of natural deaths. These deaths are
attributed to natural population dynamics and are assumed to be routinely monitored by authorities. Hence,
we consider the following system, where S, I, and V represent the fraction of susceptible, infectious, and
vaccinated individuals, respectively:

S = A—BSI—(v+9)S,
I = pBSI-éI,
V = uvS—4V, Vit >0, (32)

_ v\ _ v(S+1)
’ ” HS+T+V) )
for some initial condition (5(0),1(0),V(0)) € [0,00)3. All the initial condition and the parameters A, 3, 6,

and v are assumed to be unknown. Here, A > 0 represents a constant recruitment rate, § > 0 is the death
rate, and [ and v have the same definitions as in System .

The natural positively invariant set for this system is Q = {(&1,&2,&3)T € [0,4/8]° + & + & + & < A/6},
and © := (0,00)4, for § = (A, 3,4,v).

We first observe that this system is not observable (and hence not jointly observable-identifiable) if only
y1 is used as the observation, similar to System . Since y; depends solely on S and I, we cannot uniquely
determine V. Therefore, an additional observation is required. By including the rate of natural deaths,
ya = 0(S + I + V), we leverage data that should be routinely available, making it reasonable to assume
accessibility to this information.

Similarly, relying on yo alone is insufficient, as o = Ad — Jy2 yields no further parameter information
through differentiation, unlike previous models.
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After some computations, differentiating y; twice and yo once, we obtain the following expressions:

5= T
n = v(S+1),
o= vA-PS—by, = 8 o (WD), AL D
yo = 6(SH+I+V) v vov
_ 20
Vo= 1) v’
and S — A 50 + 62 2496
2= AVQ%”B+V<AV+2A5—%>%+V<2A—%)y’l
1/2
=6+ 0)y? — (v +20) 11 — F?le
yg = A(S*(Syg

Focusing on the equation ¢o = AJ — dy2, we observe that {1,y2}, when ys is non-constant, allows us to
determine A and § by solving the system:

()
L ya(tz) ) \o2 ya(t2) )’

such that 6 = —o9 and A = —07 /0. Substituting, we can rewrite:
ov—A Sv% + 62
U2+ 03y? — 21100 = AV2VT5 +v (AI/ + 2460 — %) Y1
v+ 250 . . v
+v (2A T ) U1 — vy (—o2y1 +91) — B
:l]g = A(S — 5y2.

This reformulation ensures the linear independence condition in Step 2 of Algorithm [2| Then, we consider
dy=1,dy=0,d;=2,d,=1,p=2,q. =5, ¢ =2,
910(y1, 91,01, Y2, 92) = G702yt — 2015100, g11(Y1, 91,91, 92, 92) = 1,
912y, 91,91, 92, 92) = y1,  91,3(y1, 91,91, Y2, 92) = U1,
91,4, 91,91, 92, 92) = —vyi1(—oay1 +91), 91,51, 91,91, Y2, 92) = —1,
92.0(Y1, 91, 91,92, 92) = Y2, 921 (Y1, 01,91, Y2, 92) =1, g22(Y1, U1, 91, Y2, Y2) = —Y2,

_ 2, 52 2 2
r(8) = (AV2¥7V<AV+2A57W)’V(2A7%>,V7%7A6’6).

and

Given this, the assumptions in Step 1 and Step 2 of Algorithm [2] hold for parameters in © and initial
conditions consistent with the family {Qg}oco, such that, for 6 € ©, Qg := {(£1,62,€3) € [0, A/5) x (0, A/F) x
[0,A/8) : &1+E&+E& < AJ0}\{Pe(6)}, where P.(0) is the equilibrium point of the system and g is positively
invariant under the ODEs of System when considering 6 as the parameters vector.

Therefore, we conclude that System is jointly observable-identifiable on I'g in any [a,b) C Z.

6 Numerical illustration

In this section, we present numerical experiments designed to illustrate the application and practical be-
havior of the proposed framework given in Sections [] and [3] for observability, identifiability, and joint observ-
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ability—identifiability in epidemiological models. The simulations serve both to confirm the theoretical results
established in Sections [3] and [4] and to provide intuition on the numerical conditioning of the recovery pro-
cedure. In particular, they highlight how the spacing of the selected observation times affects the stability
of the linear systems used for parameter reconstruction, and how the estimated parameters converge to their
theoretical values when the model is identifiable. Two representative examples are analyzed, one based on an
SIRS model and another on an SIR model, each chosen to exhibit distinct epidemiological dynamics and to
validate the results in Section Bt

e Case 1: We consider an SIRS model in which the endemic equilibrium is globally asymptotically stable
(except for the invariant manifold I = 0, as it is stable for the disease-free equilibrium). The solution
oscillates when converging to the endemic equilibrium, as in the example presented in Figure [I] We set
the following parameters and initial conditions: ky = 0.3, By = 0.25, 79 = 0.1, po = 0.05, Sy = 0.9, and
Iy = 0.1. Thus, the basic reproduction number is Rg = 2.5.

e Case 2: We consider an SIR model that exhibits an epidemic peak. The chosen parameters and initial
conditions are kg = 0.3, By = 0.25, 79 = 0.1, Sy = 0.9, and I, = 0.1. Here as well, Rg = 2.5.

To simulate these cases, we approximate each solution using a fourth-order Runge-Kutta algorithm and
synthetically generate observations, y = koI, at each time-step. In this initial study, we assume noise-free data
to establish a clear baseline for comparison. We then analyze two scenarios:

e Scenario 1: We assume that continuous observations of y are available over the interval [0, Tiyax], with
exact knowledge or computability of its derivatives (enabled by the analyticity of the system). We apply
the recovery procedure outlined in Algorithm [3|to determine the original parameters and initial condition,
utilizing the full interval [0, Tinax]-

e Scenario 2: In realistic situations, data are typically discrete, often recorded at daily intervals by public
health authorities (e.g., [80] and [81]). To mimic this, we extract simulated data once per day (at the
same time each day), referred to here as daily data, and apply the Ordinary Least Squares method to
estimate the unknown parameters.

Scenario 1 provides a controlled environment for testing recovery procedures and Scenario 2 reflects more
realistic, discrete data conditions. For practical purposes, we will examine Case 1 under Scenario 1 and Case 2
under Scenario 2. Preliminary results indicated similar outcomes when interchanging cases between scenarios,
allowing us to streamline the analysis. In Scenario 1, we focus on the procedure in Algorithm [3] omitting that
of Algorithm [2| due to the former’s superior performance.

To integrate numerically the ODE systems, we utilize a fourth-order Runge-Kutta method with a time-step
of h = 27 days, extending up to a maximum simulation time of Tj,.x = 5 days. Although the maximum time
may seem low, it was sufficient to capture the dynamics required for convergence in Scenario 2. Furthermore,
we employ the extended SIRS model from Section assuming no prior knowledge regarding whether pg # 0
or g = 0.

6.1 Scenario 1: Linear systems for continuous observations

In this section, we perform numerical tests for Case 1, assuming the continuous observation of y = koI over
[0, Tinax], i-e., we observe y at every time point within this interval, and assume that we know or can compute
its exact successive derivatives.
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To implement the numerical tests, we first need to construct the necessary data. From an implementation
perspective, we obtain the values of y and its derivatives at each time-step of the numerical scheme, specifically
at each point in the time vector tyee = (ti)icqo,..., N}, Where t; = ih and N = Tinax/h € N. The data generation
steps are as follows:

1. We approximate the solutions S and I of the SIR or SIRS system with a small time-step h using the
fourth-order Runge-Kutta scheme, and define our observations as y = koI.

2. We approximate the first derivative of y by § = kol = koI(BoS — ).

3. For higher-order derivatives, we use the following linear equation in terms of parameters o;, i € {1,2,3,4}:

-2
.Y 2 . .
Yy = g — 01Y — 02y — 03Y — 04YY,

where o1 = po(vo — Bo), 02 = Bo(vo + 1o)/ko, 03 = o, and o4 = Bo/ko. Using this relationship, we
iteratively approximate higher-order derivatives of y through lower-order derivatives.

With these generated data, we apply the method in Algorithm [3] to estimate the system parameters and
initial condition. This method requires selecting a time £ € tye. such that the following system has a unique

solution (see ((10)-(L1))):
k ky2  gks dkar ko2
(dy d*y”  d%y dyy)~ (;T=<d(y——y)>~ . (33)
= t=

Tk k qtk k dtk
dtk - dtkdtk Atk S de® Ay k=0,1,2,3

Instead of directly estimating (ko, S0, Yo, tto), we focus on estimating

o= (01,02,03,04) = (Mo(’Yo — Bo)s %(’Yo + 110), 105 %) .

The initial conditions Sy and Iy are then computed as

1 /9(0) _
O—ﬂo<y(0)+’y()> and Iy=

Knowing the observation at time 0 avoids the computational challenges of backward integration.

y(0)
ko

Assuming known values of y(0) = 0.03 and ¢(0) = 0.00375, we aim to calibrate

(0’1,0’2,0’3,0’4) = (—00075, 0.125, 005, OSg) and (SO,IO) = (09,01)

To evaluate the method’s performance, we conducted 161 experiments, corresponding to N +1 = Tyax/h+
1 = 161. For each time point in tyec, we examined:

e The relative error between each computed component of ¢ and its exact value. These errors were
consistently small, with a maximum of the order of 1073, confirming the high accuracy of the method.

e The determinant of the matrix in , which should be non-zero. The values obtained were of the order
of 10717,

e The condition number of the matrix in (based on the L?-norm). All the obtained values range
between 103 and 5 x 10°.
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e The computational time (in seconds). Performing all tests took approximately 10~2 seconds.

These results indicate that the method provides accurate parameter estimates despite the small determinant
values and the matrix conditioning. The computational efficiency demonstrated, completing 161 tests in
minimal time, makes this approach highly suitable for real-time applications.

Similar results were observed for Case 2, which are omitted here for brevity.

6.2 Scenario 2: OLS method for daily observations

In this section, we analyze Case 2 under the assumption of daily, noise-free observations from the deter-
ministic model. Daily observations reflect realistic data collection practices in epidemiology, such as those by
public health authorities. Given the discrete nature of the data, calculating derivatives directly can result
in inaccuracy (if differentiated numerically) or bias (if interpolated prior to differentiation). In this context,
we employ the Ordinary Least Squares (OLS) method to estimate the values of kg, Bo, Y0, po, and Sg. Let
0 = (61,0,03,04,05) represent the parameters vector, where we calibrate 4 parameters (ko, Bo, 70, and pg)
and 1 initial condition (Sp). The goal is to find fors = (koLs, BoLs, YoLS, HOLS, So.0Ls) by solving

T‘max
fors = argmin »  A(0:11(t:;0) = y(t:))*, ti =i,
73 I——

where I(t;0) is the solution to the following system of ODEs:
S(t:0) = —025(t0)1(t:0) + 04(1 — S(t;0) — I(t:0)),
I(t;0) = 0,S(t;0)I(t;0) — 051(t;0),

with (5(0;6),1(0;0)) = (95, @) Here, we define a new feasible set ©* = O x [0,1). To enhance sensitivity
1

to small deviations, a scaling factor A = 10! is introduced in the objective function.

The choice of Trax = 5 days (using daily data) was based on preliminary testing, where this time-frame
was found sufficient for reliable parameter estimation despite its brevity.

For this experiment, we use the MATLAB function 1sqcurvefit to solve the OLS problem, adjusting settings
for increased accuracy (see [60]). Specifically, we set the maximum evaluations to 10°, iterations to 5 x 105,
step tolerance to 10715, and function tolerance to 10717,

We impose the following bounds for the parameters, with subscripts m and M indicating the minimum and
maximum values, respectively: [k, kar] = [ming{y}, 1], [Bm, Bar] = [1072, 3], [Ym, var] = [1072,1], [tm, par] =
[0,1], and [Syn, Sar] = [0,1 — 10719]. The bounds for 3 are informed by studies on Ry estimates for diseases
such as smallpox, pertussis, or COVID-19 (e.g., [31], [51], [54], [53], [78], [79]).

We initialize the OLS algorithm several times with random initial conditions, denoted as I.C., drawn from
a uniform distribution U(0, 1). Each initial condition is generated as:

LC. = (kmy Buns Yms timy Sm) "+ (p1(kar — k), p2(Bar — B p3(Yar — Ym )s pa(piar — i), p5(Sar — $m)) ",

where p; ~ U(0,1). For conciseness, we report results from 5 representative tests. Tableincludes the following
outcomes: Test (test number), I.C. (initial condition for 1sqcurvefit), Abs. error 6y (absolute error between
the computed solution and the true parameters vector y), Obj. value (final objective function value), and
Time (s) (computational time for each test in seconds).
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Test I.C. Abs. error g Obj. value | Time (s)
1 (0.545 1.967 0.414 0.82 0.718) (0.019 0.015 6.8e-6 4.7e-6 0.052) 6.324e-12 116.517

__3 _| (0.785 1.276 0.1 0.266 0.154) | (0.25 0.208 de-11 3.6e-12 0.409) | 9.036e-18 | 1546
__4 _| (0686 0.874 0.675 0.695 0.068) | _ (0.7 0.286 0.270 0.096 0.024) | _0.003 | 621808
5 [ (0277 0.68 0.671 0.844 0.344) (0.7 0.287 0.271 0.097 0.024) 0.006 | 1380.792

Table 1: Results for Scenario 2 applied to Case 2 using the OLS method.

Test Approx. of 6y Approx. of g
1 (0.319 0.265 0.1 4.7¢-6 0.848) | (0.1 0.833 0.225)
"~ 2 | (0.526 0.439 0.1 9.3e-13 0.513) | (0.1 0.833 0.225)
"~ 3 | (0.550.458 0.1 3.6e-12 0.491) | (0.1 0.833 0.225)
"4 | (10.5360.370 0.096 0.924) | (0.370 0.536 0.495)
"5 | (10.5370.371 0.097 0.924) | (0.371 0.537 0.496)

Table 2: Results for Scenario 2 applied to Case 2 using the OLS method: Approximations of the parameters.

The target parameters vector is
90 = (k05ﬁ07705,u0750) = (037 0257 Ola Oa 09)7

but as noted in Section we can only determine specific combinations: 7o, 8o/ko, 5S0, klp. Defining

fo = (70, Bo/ko, BoSo), ) B
0o = (70, Bo/ ko, BoSo) = (0.1,0.83,0.225).

Table [2| compares approximations for 6y and 6y, showing accurate convergence for 4o and s in Tests 1, 2 and
3. Despite inaccuracies in kg, By, and Sy in these tests, the objective function values are low, indicating that
the algorithm converged successfully for the key identifiable combinations. Most of the tests not presented
here converged similarly.

In Tests 4 and 5, the parameters reach a similar solution, representing an SIRS model with
k1, 8~054,v~0.37 u=0.1,and S(0) ~ 0.924.

These results further illustrate the method’s capacity to handle challenging scenarios where early-stage data
provide limited discriminatory power. The amplified error factor of 10' implies that the non-amplified error
in these cases is of the order of 10717, illustrating the difficulty in distinguishing between SIR and SIRS models
in early stages when only a portion of infected individuals is observed, as noted in Section [f:2.1] Several tests
not presented here reached similar solutions. The rest of the tests showed different results.

For Case 1, similar results were observed, with certain tests producing parameter sets indicative of an SIR
model (i.e., with u =~ 0). Nonetheless, these tests consistently preserved the identifiable combinations v, 8/k
and (£S5, resulting in undistinguishable SIR models. These results are not presented here for brevity.

7 Conclusions

This work addresses the problems of observability, identifiability, and joint identifiability—observability in
a broad class of systems of ODEs encompassing many classical epidemiological models, under the assumption
of continuous, noise-free observations. Several symbolic differential-algebraic approaches, such as DAISY [5]
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and Structuralldentifiability.jl [25], have provided rigorous algebraic tools to determine structural
identifiability in rational dynamical systems. For nonrational, analytic systems, we can find the software
STRIKE-GOLDD |75], based on a generalization of the Observability Rank Condition. However, all these
methods yield qualitative verdicts only, without identifying the regions of the parameters space or the sets
of initial conditions where full recoverability holds. Building upon these advances, our study introduces a
complementary and constructive framework that extends the analysis to general nonlinear (not necessarily
analytic) systems and explicitly characterizes the conditions under which both parameters and initial states
can be uniquely recovered.

This problem was previously proposed in [52], where the foundation of the approach was developed in a
general context. In Section [3] we extended that framework by considering parameter-dependent sets of initial
conditions and presenting Algorithms which provide constructive procedures to recover the unknown
parameters and/or initial conditions. These methods rely on solving a series of linear systems at suitably chosen
time instants, offering a practical and systematic approach to recovering model parameters. If observations
are available at time 0, the initial condition can be determined directly; otherwise, it can be reconstructed by
integrating backwards using the estimated parameters. Furthermore, our approach can be naturally extended
to models with piecewise constant parameters by allowing parameter updates at predetermined time instants.

One of the core ideas underlying this theoretical framework is the analysis of linear independence among
some sets of functions, a concept seldom emphasized in the literature, where existing results typically address
more restrictive settings (e.g., rational systems or models with known initial data). This approach has proven
to be essential for establishing joint observability-identifiability, while reducing the dependence on high-order
derivatives. As a consequence, it potentially enables more robust algorithms in the presence of noise compared
to classical conditions such as the Hermann—Krener rank criterion [39].

In Section {4} we applied this framework to the SIRS model (with g > 0) when only a fraction of infected
individuals is observed and proved that the system is jointly observable—identifiable under idealized observa-
tions. Specifically, we showed that observing only a fraction of the infected population suffices to determine
all model parameters (k, /3, v, and p) and the initial condition of both susceptible and infected individuals.
It is demonstrated that considering parameter-dependent sets of initial conditions is crucial in some cases. In
contrast, for the limiting SIR model (x = 0), we demonstrated that the system remains observable and identi-
fiable but loses joint observability—identifiability, since only certain parameter combinations (v, 8/k, 58S, klp)
can be recovered. This highlights the critical role of the SIRS model’s cyclic dynamics (loss of immunity) in
enabling full recoverability. Based on these findings, we proposed a theoretical basis for discriminating between
the SIR and SIRS structures using short-time data.

In Section [5] we presented additional examples to illustrate the versatility of our approach across different
model architectures and observation schemes. In these examples, we explicitely characterize the sets of ini-
tial conditions where joint observability—identifiability holds, a feature not provided by symbolic approaches,
complementing these existing methodologies.

In Section [6} we validated the theoretical results through numerical experiments on both SIR and SIRS
models under two different observational scenarios:

e Scenario 1: Continuous observations, assuming perfect knowledge of derivatives, where Algorithm
successfully approximated the parameter values in all SIRS cases.

e Scenario 2: Discrete daily observations, where Ordinary Least Squares was used for calibration in
the SIR case. The identifiable parameter combinations (v, 3/k, 55(0)) and p ~ 0 were consistently
captured in most of the tests. Occasional fits resembling the SIRS structure further highlighted the
practical challenges of discriminating between SIR and SIRS dynamics during early epidemic stages.
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This scenario illustrates the results in Section [4.21

Perspectives and possible extensions. The proposed framework provides a constructive foundation that
can be explored to be further extended to more complex epidemic models featuring time-varying parameters,
delays, stochastic effects, or spatial heterogeneity. In particular, an effective strategy could be transforming
these more complex systems into a system that falls within our framework.

We commented in Remark [7] the possibility of extending this framework to piecewise constant parameters
under the knowledge of the time instants when their values change. Further, if parameters evolve continuously,
they can be regarded as additional dynamic states. In particular, if their dynamics are governed by slow or
piecewise constant processes, the model may preserve the structure of the presented framework.

On the other hand, systems of partial differential equations are also widely used for epidemiological mod-
eling to consider, e.g., spatial heterogeneity or age of individuals. These models can be transformed into or
approximated by systems of ODEs using different techniques (|18 {21} 30]).

Third, considering stochastic effects is of paramount importance due to the imperfect nature of data in
physical and biological processes. In [12], authors propose to study the structural identifiability of the noise-
free model along with an ODE system of the statistical moments of the involved stochastic processes, which
again recovers the ODE-based framework.

Finally, for systems featuring delays, either constant or distributed (modeled through integro-differential
equations), one can make use of the so-called Linear Chain Trick to approximate these delayed systems to a
system of ODEs. This is performed by the inclusion of linear chains of new states of the system, leading to
Erlang distributed stay times (see [14} |57, [65]).

Future work should as well explore extensions to scenarios with more realistic features, such as bounded
measurement ranges (e.g., related to interval observers, see [68]).
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