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Microbial interactions are of key importance for the emergent properties of microbiota and ecosystems, playing a
pivotal role in plant health, growth, and productivity. This study explores the interactions between soil fungi and
rhizosphere bacteria, focusing specifically on fungi belonging to the genus Trichoderma and the plant symbiotic
bacterium Sinorhizobium meliloti. Our aim is to provide evidence of the impact of different strains of the same
bacterial species on the fungus. By analysing the effects of four S. meliloti strains on gene expression of
T. velutinum, we revealed the presence of several differentially expressed genes (DEGs) (from 139 to 254 genes)
indicating a remodelling of its metabolism and growth. Remarkably, the majority of the DEGs (~90 %) could not
be assigned to function, indicating the presence of a large genetic “unknown space” potentially involved in
fungal-bacterial interactions. Moreover, results indicated that transcriptomic profiles of T. velutinum significantly
changed with respect to the four S. meliloti strains, suggesting the ability of the fungus to perceive the presence of
specific bacterial strains. Our study emphasizes that strain specificity of microbial interactions could play crucial
role in shaping microbiota functions, and highlights their potential impact on the success of bioinoculants.

1. Introduction Trichoderma species and rhizobia are of particular importance due to

their well-established roles in promoting plant growth and providing

Plant roots are complex ecosystems teeming with life. Within this
dynamic environment, an intricate dialogue occurs among a diverse
community of microorganisms inhabiting this zone, where a multitude
of interactions among plants, microbes and the soil take place (Solomon
et al., 2023), fostering both intra- and inter-kingdom relationships
(Faust and Raes, 2012; Shi et al., 2022). These microbial communities,
collectively referred to as the rhizomicrobiota and consisting of fungi,
unicellular eukaryotes and prokaryotes, are critical for various processes
such as nutrient cycling, plant disease suppression and plant resilience
against environmental stresses (Asghar et al., 2024; Neemisha et al.,
2022; Solomon et al., 2023). The nature of intra- and inter-kingdom
interactions can vary widely, ranging from competition to commen-
salism to mutualism (Faust and Raes, 2012), thus being of key impor-
tance, since they play a pivotal role in determining plant health, growth,
and productivity (Trivedi et al., 2020).

Among microbial communities

inhabiting the rhizosphere,
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protection against pathogens (Berg, 2009; Risoli et al., 2023). Tricho-
derma is a widespread genus of filamentous fungi belonging to the
Hypocreaceae family, that has gained significant attention over the
years. They are involved in diverse functions within the soil ecosystem
(Contreras-Cornejo et al., 2016). For example, they can colonize plant
hosts, whether on the roots or as endophytes and protect them from a
range of soil-borne pathogens, acting as biological control agents (Zhang
et al, 2016). These fungi are also known for their plant
growth-promoting properties, such as the production of specialized
secondary metabolites, i.e. phytohormones, solubilization of nutrients
(Contreras-Cornejo et al., 2016; Manganiello et al., 2018; Vicente et al.,
2022; Vinale and Sivasithamparam, 2020), and the enhancement of
plant defence responses (Chen et al., 2023; Malinich et al., 2019;
Moran-Diez et al., 2015; Risoli et al., 2023), thus holding a significant
interest and role as a biocontrol agent in agricultural practices. Another
model component of the plant-associated microbiome are rhizobia,
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nitrogen-fixing bacteria that can form symbiotic relationships with le-
gumes, supporting legumes in poor soils and enhancing sustainable
agriculture (Babalola et al., 2021).

Within rhizobia associated with crops of agricultural relevance,
Sinorhizobium meliloti is considered one of the most relevant model
species. S. meliloti forms beneficial relationships with legumes such as
Medicago, Melilotus, and Trigonella (Geddes and Oresnik, 2014; Oldroyd,
2013). Within the genus Medicago, alfalfa (M. sativa L.) has a pivotal
importance as forage crop, being cultivated on 35 million ha in more
than 80 countries (Radovic et al., 2009). Research has shown a signifi-
cant genetic and symbiotic diversity among S. meliloti strains isolated
from alfalfa and revealed the importance of the specific combination of
rhizobial and plant genotypes for successful plant growth (Bellabarba
et al., 2021; Epstein et al., 2023; Fagorzi et al., 2021; Riley et al., 2023).

We recently reported evidences of genotype-by-genotype interaction
has also between rhizobia and Trichoderma (Vaccaro et al., 2024). In
particular we found strain-specific combinations of gene expression
pattern of rhizobia in relation to four Trichoderma species. Interestingly,
one of the Trichoderma species tested (T. velutinum) showed contrasting
results with different strains of S. meliloti, strongly suggesting the pres-
ence of a strain-specific dialogue in the recognition between such species
and S. meliloti strains.

These results are shedding new light on how rhizospheric fungi can
influence the interactions between legumes and rhizobia, and are
opening scenarios for interpreting rhizomicrobiota diversity in terms of
strain-specific interaction within the microbial community.

Although the synergistic interactions between these two groups
(rhizobia and Trichoderma) have been explored in recent years through
inoculant formulations (Barbosa et al., 2022; Freitas Chagas Junior
etal., 2021; Marra et al., 2019; Negi et al., 2021; Nirmalkar et al., 2017),
the molecular dialogue is much less understood. The dissection of the
molecular nature and the extent of this cross-talk is ultimately needed
for the development of tailored microbial consortia that work together
to enhance plant growth and resilience (Arif et al., 2020; Vaccaro et al.,
2022).

To start understanding such strain-specific dialogue we evaluated the
presence and the extent of a strain-specific molecular recognition of
S. meliloti strains by transcriptomic analyses of T. velutinum, with the
ultimate goal of identifying evidence of a molecular cross-talk between
these microbes that could indicate a genotype-specific interaction. These
proof-of-principle experiments could allow to start interpreting strain-
specific interaction within the rhizomicrobiota and provide insights
into the factors that determine the success of microbial consortia,
guiding the development of more effective microbial combinations for
agriculture (O’Callaghan et al., 2022).

2. Materials and methods
2.1. Strains and microbiological methods

Four Trichoderma species (T. gamsii MIAE00029, T. tomentosum
MIAEO01053, T. hargianum MIAEQ0047 and T. velutinum MIAE00033),
belonging to the collection “Microorganisms of Interest for Agriculture
and Environment” (MIAE, UMR Agroécologie AgroSup/INRAE/uB
Plant-Microorganism Interactions Department, Dijon, France) (Anees
et al., 2010), were cultured and manipulated as previously reported
(Vaccaro et al., 2024).

Four genomically different S. meliloti strains were used: 1021 (Meade
et al., 1982), AK83 (Roumiantseva et al., 2014), BL225C (Carelli et al.,
2000), and a cis-hybrid strain obtained mobilizing the symbiotic meg-
aplasmid pSymA from BL225C strain to the genomic background of
strain 1021 (Checcucci et al., 2018). The cis-hybrid strain harbours the
chromosome and pSymB chromid of 1021 strain and pSymA mega-
plasmid of strain 1021, resulting in a ca. 30% of 1021 genome
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substituted by BL225C genome. Such cis-hybrid strain allows to test the
effect of the presence of epistatic interactions between genes on the
pSymA megaplasmid and the rest of the genome. The megaplasmid
pSymA is the replicon essential for symbiotic nitrogen fixation with
leguminous plants, containing nodulation (nod) and nitrogen fixation
(nif, fix) genes and the most variable part of the genome among
S. meliloti strains (Barnett et al., 2001; Galardini et al., 2013). Details on
strains genomic relatedness and isolation of 1021, AK83 and BL225C
strains were previously reported (Galardini et al., 2013; Vaccaro et al.,
2024).

2.2. Dual culture assay

The effect of the four S. meliloti strains on four Trichoderma spp.
isolates growth was tested as described in (Jambhulkar et al., 2018) with
some modifications. Bacterial liquid cultures were grown on TY medium
(5 g/L tryptone, 3 g/L yeast extract, 0.4 g/L CaCly) for 48 hours at 30°C
and 130 rpm. After determination of OD at 600 nm, a loop of liquid
culture was streaked on 90 mm diameter TY agar Petri plates. After a
24-hour incubation at 30°C, 5 mm diameter mycelial plugs were placed
at the centre of the plate, at a distance of 3 cm from the bacterial streak.
Plugs were obtained from the edges of fully colonized plates of Tricho-
derma spp. incubated for 5 days at 25°C. Dual cultures were incubated at
25°C and the radial growth of the fungi was measured at 24, 48 and
72 hours. Growth inhibition, expressed as Inhibition Index, was calcu-
lated as I=[1-(A/B)]1x100 where B represents the radial growth of Tri-
choderma in control plates (i.e. without bacterial streak) and A is the
radial growth of Trichoderma, perpendicular to the bacterial streak. For
each strain-fungus combination 9 biological replicates (i.e. independent
plates) were set up.

2.3. Production of rhizobium spent medium

Pre-cultures of S. meliloti strains were grown overnight on TY me-
dium at 30°C, 130 rpm, washed twice with Trichoderma minimal me-
dium (MM) (Penttila et al., 1987) and adjusted to ODggp 0.3 in 10 ml
MM. Cultures were incubated at 30°C, 130 rpm. After 96 hours cultures
were centrifuged at 10000 rpm for 10 minutes. Spent media were
filtered with 0.2 ym Vacuum Filter/Storage Bottle System (Corning™)
and stored at —20°C.

2.4. Spore germination

The effect of the four S. meliloti spent media on T.velutinum spore
germination was tested as described in (Buiatti et al., 1987) with some
modifications, by using hanging drop glass slides. 10* spores/ml were
inoculated in presence of rhizobial spent media, for a final volume of
180 ul. As controls, spores were also inoculated in PDA and MM me-
dium. Glass slide suspensions were sealed in Petri plates, above sterile
filter paper imbued with sterile distilled water to maintain humidity,
and incubated at 26°C. Spore germination was evaluated microscopi-
cally after 24 hours. For each treatment biological triplicates were done.

2.5. RNA sequencing and bioinformatic analysis

T. velutinum MIAE00033 (2.5x1 o* spores/ml) was inoculated into
12-well cell culture plates containing 2 ml of rhizobium spent media.
The plates were shaken in a rotary shaker at 100 rpm and 26°C for 96 h.
The mycelium was harvested by filtration and RNA stabilized by adding
RNA Protect Bacteria Reagent (Qiagen). Samples were immediately
frozen and stored at —80°C for RNA extraction. For each condition, three
independent replicates were performed.

RNA extraction, mRNA library preparation (poly A enrichment) and
sequencing were performed by Novogene (Cambridge, UK) on an
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Illumina NovaSeq X Plus apparatus with a pair-end 150 strategy. Reads
were mapped and annotated on the transcriptome assembly of
T. velutinum CBS 230012 (NCBI Bioprojects PRINA581607 and
PRJINA619608), accessed on the JGI genome portal (https://mycocosm.
jgi.doe.gov/Trivell/Trivell.home.html).

2.6. Statistical analysis

All statistical analyses were conducted in R studio 4.2.0 (Team,
2021). Differentially expressed genes (|logsFC=>2, padj<0.01) were
identified by DESeq2 version 1.36.2 package (Love et al., 2014). Fold
change values of T. velutinum DEGs were used to run a PCA using the
prcomp function and visualized with the autoplot function of ggplot2
package(Wickham, 2009). ANOVA and Fisher exact tests were per-
formed using stats package. Heatmap was obtained using pheatmap
package. GO enrichment analysis was performed with topGO (Alexa and
Rahnenfuhrer, 2024). ggvenn was used to visualise intersecting dataset
of DEGs on the different T. velutinum-S. meliloti spent media
combinations.

2.7. Data availability

RNA-Seq data are deposited at the European Nucleotide Archive
(ENA) under the Project PRJEB75320. Custom scripts used for the an-
alyses can be accessed through the GitHub https://github.com/Iacopo
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Passeri/lacopoPasseri/tree/main.
3. Results and discussion

3.1. Rhizobia and rhizobia spent media influence Trichoderma
phenotypes

The mycelial growth of the four Trichoderma species was signifi-
cantly inhibited (ANOVA) by the four S. meliloti strains after 72 hours
(Table S1). The degree of growth inhibition depended on the Tricho-
derma species and on the associated S. meliloti strain (Fig. 1).
T. harzianum was in general less inhibited compared to the other three
Trichoderma species, with S. meliloti strain 1021 having the weakest ef-
fect on it. Conversely, T. velutinum was generally more inhibited than the
other Trichoderma species. However, the inhibition pattern of each
rhizobial strain was significantly different for each Trichoderma species
(post-hoc Tukey contrasts, p < 0.05), indicating a significant strain-
related variability. Spore germination was also assessed in T. velutinum
when tested with spent media from the four S. meliloti strains, showed no
effect on spore germination (Figure S1).

These results highlighted a rhizobial strain-specific effect on
different Trichoderma species, suggesting an intimate, genotypic level
fungus x rhizobium interaction.

a)l T. gamsii
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Fig. 1. Trichoderma mycelial growth is affected by the presence of rhizobia. a) Inhibition index (%) of Trichoderma spp. growth in presence of S. meliloti. Percentages
were determined after 72 h of incubation. Different letters indicate statistically significant results (p < 0.05).b) Dual culture Petri plates showing the growth of

Trichoderma spp. in presence of S. meliloti.
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3.2. Sinorhizobium meliloti spent media modulate T. velutinum
MIAEQ0033 transcriptome

T. velutinum showed the highest percentages of inhibition by
S. meliloti (Fig. 1a) and has previously demonstrated positive effects on
the growth of the legume host (M. sativa) when combined with S. meliloti
BL225C (Vaccaro et al., 2024). Therefore, investigated the tran-
scriptome of T. velutinum after exposure to spent growth media derived
from the four S. meliloti strains previously assessed. Results showed that
spent media from all four S. meliloti strains either increased (upregu-
lated) and decreased (downregulated) the expression (|log,FC=>2) of
several genes (Table 1 and Supplementary Dataset S1). Overall, the
stimulons due to AK83 and BL225C spent media (i.e. the fraction of both
up and downregulated genes) included from 1.28 % to 1.96 % of total
fungal genes content. A similar portion of DEGs (1.25-1.78 %) was
induced in S. meliloti 1021, while the treatment with the cis-hybrid strain
spent medium resulted in the lowest number of significant DEGs
(1.07-1.23 %). Differences in DEGs among the four treatments were
statistically significant (p-value <0.05, Chi-Square test), suggesting
distinct biological effects of each S. meliloti strains on the T. velutinum
transcriptome.

Within the DEGs, a general enrichment (p < 0.001, Fisher Exact
Test) for genes with unknown function, i.e. not annotated in KOG, was
observed for all treatments (Table 1). This finding suggests that a large
fraction of genes with unknown function in Trichoderma genome could
play a role in microbial interactions. Given that most microbiological
studies so far are performed under pure culture conditions, it is not
surprising that these genes often relate to phenotypes rarely studied in
classical laboratory conditions, such as co-cultures or biotic relation-
ships. Studies have demonstrated that genes with unknown function in
fungi could be involved in a variety of interactions, including symbiosis,
parasitism and saprotrophy. For instance, in mycorrhizal fungi, these
genes might be essential for the establishment and the functioning of the
symbiosis. In the ectomycorrhizal fungus Tuber melanosporum, up to the
13 % of the genes expressed in the developmental stages lack known
homologs (Tisserant et al., 2011). Similarly, in the transcriptome of the
arbuscular mycorrhizal fungus Glomus intraradices, only half of the
protein coding genes can be functionally assigned (Tisserant et al.,
2012). However, in our study, more than 80 % of DEGs have unknown
function, suggesting that most genes with unknown functions are
involved in bacteria-fungus interaction. In accordance, when the ecto-
mycorrhizal fungus Laccaria bicolor is associated with the soil bacteria
Pseudomonas fluorescens, more than 60 % of the DEGs is represented by
hypothetical proteins (Deveau et al., 2007). The co-cultivation experi-
ments of fungi with bacteria showed the induction of fungal silent sec-
ondary metabolite gene clusters with the production of several
specialized secondary metabolites (Netzker et al., 2015). It is plausible
to hypothesize that at least some of the S. meliloti-activated T. velutinum
genes with unknown function may be involved in pathways leading to
the production of secondary metabolites, warranting further

Table 1

Rhizobia spent media induce large transcriptomic changes in T. velutinum.
Number of differentially expressed genes (DEGs, |log,FC=> 2, padj<0.01) after
treatment of T. velutinum MIAE00033 cultures with S. meliloti spent media.
Percentage with respect to total genes in T. velutinum CBS 230012 is reported in
parentheses. Moreover, the number and percentage over up- and downregulated
DEGs (in parentheses) with |logsFC= > 2, p < 0.01 of unknown function genes
is reported.

S. meliloti Upregulated Downregulated
strains

Total (%) Unknown (%)  Total (%) Unknown (%)
1021 231 (1.78) 207 (89.6) 162 (1.25) 146 (90.12)
hybrid 139 (1.07) 126 (90.64) 160 (1.23) 144 (90)
BL225C 241 (1.86) 225 (93.36) 166 (1.28) 149 (89.7)
AKS83 254 (1.96) 230 (90.55) 181 (1.39) 164 (90.6)
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investigations on the T. velutinum-induced metabolome.

Such scenario of genes with unknown function involved in microbial
interactions seem relevant for bacteria as well. For instance, several
genes with unknown function have been reported as upregulated during
infection of animal hosts by the pathogen Pseudomonas aeruginosa,
suggesting their potential role in virulence or stress response mecha-
nisms (Valli et al., 2020) and are differentially expressed under mutu-
alistic symbiosis between nitrogen-fixing rhizobia and leguminous
plants (Fagorzi et al., 2021; Roux et al., 2014).

Shedding light on the importance of such unknown function genes,
provide experimentally testable hypotheses that could deepen our un-
derstanding of the complexity of microbial interactions in natural en-
vironments, including the rhizomicrobiota.

A small number of genes with a functional annotation (KOG) was
regulated (77 and 66 up- and downregulated genes, respectively)
(Supplementary Dataset S1). A total of 33 and 35 KOG terms for up- and
downregulated genes were retrieved, respectively (Table S2). The up-
and downregulated gene lists contained exclusive KOG terms apart from
one term only (KOG0710, Molecular chaperone - small heat-shock
protein Hsp26/Hsp42). The upregulated KOGs included categories
related to stress response (e.g., catalase, cytochrome P450 mono-
oxygenase), cytoskeleton and intracellular trafficking remodelling (e.g.,
Drebrins and related actin binding proteins, Reticulon), membrane
transport, and metabolism modification, potentially favoring anaerobic
fermentation (e.g., Alcohol dehydrogenase, Fumarate reductase). The
downregulated KOGs included genes involved in steroid and terpene
biosynthesis pathways (e.g. Tryptophan synthase, Sterol reductase),
membrane transporters, a possible reduction of beta-oxidation pathway
in the mitochondrion (e.g. Mitochondrial carnitine-acylcarnitine car-
rier), some ribosomal proteins, alpha-amylase and chitinases. These
changes suggest a scenario where rhizobium spent medium might
trigger stress response mechanisms with a switch in the main energetic
metabolism (from aerobic to fermentation), potentially reducing growth
rate, extracellular carbohydrate utilization and variation in biotic in-
teractions due to changes in steroid/terpenoid production. Such results
are in accordance with the observation of T. velutinum growth inhibition
by rhizobia (Fig. 1), but also suggest that the reduction in the expression
of sterol reductase and tryptophan synthase genes (related to the
biosynthesis of biocontrol molecules and auxin production, respec-
tively)could allow T. velutinum to modulate some antifungal activities
and plant-growth promoting properties (Castillo et al., 2016; Macias--
Rodriguez et al., 2020; Vicente et al., 2022. Based on these results, we
cannot exclude that the spent medium, and then the presence of
S. meliloti in soil, might induce some changes in the ecology and/or the
growth of T. velutinum (switches between vegetative growth and
reproductive behaviour and/or antagonistic effects towards other
members of the soil and rhizosphere microbiota).

3.3. T. velutinum transcriptome profiles are specific for single
Sinorhizobium meliloti strains

Considering that the four S. meliloti strains differently affected
T. velutinum growth, we hypothesized that such rhizobium strain-related
phenotypic variation could be mirrored by the type of genes differen-
tially expressed and by their level of differential expression (i.e. type and
logoFC of DEGs) with respect to control. As illustrated in Fig. 2, the
principal component analysis (PCA) of the transcriptome data revealed
that the three biological replicates of each condition are clustered,
suggesting the data’s suitability for further analysis. A clustering of
genes and rhizobial strains based on expression values (|logoFC= >2)
indicated that expression profiles of T. velutinum are differentially
affected by the rhizobial strain used (Fig. 3). When considering the DEGs
with padj< 0.01, a pattern of expression could be identified depending
on the rhizobial spent medium (Figure S2). Overall, a higher number of
DEGs is represented by up-regulated genes (Table 1). Transcriptomes
induced by the S. meliloti 1021 and cis-hybrid strains were the most
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Fig. 2. Rhizobium strain-specific response on the global transcriptome of T. velutinum. Principal Component Analysis (PCA) of transcriptome variation across
treatments with spent media from the four S. meliloti strains. The clustering is based on the similarity of their global gene expression patterns, after variance-
stabilizing transformation (VST) on the raw count data from dds object. The first two components explain, respectively, the 37 % and 23 % of the total variance.
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Fig. 3. Rhizobium strain-specific impact on differentially expressed genes (DEGs) of T. velutinum. a) and b) Principal Component Analysis (PCA) of transcriptome
variation under treatment with spent media from the four S. meliloti strains. The clustering is based on down-regulated DEGs and up-regulated (2-fold change in
expression and padj < 0.01). The first two components explain respectively the 76.97 % and 74.49 % of the total variance.

similar (as expected, due to the genomic similarity between these strains
with ca. 60 % of the genome identical).

The relevance of such rhizobium strain specificity on T. velutinum
transcriptome is highlighted by the results of the principal component
analysis (Fig. 3). Here, the transcriptomes of treatments with the four
strains are strongly separated (the first two principal components
explaining more than 70 % of total variance). S. meliloti 1021 is close to

the cis-hybrid strain, which are separated from BL225C on the first
principal component and from AK83 on the second principal compo-
nent, for both up- and downregulated genes. This pattern, though not in
line with growth inhibition results (Fig. 1), where S. meliloti 1021 and
cis-hybrid do not have similar effects, nicely mirrors previous metab-
olomic analyses on the spent media from S. meliloti 1021, cis-hybrid and
BL225C (Checcucci et al., 2018). These data strongly suggest that the
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strain-specificity of the DEGs pattern in T. velutinum can be directly
related to the genomic similarity of the S. meliloti strains and hence to
their extracellular metabolites. Nonetheless, the fact that S. meliloti 1021
and the cis-hybrid strain spent media do not overlap, reinforces previous
evidence of epistatic interaction between the genomic element involved
in plant symbiosis (the pSymA megaplasmid) and the rest of the genome
(chromosome and pSymB chromid). Genomic rearrangement in such
rhizobial genome could not only give rise to marked differences in
symbiotic phenotypes (as already shown, Checcucci et al., 2018), but
also to different interactions with other members of the soil microbiota
such as Trichoderma spp. In the previous study, where we analysed the
transcriptome of the same S. meliloti strains using spent media from
Trichoderma spp. (Vaccaro et al., 2024), we observed similar evidence,
the transcriptome of S. meliloti 1021 and cis-hybrid strains being
different under treatment with the spent medium from the same
Trichoderma.

Collectively, this evidence supports the hypothesis that S. meliloti and
Trichoderma spp. can recognize each other’s presence at the single
genotypic level, possibly giving rise to cross-talk and coordinated
changes in their physiology.

This strain-specific recognition, evidenced by the high specificity of
the T. velutinum transcriptome to the S. meliloti strains, is further
confirmed by the analysis of shared and unique DEGs. Indeed, most of
the DEGs are unique to each rhizobium strain (Fig. 4). Interestingly, also
the spent medium from the cis-hybrid strain induced specific genes (12
up regulated, 74 down regulated), suggesting that the sole change of the
symbiotic megaplasmid in S. meliloti can strongly affect S. meliloti-fungal
interaction, even though they are in principle not related to the estab-
lishment of rhizobia symbiosis with host plant. Concerning the shared
genes, 45 upregulated DEGs were retrieved, including ABC-2 type
transporter, 17 beta-hydroxysteroid dehydrogenase type 3, cytochrome
P450, catalase and a predicted methyltransferase, suggesting that
T. velutinum is responding to rhizobial spent media by enhancing its
capabilities for detoxification, stress response, and potentially altering
its metabolic pathways. The 27 downregulated genes, including ferric
reductase, hydroxymethylglutaryl-CoA synthase and mitochondrial
carnitine-acylcarnitine carrier protein, suggest a metabolic adjustment
of T. velutinum in response to rhizobial spent media reprogramming of
fungal metabolism, likely driven by the specific nutrient and chemical
composition of the rhizobial environment.

To better investigate the functions possibly linked to strain-specific
patterns of DEGs, an enrichment analysis of Gene Ontology (GO)
terms was performed on both upregulated and downregulated DEGs

a) Downregulated DEGs
BL225C 1021
AK83 o 68 Hybrid
(20.4%) (15.6%)
18
- (4.1%) 74
(15.6%) (eos)
' 13
(3.0%)
10
(2.3%)
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(Fig. 5, Supplementary Dataset S2). Among the enriched terms that
shared similar significance patterns across the conditions, two groups
could be identified: one related to anabolic processes and stress re-
sponses to reactive oxygen species (ROS), and the other related to
cellular homeostasis and responses to environmental stresses, with a
prevalence of catabolic processes.

Regarding the common upregulated genes, all four treatments acti-
vated oxidative stress responses, particularly those related to hydrogen
peroxide and ROS management, indicating that oxidative stress is a
central feature of their effects. Among the common downregulated
DEGs, the spent media from S. meliloti 1021, AK83, and BL225C pri-
marily impacted amino acid metabolism and biosynthesis, particularly
involving the glutamine family of amino acids, such as glutamate and
arginine. This consistent GO enrichment pattern suggests that these
treatments reduce cellular biosynthetic and metabolic activities,
potentially by affecting shared pathways related to amino acid meta-
bolism. Each rhizobial strain also induced unique Trichoderma pathway
activations.

For S. meliloti 1021, a unique enrichment in GO terms related to
xenobiotic processes (e.g., xenobiotic transport and xenobiotic trans-
membrane transport) and detoxification was observed, along with terms
related to inorganic substances and oxygen-containing compounds. This
possibly indicates that this treatment involves exposure to substances
that require detoxification and xenobiotic handling, which were not
observed in the other treatments. The S. meliloti AK83 spent medium was
uniquely enriched for fatty acid metabolic processes, potentially point-
ing to differences in energy demands or stress adaptation. The S. meliloti
BL225C spent medium uniquely downregulated genes involved in
dicarboxylic acid metabolic processes and the biosynthesis of organic
and carboxylic acids, suggesting a broader impact on cellular
metabolism.

Regarding the upregulated DEGs, the S. meliloti BL225C spent me-
dium was responsible for the unique enrichment of terms related to actin
filament and cytoskeleton organization, indicating potential structural
changes and responses to specific chemical stressors. The S. meliloti cis-
hybrid strain spent medium displayed a distinct GO enrichment profile
related to water homeostasis, glycerol metabolism, and cell volume
regulation. This suggests that the hybrid strain secretome could influ-
ence cellular processes involved in osmoregulation and maintaining
cellular hydration, rather than metabolic pathways. Moreover, the strain
showed unique GO enrichment for responses to toxic substances,
oxidative stress, and cellular responses to oxidative stress.

These results, for both up- and downregulated GO terms, further

b) Upregulated DEGs
BL225C 1021
AK83 100 62 Hybrid
(22.1%) (13.7%)
39
(8.6%)
46 12
(10.2%) 32 (2.7%)
(7.1%)
24
(5.3%)

Fig. 4. Spent media from different S. meliloti strains elicit unique transcriptomes in T. velutinum. Venn diagrams illustrating the distribution of DEGs across con-
ditions. Diagram a) represents upregulated DEGs, while diagram b) depicts downregulated DEGs. Overlapping regions in each diagram indicate DEGs shared between
conditions, and distinct sections highlight unique DEGs for each condition. Percentages shown in the diagrams reflect the proportion of DEGs relative to the total

number of DEGs in the entire dataset.
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Fig. 5. GO enrichment pathway analysis of T. velutinum differentially expressed genes (DEGs, 2-fold change in expression and padj < 0.01) induced by rhizobia spent
media. For each panel, the horizontal axis represents the conditions and the vertical axis the biological processes names enriched by differential genes. The size of the
bubble indicates the number of differential genes contained. The colour of the bubble also corresponds to the degree of significance. Blue corresponds to smaller the
p-value, red is for higher p-values. The hierarchical clustering is based on grouping GO terms by their similarity in significance across conditions, using a distance
metric and average linkage, indicating which biological processes or molecular functions may be co-regulated or similarly impacted by experimental treatments.

emphasize previous evidence that genes on the S. meliloti pSymA meg-
aplasmid impact not only symbiosis with the host plant, but also in-
teractions among members of the rhizomicrobiota.

4. Conclusions

The ability of soil and rhizosphere microbiota components to interact
and communicate with each other is a key aspect of our understanding of
the microbial world and has large impacts over the functionality and
ecosystem services provided by such biotic communities. For example,
fungal-bacterial interactions play a crucial role in supporting plant
productivity and maintaining the structure and function of soil ecosys-
tems (Trivedi et al., 2020). Therefore, investigating and leveraging these
complex interactions is pivotal for mechanistic understanding of the
microbiota and provides the possibility to predict the success of newly
developed microbial inoculants in agriculture (Poppeliers et al., 2023).

In this study, we revealed the presence of intricate strain-specific
interactions between the fungus T. velutinum and the plant symbiotic
bacterium S. meliloti. The rhizobia strains exhibited varying degrees of
inhibitory effects on the mycelial growth of four Trichoderma species,
mirroring previous findings on S. meliloti growth under the presence of

Trichoderma spp. (Vaccaro et al., 2024). When one of the Trichoderma
species was analysed for its transcriptomic response to rhizobia presence
(simulated by using rhizobia spent media), we observed the presence of
many highly (|logsFC= >2) differentially expressed genes (DEGs). Most
of the DEGs lacked functional annotation (unknown function genes),
suggesting that the biotic interactions we are reproducing under this
experimental condition may involve novel genes not typically studied
(and consequently functionally annotated) under the classical pure
culture settings. However, for functionally annotated genes (KOG
functional analysis), we found a wide spectrum of functions from
metabolic processes (e.g. steroid and terpene biosynthesis, membrane
transport, carbohydrate utilization) to stress responses and growth (e.g.
cytoskeleton remodelling), which could possibly make sense over the
biotic interaction between rhizobia and Trichoderma. Actually, when
S. meliloti strains were treated with Trichoderma spp. spent media
(Vaccaro et al., 2024), plant-microbe interaction phenotypes of rhizo-
bium were affected differentially including increased indoleacetic acid
(auxin) production. Here we found that S. meliloti spent media reduce
the expression of the tryptophan synthase gene, which could lead to
speculate about a cross-talk between S. meliloti strains and Trichoderma
spp. to synergistically modulate the overall auxin production in the
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rhizosphere. Clearly, this hypothesis needs experimental testing under,
possibly, soil conditions. However, an indication of synergism toward
plant growth between T. velutinum and S. meliloti was previously re-
ported (Vaccaro et al., 2024), as well as between P. fluorescens and
L. bicolor (Deveau et al., 2007), and Candida albicans-Pseudomonas aer-
uginosa (De Sordi and Miihlschlegel, 2009).

Surprisingly, each S. meliloti strain spent medium was able to induce
unique and significant changes in the gene expression patterns (and
Gene Ontology functional enrichment) of T. velutinum., This points up
that, despite belonging to the same species, the genetic variation among
strains from the same rhizobial species can profoundly and differentially
influence their fungal partners and possibly their ecological dynamics.
Indeed, we detected wide range of variability even in presence of highly
genomically similar S. meliloti strains. We could hypothesize that such
variability creates the basis for a network of strains (fungal and micro-
bial) with balancing selection effects in the rhizomicrobiota, giving rise
to the well-known presence of a high microbial diversity in the plant
rhizosphere, even for members of the very same species (Kumar et al.,
2015).

Moreover, the present results highlight the importance of consid-
ering microbial specificity when developing bioinoculants, as a one-size-
fits-all approach may overlook crucial interactions that influence mi-
crobial efficacy and plant health (Yadav and Yadav, 2024). It is worth
noting that the implications of this research extend beyond under-
standing rhizobium-fungal interactions: it also questions the existing
methods of developing bioinoculants, raising new issues. The variability
observed in the elicited transcriptomes from the different
fungal-rhizobial combinations, reinforces the evidence for the relevance
of genotype-by-genotype interactions on consortia or synthetic com-
munities’ performances and need to develop tailor-made bioinoculants.
Additionally, given the large fraction of not yet identified genes, future
research should focus on elucidating the roles of these unknown func-
tions, in order to dissect their contribution to microbial interactions and
ecosystem dynamics (Rappsilber, 2024). Using advanced genomics,
metabolomics and co-culture experiments we could possibly clarify their
roles in natural environments. Additionally, by revealing how specific
microbial strains affect fungal behaviour at molecular level, our work
can offer some models and data to help design targeted and effective
bioinoculants. Investigating microbe-microbe interactions and how
these interactions play out in field conditions will be critical for trans-
lating laboratory findings on potential novel microbial bioinoculants
into practical agricultural solutions (Canfora et al., 2021; Massa et al.,
2022).

In summary, our work suggests that a deeper understanding of the
molecular basis of microbial interactions is essential for advancing
sustainable agriculture. Exploring this fascinating and complex area of
study could reveal secrets of microbial communication, potentially
leading to more effective and environmentally friendly farming
practices.
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