A. Scott, D. Francis, L. Davies, P. Ponikowski, A. Coats et al., Contribution of skeletal muscle ???ergoreceptors??? in the human leg to respiratory control in chronic heart failure, The Journal of Physiology, vol.53, issue.3, pp.529863-870, 2000.
DOI : 10.1111/j.1469-7793.2000.00863.x

M. Leikis, M. Mckenna, A. Petersen, A. Kent, K. Murphy et al., Exercise Performance Falls over Time in Patients with Chronic Kidney Disease Despite Maintenance of Hemoglobin Concentration, Clinical Journal of the American Society of Nephrology, vol.1, issue.3, pp.488-495, 2006.
DOI : 10.2215/CJN.01501005

P. Mccullough and N. Lepor, The deadly triangle of anemia, renal insufficiency, and cardiovascular disease: implications for prognosis and treatment, Rev Cardiovasc Med, vol.6, issue.1, pp.1-10, 2005.

A. Palazzuoli, M. Gallotta, F. Iovine, R. Nuti, and D. Silverberg, Anaemia in heart failure: a common interaction with renal insufficiency called the cardio-renal anaemia syndrome, International Journal of Clinical Practice, vol.50, issue.Suppl. F, pp.281-286, 2008.
DOI : 10.1111/j.1742-1241.2007.01650.x

K. Smith, A. Bleyer, W. Little, and D. Sane, The cardiovascular effects of erythropoietin, Cardiovascular Research, vol.59, issue.3, pp.538-548, 2003.
DOI : 10.1016/S0008-6363(03)00468-1

D. Silverberg, The role of erythropoiesis stimulating agents and intravenous (IV) iron in the cardio renal anemia syndrome, Heart Failure Reviews, vol.296, issue.Suppl 1, pp.609-614, 2010.
DOI : 10.1007/s10741-010-9194-2

C. Juel, J. Thomsen, R. Rentsch, and C. Lundby, Effects of prolonged recombinant human erythropoietin administration on muscle membrane transport systems and metabolic marker enzymes, European Journal of Applied Physiology, vol.101, issue.1, pp.41-44, 2007.
DOI : 10.1007/s00421-007-0567-8

N. Eliopoulos, R. Gagnon, M. Francois, and J. Galipeau, Erythropoietin Delivery by Genetically Engineered Bone Marrow Stromal Cells for Correction of Anemia in Mice with Chronic Renal Failure, Journal of the American Society of Nephrology, vol.17, issue.6, pp.1576-1584, 2006.
DOI : 10.1681/ASN.2005101035

J. Thomsen, R. Rentsch, P. Robach, J. Calbet, R. Boushel et al., Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic capacity, European Journal of Applied Physiology, vol.10, issue.4, pp.481-486, 2007.
DOI : 10.1007/s00421-007-0522-8

D. Furlani, C. Klopsch, R. Gabel, M. Ugurlucan, E. Pittermann et al., Intracardiac Erythropoietin Injection Reveals Antiinflammatory Potential and Improved Cardiac Functions Detected by Forced Swim Test, Transplantation Proceedings, vol.40, issue.4, pp.962-966, 2008.
DOI : 10.1016/j.transproceed.2008.03.033

C. Noguchi, L. Wang, H. Rogers, R. Teng, and Y. Jia, Survival and proliferative roles of erythropoietin beyond the erythroid lineage, Expert Reviews in Molecular Medicine, vol.4, p.36, 2008.
DOI : 10.1159/000105473

H. Rundqvist, E. Rullman, C. Sundberg, H. Fischer, K. Eisleitner et al., Activation of the erythropoietin receptor in human skeletal muscle, European Journal of Endocrinology, vol.161, issue.3, pp.427-434, 2009.
DOI : 10.1530/EJE-09-0342

D. Silverberg, D. Wexler, and L. A. , The Role of Anemia in the Progression of Congestive Heart Failure: Is There a Place for Erythropoietin and Intravenous Iron?, Transfusion Alternatives in Transfusion Medicine, vol.347, issue.1, pp.749-761, 2004.
DOI : 10.1111/j.1778-428X.2005.tb00121.x

M. Ogilvie, X. Yu, V. Nicolas-metral, S. Pulido, C. Liu et al., Erythropoietin Stimulates Proliferation and Interferes with Differentiation of Myoblasts, Journal of Biological Chemistry, vol.275, issue.50, pp.27539754-39761, 2000.
DOI : 10.1074/jbc.M004999200

I. Stuckmann, S. Evans, and A. Lassar, Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation, Developmental Biology, vol.255, issue.2, pp.334-349, 2003.
DOI : 10.1016/S0012-1606(02)00078-7

URL : http://doi.org/10.1016/s0012-1606(02)00078-7

S. Erbayraktar, O. Yilmaz, N. Gokmen, and M. Brines, Erythropoietin is a multifunctional tissue-protective cytokine, Curr Hematol Rep, vol.2, issue.6, pp.465-470, 2003.

M. Van-der-kooij, F. Groenendaal, A. Kavelaars, C. Heijnen, and F. Van-bel, Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia, Brain Research Reviews, vol.59, issue.1, pp.22-33, 2008.
DOI : 10.1016/j.brainresrev.2008.04.007

M. Schiffer, J. Park, I. Tossidou, J. Bartels, N. Shushakova et al., Erythropoietin Prevents Diabetes-Induced Podocyte Damage, Kidney and Blood Pressure Research, vol.31, issue.6, pp.31411-415, 2008.
DOI : 10.1159/000186368

I. Ahmet, H. Tae, M. Juhaszova, D. Riordon, K. Boheler et al., A small non-erythropoietic helix B surface peptide based upon erythropoietin structure is cardioprotective against ischemic myocardial damage, Mol Med, vol.17, pp.3-4194, 2010.

B. Xu, G. Dong, H. Liu, Y. Wang, H. Wu et al., Recombinant human erythropoietin pretreatment attenuates myocardial infarct size: a possible mechanism involves heat shock Protein 70 and attenuation of nuclear factor-kappaB, Ann Clin Lab Sci, vol.35, issue.2, pp.161-168, 2005.

L. Ye, X. Du, J. Xia, and P. J. , Effects of rHu-EPO on myocyte apoptosis and cardiac function following acute myocardial infarction in rats

E. Lipsic, P. Van-der-meer, R. Henning, A. Suurmeijer, K. Boddeus et al., Timing of Erythropoietin Treatment for Cardioprotection in Ischemia/Reperfusion, Journal of Cardiovascular Pharmacology, vol.44, issue.4, pp.473-479, 2004.
DOI : 10.1097/01.fjc.0000140209.04675.c3

P. Rafiee, Y. Shi, J. Su, K. Pritchard, . Jr et al., Erythropoietin protects the infant heart against ischemia?reperfusion injury by triggering multiple signaling pathways, Basic Research in Cardiology, vol.286, issue.3, pp.187-197, 2005.
DOI : 10.1007/s00395-004-0508-1

S. Chua, S. Leu, Y. Lin, J. Sheu, C. Sun et al., Early Erythropoietin Therapy Attenuates Remodeling and Preserves Function of Left Ventricle in Porcine Myocardial Infarction, Journal of Investigative Medicine, vol.59, issue.3, pp.59574-586, 2011.
DOI : 10.2310/JIM.0b013e31820877dc

M. Joyeux-faure, D. Godin-ribuot, and C. Ribuot, Erythropoietin and myocardial protection: what's new? Fundam Clin Pharmacol, pp.439-446, 2005.
DOI : 10.1111/j.1472-8206.2005.00347.x

E. Lipsic, B. Westenbrink, P. Van-der-meer, P. Van-der-harst, A. Voors et al., Low-dose erythropoietin improves cardiac function in experimental heart failure without increasing haematocrit, European Journal of Heart Failure, vol.28, issue.1, pp.22-29, 2008.
DOI : 10.1016/j.ejheart.2007.10.008

O. Vidalin, M. Muslmani, C. Estienne, H. Echchakir, and A. Abina, In vivo target validation using gene invalidation, RNA interference and protein functional knockout models: it is the time to combine, Current Opinion in Pharmacology, vol.9, issue.5, pp.669-676, 2009.
DOI : 10.1016/j.coph.2009.06.017

M. Hoydal, U. Wisloff, O. Kemi, and O. Ellingsen, Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training, European Journal of Cardiovascular Prevention & Rehabilitation, vol.66, issue.6, pp.753-760, 2007.
DOI : 10.1097/HJR.0b013e3281eacef1

C. Taylor, G. Maloiy, E. Weibel, V. Langman, J. Kamau et al., Design of the mammalian respiratory system. III. Scaling maximum aerobic capacity to body mass: Wild and domestic mammals, Respiration Physiology, vol.44, issue.1, pp.25-37, 1981.
DOI : 10.1016/0034-5687(81)90075-X

V. Billat, E. Mouisel, N. Roblot, and J. Melki, Inter- and intrastrain variation in mouse critical running speed, Journal of Applied Physiology, vol.98, issue.4, pp.1258-1263, 2005.
DOI : 10.1152/japplphysiol.00991.2004

L. Brigand, K. Russell, R. Moreilhon, C. Rouillard, J. Jost et al., An open-access long oligonucleotide microarray resource for analysis of the human and mouse transcriptomes, Nucleic Acids Research, vol.34, issue.12, pp.34-87, 2006.
DOI : 10.1093/nar/gkl485

URL : https://hal.archives-ouvertes.fr/hal-00088266

Y. Benjamin and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Stat Soc, vol.57, pp.289-300, 1995.

E. Barrey, E. Mucher, C. Robert, F. Amiot, and X. Gidrol, Gene expression profiling in blood cells of endurance horses completing competition or disqualified due to metabolic disorder, Equine Veterinary Journal, vol.34, issue.Suppl. 34, pp.43-49, 2006.
DOI : 10.1111/j.2042-3306.2006.tb05511.x

D. Eyles, L. Almeras, P. Benech, A. Patatian, A. Mackay-sim et al., Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain, The Journal of Steroid Biochemistry and Molecular Biology, vol.103, issue.3-5, pp.3-5, 2007.
DOI : 10.1016/j.jsbmb.2006.12.096

URL : https://hal.archives-ouvertes.fr/hal-00320753

B. Zeigler, J. Vajdos, W. Qin, L. Loverro, and K. Niss, A mouse model for an erythropoietin-deficiency anemia, Disease Models & Mechanisms, vol.3, issue.11-12, pp.11-12763
DOI : 10.1242/dmm.004788

URL : http://doi.org/10.1242/dmm.004788

H. Wu, U. Klingmuller, P. Besmer, and H. Lodish, Interaction of the erythropoietin and stem-cell-factor receptors, Nature, vol.377, issue.6546, pp.242-246, 1995.
DOI : 10.1038/377242a0

B. Schuler, M. Arras, S. Keller, A. Rettich, C. Lundby et al., Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice, Proceedings of the National Academy of Sciences, vol.107, issue.1, pp.419-423, 2010.
DOI : 10.1073/pnas.0912924107

L. Hagstrom, O. Agbulut, R. El-hasnaoui-saadani, D. Marchant, F. Favret et al., Epo Is Relevant Neither for Microvascular Formation Nor for the New Formation and Maintenance of Mice Skeletal Muscle Fibres in Both Normoxia and Hypoxia, Journal of Biomedicine and Biotechnology, vol.63, issue.17, p.137817, 2010.
DOI : 10.1080/08977190802105909

W. Schmidt and N. Prommer, Impact of alterations in total hemoglobin mass on VO 2max, Exerc Sport Sci Rev, vol.2010, issue.382, pp.68-75

K. Wagner, D. Katschinski, J. Hasegawa, D. Schumacher, B. Meller et al., Chronic inborn erythrocytosis leads to cardiac dysfunction and premature death in mice overexpressing erythropoietin, Blood, vol.97, issue.2, pp.536-542, 2001.
DOI : 10.1182/blood.V97.2.536

K. Heinicke, O. Baum, O. Ogunshola, J. Vogel, T. Stallmach et al., Excessive erythrocytosis in adult mice overexpressing erythropoietin leads to hepatic, renal, neuronal, and muscular degeneration, AJP: Regulatory, Integrative and Comparative Physiology, vol.291, issue.4, pp.947-956, 2006.
DOI : 10.1152/ajpregu.00152.2006

G. Semenza, Homeostasis by Hypoxia-Inducible Factor 1, Annual Review of Cell and Developmental Biology, vol.15, issue.1, pp.551-578, 1999.
DOI : 10.1146/annurev.cellbio.15.1.551

H. Hoppeler, M. Vogt, E. Weibel, and M. Fluck, Response of Skeletal Muscle Mitochondria to Hypoxia, Experimental Physiology, vol.88, issue.1, pp.109-119, 2003.
DOI : 10.1113/eph8802513

S. Archer and E. Michelakis, The Mechanism(s) of Hypoxic Pulmonary Vasoconstriction: Potassium Channels, Redox O2 Sensors, and Controversies, Physiology, vol.17, issue.4, pp.131-137, 2002.
DOI : 10.1152/nips.01388.2002

V. Hoek, T. Becker, L. Shao, Z. Li, C. Schumacker et al., Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes, J Biol Chem, issue.29, pp.27318092-18098, 1998.

E. Barrey, E. Mucher, N. Jeansoule, T. Larcher, L. Guigand et al., Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions, BMC Veterinary Research, vol.5, issue.1, p.29, 2009.
DOI : 10.1186/1746-6148-5-29

URL : https://hal.archives-ouvertes.fr/inserm-00663617

T. Kietzmann, J. Fandrey, and H. Acker, Oxygen Radicals as Messengers in Oxygen-Dependent Gene Expression, News Physiol Sci, vol.15, pp.202-208, 2000.

D. Burger, M. Lei, N. Geoghegan-morphet, X. Lu, A. Xenocostas et al., Erythropoietin protects cardiomyocytes from apoptosis via up-regulation of endothelial nitric oxide synthase, Cardiovascular Research, vol.72, issue.1, pp.51-59, 2006.
DOI : 10.1016/j.cardiores.2006.06.026

H. Razavi, J. Hamilton, and Q. Feng, Modulation of apoptosis by nitric oxide: implications in myocardial ischemia and heart failure, Pharmacology & Therapeutics, vol.106, issue.2, pp.147-162, 2005.
DOI : 10.1016/j.pharmthera.2004.11.006

D. Glass, PI3 Kinase Regulation of Skeletal Muscle Hypertrophy and Atrophy, Curr Top Microbiol Immunol, vol.346, pp.267-278, 2010.
DOI : 10.1007/82_2010_78

B. Christensen, C. Lundby, N. Jessen, T. Nielsen, P. Vestergaard et al., Evaluation of Functional Erythropoietin Receptor Status in Skeletal Muscle In Vivo: Acute and Prolonged Studies in Healthy Human Subjects, PLoS ONE, vol.4, issue.2, p.31857
DOI : 10.1371/journal.pone.0031857.t002

J. Zhou, T. Schmid, R. Frank, and B. Brune, PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHLindependent degradation, J Biol Chem, issue.14, pp.27913506-13513, 2004.
DOI : 10.1074/jbc.m310164200

A. Santhanam, D. Uscio, L. Katusic, and Z. , Cardiovascular Effects of Erythropoietin, Adv Pharmacol, vol.60, pp.257-285, 2010.
DOI : 10.1016/B978-0-12-385061-4.00009-X

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907121

S. Powers, E. Talbert, and P. Adhihetty, Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle, The Journal of Physiology, vol.31, issue.9, pp.2129-2138, 2011.
DOI : 10.1113/jphysiol.2010.201327

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098692

A. Smuder, A. Kavazis, M. Hudson, W. Nelson, and S. Powers, Oxidation enhances myofibrillar protein degradation via calpain and caspase-3, Free Radical Biology and Medicine, vol.49, issue.7
DOI : 10.1016/j.freeradbiomed.2010.06.025

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2930052

N. Suzuki, O. Ohneda, S. Takahashi, M. Higuchi, H. Mukai et al., Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality, Blood, vol.100, issue.7, pp.2279-2288, 2002.
DOI : 10.1182/blood-2002-01-0124