R. Esposito, S. Klapholz, J. Stratern, E. Jones, and J. Broach, Meiosis and ascospore development, In Mol Biol Yeast Saccharomyces Life Cyle Inherit Cold Spring Harbor, vol.11, issue.1981, pp.213-287

K. Rabitsch, A. Tóth, M. Gálová, A. Schleiffer, G. Schaffner et al., A screen for genes required for meiosis and spore formation based on whole-genome expression, Current Biology, vol.11, issue.13, pp.1001-1009, 2001.
DOI : 10.1016/S0960-9822(01)00274-3

A. Deutschbauer, R. Williams, A. Chu, and R. Davis, Nonlinear partial differential equations and applications: Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences, vol.99, issue.24, pp.15530-15535, 2002.
DOI : 10.1073/pnas.202604399

A. Enyenihi and W. Saunders, Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae, Genetics, vol.163, pp.47-54, 2003.

S. Chu, J. Derisi, M. Eisen, J. Mulholland, D. Botstein et al., The Transcriptional Program of Sporulation in Budding Yeast, Science, vol.282, issue.5389, pp.699-705, 1998.
DOI : 10.1126/science.282.5389.699

M. Primig, R. Williams, E. Winzeler, G. Tevzadze, A. Conway et al., The core meiotic transcriptome in budding yeasts, Nat Genet, vol.26, pp.415-423, 2000.

A. Lardenois, Y. Liu, T. Walther, F. Chalmel, B. Evrard et al., Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6, Proceedings of the National Academy of Sciences, vol.108, issue.3, pp.1058-1063, 2011.
DOI : 10.1073/pnas.1016459108

URL : https://hal.archives-ouvertes.fr/hal-00682830

K. Guisbert, K. Zhang, Y. Flatow, J. Hurtado, S. Staley et al., Meiosis-induced alterations in transcript architecture and noncoding RNA expression in S. cerevisiae, RNA, vol.18, issue.6, pp.1142-1153, 2012.
DOI : 10.1261/rna.030510.111

Y. Kassir, D. Granot, and G. Simchen, IME1, a positive regulator gene of meiosis in S. cerevisiae, Cell, vol.52, issue.6, pp.853-862, 1988.
DOI : 10.1016/0092-8674(88)90427-8

C. Steber and R. Esposito, UME6 is a central component of a developmental regulatory switch controlling meiosis-specific gene expression., Proceedings of the National Academy of Sciences, vol.92, issue.26, pp.12490-12494, 1995.
DOI : 10.1073/pnas.92.26.12490

J. Xie, M. Pierce, V. Gailus-durner, M. Wagner, E. Winter et al., Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae, The EMBO Journal, vol.18, issue.22, pp.6448-6454, 1999.
DOI : 10.1093/emboj/18.22.6448

S. Honigberg and K. Purnapatre, Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast, Journal of Cell Science, vol.116, issue.11, pp.2137-2147, 2003.
DOI : 10.1242/jcs.00460

E. Winter, The Sum1/Ndt80 Transcriptional Switch and Commitment to Meiosis in Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, vol.76, issue.1, pp.1-15, 2012.
DOI : 10.1128/MMBR.05010-11

G. Brar, M. Yassour, N. Friedman, A. Regev, N. Ingolia et al., High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling, Science, vol.335, issue.6068, pp.552-557, 2012.
DOI : 10.1126/science.1215110

M. Esposito, R. Esposito, M. Arnaud, and H. Halvorson, Acetate utilization and macromolecular synthesis during sporulation of yeast, J Bacteriol, vol.100, pp.180-186, 1969.

S. Kane and R. Roth, Carbohydrate metabolism during ascospore development in yeast, J Bacteriol, vol.118, pp.8-14, 1974.

P. Briza, G. Winkler, H. Kalchhauser, and M. Breitenbach, Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure, J Biol Chem, vol.261, pp.4288-4294, 1986.

A. Neiman, Ascospore Formation in the Yeast Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, vol.69, issue.4, pp.565-584, 2005.
DOI : 10.1128/MMBR.69.4.565-584.2005

J. Dickinson, I. Dawes, A. Boyd, and R. Baxter, 13C NMR studies of acetate metabolism during sporulation of Saccharomyces cerevisiae., Proceedings of the National Academy of Sciences, vol.80, issue.19, pp.5847-5851, 1983.
DOI : 10.1073/pnas.80.19.5847

A. Jambhekar and A. Amon, Control of Meiosis by Respiration, Current Biology, vol.18, issue.13, pp.969-975, 2008.
DOI : 10.1016/j.cub.2008.05.047

M. Nickas, A. Diamond, M. Yang, and A. Neiman, Regulation of Spindle Pole Function by an Intermediary Metabolite, Molecular Biology of the Cell, vol.15, issue.6, pp.2606-2616, 2004.
DOI : 10.1091/mbc.E04-02-0128

Z. Chen, E. Odstrcil, B. Tu, and S. Mcknight, Restriction of DNA Replication to the Reductive Phase of the Metabolic Cycle Protects Genome Integrity, Science, vol.316, issue.5833, pp.1916-1919, 2007.
DOI : 10.1126/science.1140958

D. Ray and P. Ye, Characterization of the Metabolic Requirements in Yeast Meiosis, PLoS ONE, vol.99, issue.5, p.63707, 2013.
DOI : 10.1371/journal.pone.0063707.s011

K. Macisaac, T. Wang, D. Gordon, D. Gifford, G. Stormo et al., An improved map of conserved regulatory sites for Saccharomyces cerevisiae, BMC Bioinformatics, vol.7, issue.1, p.113, 2006.
DOI : 10.1186/1471-2105-7-113

R. Marion, A. Regev, E. Segal, Y. Barash, D. Koller et al., Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression, Proceedings of the National Academy of Sciences, vol.101, issue.40, pp.14315-14322, 2004.
DOI : 10.1073/pnas.0405353101

D. Rudra, Y. Zhao, and J. Warner, Central role of Ifh1p???Fhl1p interaction in the synthesis of yeast ribosomal proteins, The EMBO Journal, vol.19, issue.3, pp.533-542, 2005.
DOI : 10.1128/MCB.24.20.9152-9164.2004

M. Vignais, L. Woudt, G. Wassenaar, W. Mager, A. Sentenac et al., Specific binding of TUF factor to upstream activation sites of yeast ribosomal protein genes, EMBO J, vol.6, pp.1451-1457, 1987.

A. Chambers, E. Packham, and I. Graham, Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae), Current Genetics, vol.56, issue.1, pp.1-9, 1995.
DOI : 10.1007/BF00313187

A. Hinnebusch and G. Fink, Positive regulation in the general amino acid control of Saccharomyces cerevisiae., Proceedings of the National Academy of Sciences, vol.80, issue.17, pp.5374-5378, 1983.
DOI : 10.1073/pnas.80.17.5374

L. Li, D. Bagley, D. Ward, and J. Kaplan, Yap5 Is an Iron-Responsive Transcriptional Activator That Regulates Vacuolar Iron Storage in Yeast, Molecular and Cellular Biology, vol.28, issue.4, pp.1326-1337, 2008.
DOI : 10.1128/MCB.01219-07

M. Kasten and D. Stillman, Identification of the Saccharomyces cerevisiae genes STB1 ?? STB5 encoding Sin3p binding proteins, Molecular and General Genetics MGG, vol.256, issue.4, pp.376-386, 1997.
DOI : 10.1007/s004380050581

S. Fendt, A. Oliveira, S. Christen, P. Picotti, R. Dechant et al., Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast, Molecular Systems Biology, vol.124, p.432, 2010.
DOI : 10.1186/1471-2156-2-5

K. Benjamin, C. Zhang, K. Shokat, and I. Herskowitz, Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2, Genes & Development, vol.17, issue.12, pp.1524-1539, 2003.
DOI : 10.1101/gad.1101503

A. Mitchell, S. Driscoll, and H. Smith, Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.10, issue.5, pp.2104-2110, 1990.
DOI : 10.1128/MCB.10.5.2104

D. Bishop, D. Park, L. Xu, and N. Kleckner, DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression, Cell, vol.69, issue.3, pp.439-456, 1992.
DOI : 10.1016/0092-8674(92)90446-J

L. Krisak, R. Strich, R. Winters, J. Hall, M. Mallory et al., SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae., Genes & Development, vol.8, issue.18, pp.2151-2161, 1994.
DOI : 10.1101/gad.8.18.2151

I. Yamashita and S. Fukui, Transcriptional control of the sporulation-specific glucoamylase gene in the yeast Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.5, issue.11, pp.3069-3073, 1985.
DOI : 10.1128/MCB.5.11.3069

J. Thevelein and S. Hohmann, Trehalose synthase: guard to the gate of glycolysis in yeast?, Trends in Biochemical Sciences, vol.20, issue.1, pp.3-10, 1995.
DOI : 10.1016/S0968-0004(00)88938-0

T. Walther, N. Mtimet, C. Alkim, A. Vax, M. Loret et al., mutants with altered trehalose 6-phosphate dynamics, Biochemical Journal, vol.174, issue.2, pp.227-237, 2013.
DOI : 10.1093/mp/sss120

URL : https://hal.archives-ouvertes.fr/hal-01268230

D. Silva-udawatta, M. Cannon, and J. , Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation, Molecular Microbiology, vol.4, issue.6, pp.1345-1356, 2001.
DOI : 10.1074/jbc.M000918200

T. Walther, M. Novo, K. Rossger, F. Letisse, M. Loret et al., Control of ATP homeostasis during the respiro-fermentative transition in yeast, Molecular Systems Biology, vol.5, p.344, 2010.
DOI : 10.1007/BF00425755

Y. Xu, F. Létisse, F. Absalan, W. Lu, E. Kuznetsova et al., Nucleotide degradation and ribose salvage in yeast, Molecular Systems Biology, vol.42, issue.1, p.665
DOI : 10.1038/msb.2013.21

C. Saint-marc, B. Pinson, F. Coulpier, L. Jourdren, O. Lisova et al., Phenotypic Consequences of Purine Nucleotide Imbalance in Saccharomyces cerevisiae, Genetics, vol.183, issue.2, pp.529-538, 2009.
DOI : 10.1534/genetics.109.105858

URL : https://hal.archives-ouvertes.fr/hal-00429643

P. Kiefer, C. Nicolas, F. Letisse, and J. Portais, Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry, Analytical Biochemistry, vol.360, issue.2, pp.182-188, 2007.
DOI : 10.1016/j.ab.2006.06.032

C. Vogel and E. Marcotte, Insights into the regulation of protein abundance from proteomic and transcriptomic analyses, Nature Reviews Genetics, vol.285, pp.227-232, 2012.
DOI : 10.1038/nrg3185

M. Lee, S. Topper, S. Hubler, J. Hose, C. Wenger et al., A dynamic model of proteome changes reveals new roles for transcript alteration in yeast, Molecular Systems Biology, vol.5, issue.1, p.514, 2011.
DOI : 10.1101/gr.090233.108

P. Daran-lapujade, S. Rossell, W. Van-gulik, M. Luttik, M. De-groot et al., The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels, Proceedings of the National Academy of Sciences, vol.104, issue.40, pp.15753-15758, 2007.
DOI : 10.1073/pnas.0707476104

A. Belle, A. Tanay, L. Bitincka, R. Shamir, O. Shea et al., Quantification of protein half-lives in the budding yeast proteome, Proceedings of the National Academy of Sciences, vol.103, issue.35, pp.13004-13009, 2006.
DOI : 10.1073/pnas.0605420103

G. Zampar, A. Kümmel, J. Ewald, S. Jol, B. Niebel et al., Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast, Molecular Systems Biology, vol.1, issue.1, p.651
DOI : 10.1007/BF00293548

G. Kopperschläger, J. Heinisch, F. Zimmermann, K. Entian, and . Lancaster, Phosphofructokinase In Yeast Sugar Metabolism, pp.97-118, 1997.

V. Meyenburg and K. , Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth, Archiv f???r Mikrobiologie, vol.31, issue.4, pp.289-303, 1969.
DOI : 10.1007/BF00414585

C. Wittmann, M. Hans, W. Van-winden, C. Ras, and J. Heijnen, Dynamics of intracellular metabolites of glycolysis and TCA cycle during cell-cycle-related oscillation inSaccharomyces cerevisiae, Biotechnology and Bioengineering, vol.75, issue.7, pp.839-847, 2005.
DOI : 10.1002/bit.20408

B. Tu, A. Kudlicki, M. Rowicka, and S. Mcknight, Logic of the Yeast Metabolic Cycle: Temporal Compartmentalization of Cellular Processes, Science, vol.310, issue.5751, pp.1152-1158, 2005.
DOI : 10.1126/science.1120499

J. Dickinson, R. Ambler, and I. Dawes, Abnormal amino acid metabolism in mutants of Saccharomyces cerevisiae affected in the initiation of sporulation, European Journal of Biochemistry, vol.240, issue.2, pp.405-406, 1985.
DOI : 10.1111/j.1432-1033.1985.tb08853.x

H. Betz and U. Weisner, Protein Degradation and Proteinases during Yeast Sporulation, European Journal of Biochemistry, vol.109, issue.1, pp.65-76, 1976.
DOI : 10.1016/0006-291X(74)90350-7

A. Brazma, H. Parkinson, U. Sarkans, M. Shojatalab, J. Vilo et al., ArrayExpress--a public repository for microarray gene expression data at the EBI, Nucleic Acids Research, vol.31, issue.1, pp.68-71, 2003.
DOI : 10.1093/nar/gkg091

E. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein et al., GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes, Bioinformatics, vol.20, issue.18, pp.3710-3715, 2004.
DOI : 10.1093/bioinformatics/bth456

M. Robinson, J. Grigull, N. Mohammad, and T. Hughes, FunSpec: a web-based cluster interpreter for yeast, BMC Bioinformatics, vol.3, issue.1, p.35, 2002.
DOI : 10.1186/1471-2105-3-35

B. Gonzalez, J. Francois, and M. Renaud, A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol, Yeast, vol.34, issue.14, pp.1347-1355, 1997.
DOI : 10.1002/(SICI)1097-0061(199711)13:14<1347::AID-YEA176>3.0.CO;2-O

M. Loret, L. Pedersen, and J. Francois, Revised procedures for yeast metabolites extraction: application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway, Yeast, vol.89, issue.1, pp.47-60, 2007.
DOI : 10.1002/yea.1435

M. Mashego, L. Wu, J. Van-dam, C. Ras, J. Vinke et al., MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites, Biotechnology and Bioengineering, vol.58, issue.6, pp.620-628, 2004.
DOI : 10.1002/bit.10907

B. Bennett, J. Yuan, E. Kimball, and J. Rabinowitz, Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach, Nature Protocols, vol.92, issue.8, pp.1299-1311, 2008.
DOI : 10.1038/nprot.2008.107

S. Cohen and D. Michaud, Synthesis of a Fluorescent Derivatizing Reagent, 6-Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate, and Its Application for the Analysis of Hydrolysate Amino Acids via High-Performance Liquid Chromatography, Analytical Biochemistry, vol.211, issue.2, pp.279-287, 1993.
DOI : 10.1006/abio.1993.1270

P. Jorgensen, J. Nishikawa, B. Breitkreutz, and M. Tyers, Systematic Identification of Pathways That Couple Cell Growth and Division in Yeast, Science, vol.297, issue.5580, pp.395-400, 2002.
DOI : 10.1126/science.1070850

J. Parrou and J. Francois, A Simplified Procedure for a Rapid and Reliable Assay of both Glycogen and Trehalose in Whole Yeast Cells, Analytical Biochemistry, vol.248, issue.1, pp.186-188, 1997.
DOI : 10.1006/abio.1997.2138

H. Martin-yken, A. Dagkessamanskaia, F. Basmaji, A. Lagorce, and J. Francois, The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae, Molecular Microbiology, vol.15, issue.1, pp.23-35, 2003.
DOI : 10.1046/j.1365-2958.2003.03541.x

R. Bartrons, E. Van-schaftingen, S. Vissers, and H. Hers, The stimulation of yeast phosphofructokinase by fructose 2,6-bisphosphate, FEBS Letters, vol.143, issue.1, pp.137-140, 1982.
DOI : 10.1016/0014-5793(82)80290-1

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

G. Carrillo-castaneda and M. Ortega, Mutants of Salmonella typhimurium lacking phosphoenolpyruvate carboxykinase and alpha-ketoglutarate dehydrogenase activities, J Bacteriol, vol.102, pp.524-530, 1970.

G. Dixon, H. Kornberg, and P. Lund, Purification and properties of malate synthetase, Biochimica et Biophysica Acta, vol.41, issue.2, pp.217-233, 1960.
DOI : 10.1016/0006-3002(60)90004-4

H. Fromm, Comments on the Kinetics and Mechanism of Yeast Hexokinase Action. Is the Binding Sequence of Substrates to the Enzyme Ordered or Random?, European Journal of Biochemistry, vol.239, issue.3, pp.385-392, 1969.
DOI : 10.1016/0003-9861(59)90136-5

J. Gancedo and C. Gancedo, Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts, Archiv f???r Mikrobiologie, vol.240, issue.2, pp.132-138, 1971.
DOI : 10.1007/BF00411787

J. Gancedo, C. Gancedo, and A. Sols, Regulation of the Concentration or Activity of Pyruvate Kinase in Yeasts and its Relationship to Gluconeogenesis, Biochemical Journal, vol.102, issue.2, pp.23-25, 1967.
DOI : 10.1042/bj1020023C

M. Hirai, T. Shiotani, A. Tanaka, and . Saburo, Intracellular localization of several enzymes in Candida tropicalis grown on different carbon sources., Agricultural and Biological Chemistry, vol.40, issue.10
DOI : 10.1271/bbb1961.40.1979

K. Kim, M. Rosenkrantz, and L. Guarente, Saccharomyces cerevisiae contains two functional citrate synthase genes., Molecular and Cellular Biology, vol.6, issue.6, pp.1936-1942, 1986.
DOI : 10.1128/MCB.6.6.1936

S. Miller and B. Magasanik, Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae., Journal of Bacteriology, vol.172, issue.9, pp.4927-4935, 1990.
DOI : 10.1128/jb.172.9.4927-4935.1990

J. Morrison, The activation of aconitase by ferrous ions and reducing agents, Biochemical Journal, vol.58, issue.4, pp.685-692, 1954.
DOI : 10.1042/bj0580685

J. Perea and C. Gancedo, Isolation and characterization of a mutant of Saccharomyces cerevisiae defective in phosphoenolpyruvate carboxykinase, Archives of Microbiology, vol.151, issue.2, pp.141-143, 1982.
DOI : 10.1007/BF00508719

E. Polakis and W. Bartley, during aerobic growth on different carbon sources, Biochemical Journal, vol.97, issue.1, pp.284-297, 1965.
DOI : 10.1042/bj0970284

E. Postma, C. Verduyn, W. Scheffers, and J. Van-dijken, Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae, Appl Environ Microbiol, vol.55, pp.468-477, 1989.

J. Van-dijken, W. Harder, A. Beardsmore, and J. Quayle, Dihydroxyacetone: An intermediate in the assimilation of methanol by yeasts?, FEMS Microbiology Letters, vol.4, issue.2, pp.97-102, 1978.
DOI : 10.1016/0378-1097(78)90095-2

V. Vanhoekp, PronkJT:Effect of specific growth rate on fermentative capacity of baker' syeast, Appl Environ Microbiol, vol.64, pp.4226-4233, 1998.

G. Warren and K. Tipton, Pig liver pyruvate carboxylase. Purification, properties and cation specificity, Biochemical Journal, vol.139, issue.2, pp.297-310, 1974.
DOI : 10.1042/bj1390297