C. Kiani, L. Chen, Y. J. Wu, A. J. Yee, and B. B. Yang, Structure and function of aggrecan, Cell Res, vol.12, pp.19-32, 2002.

T. Aigner and J. Stove, Collagens-Major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair, Adv. Drug Deliv. Rev, vol.55, pp.1569-1593, 2003.

E. A. Makris, A. H. Gomoll, K. N. Malizos, J. C. Hu, and K. A. Athanasiou, Repair and tissue engineering techniques for articular cartilage, Nat. Rev. Rheumatol, vol.11, pp.21-34, 2015.

E. B. Hunziker, K. Lippuner, M. J. Keel, and N. Shintani, An educational review of cartilage repair: Precepts & practice-Myths & misconceptions-Progress & prospects, Osteoarthr. Cartil, vol.23, pp.334-350, 2015.

C. Vinatier, C. Bouffi, C. Merceron, J. Gordeladze, J. Brondello et al., Cartilage tissue engineering: Towards a biomaterial-assisted mesenchymal stem cell therapy, Curr. Stem Cell Res. Ther, vol.4, pp.318-329, 2009.
DOI : 10.2174/157488809789649205

URL : https://hal.archives-ouvertes.fr/inserm-00423696

J. C. Bernhard and G. Vunjak-novakovic, Should we use cells, biomaterials or tissue engineering for cartilage regeneration?, Stem Cell Res. Ther, vol.7, p.56, 2016.
DOI : 10.1186/s13287-016-0314-3

URL : https://stemcellres.biomedcentral.com/track/pdf/10.1186/s13287-016-0314-3

Y. Chen, J. Z. Shao, L. X. Xiang, X. J. Dong, and G. R. Zhang, Mesenchymal stem cells: A promising candidate in regenerative medicine, Int. J. Biochem. Cell Biol, vol.40, pp.815-820, 2008.

J. S. Mohal, H. D. Tailor, and W. S. Khan, Sources of adult mesenchymal stem cells and their applicability for musculoskeletal applications, Curr. Stem Cell Res. Ther, vol.7, pp.103-109, 2012.

S. Wakitani, K. Imoto, T. Yamamoto, M. Saito, N. Murata et al., Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees, Osteoarthr. Cartil, vol.10, pp.199-206, 2002.

R. Quarto, M. Mastrogiacomo, R. Cancedda, S. M. Kutepov, V. Mukhachev et al., Repair of large bone defects with the use of autologous bone marrow stromal cells, N. Engl. J. Med, vol.344, pp.385-386, 2001.

A. M. Mackay, S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester et al., Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow, Tissue Eng, vol.4, pp.415-428, 1998.

B. Johnstone, T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo, In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells, Exp. Cell Res, vol.238, pp.265-272, 1998.

F. Ramirez and D. B. Rifkin, Cell signalling events: A view from the matrix, Matrix Biol, vol.22, pp.101-107, 2003.

E. Ruoslahti and Y. Yamaguchi, Proteoglycans as modulators of growth factors activities, Cell, vol.64, pp.867-869, 1991.

N. S. Gandhi and R. L. Mancera, The structure of glycosaminoglycans and their interactions with proteins, Chem. Biol. Drug Des, vol.72, pp.455-482, 2008.

F. M. Chen, M. Zhang, and Z. F. Wu, Toward delivery of multiple growth factors in tissue engineering, Biomaterials, vol.10, pp.6279-6308, 2010.

K. Lee, E. D. Silva, and D. J. Mooney, Growth factor delivery-based tissue engineering: General approaches and a review of recent developments, J. R. Soc. Interface, vol.8, pp.153-170, 2011.

H. S. Azevedo and I. Pashkuleva, Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration, Adv. Drug Deliv. Rev, vol.94, pp.63-76, 2015.

L. Bian, D. Y. Zhai, E. Tous, R. Rai, R. L. Mauck et al., Enhanced MSC chondrogenesis following delivery of TGF-?3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo, Biomaterials, vol.32, pp.6425-6434, 2011.

T. Re'em, Y. Kaminer-israeil, E. Ruvinov, and S. Cohen, Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds, Biomaterials, vol.33, pp.751-761, 2012.

A. Moshaverinia, X. Xu, C. Chen, K. Akiyama, M. L. Snead et al., Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration, Acta Biomater, vol.9, pp.9343-9350, 2013.

, Mar. Drugs, vol.17, pp.65-79, 2019.

E. Ruvinov, I. Freeman, R. Fredo, and S. Cohen, Spontaneous coassembly of biologically active nanoparticles via affinity binding of heparin-binding proteins to alginate-sulphate, Nano Lett, vol.16, pp.883-888, 2016.

N. Henry, J. Clouet, A. Fragale, L. Griveau, C. Chédeville et al., Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-?1: New insight into intervertebral disc regenerative medicine, vol.24, pp.999-1010, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01667231

S. Reed and B. M. Wu, Biological and mechanical characterization of chitosan-alginate scaffolds for growth factor delivery and chondrogenesis, J. Biomed. Mater. Res. Part B, vol.105, pp.272-282, 2017.

I. Freeman, A. Kedem, and S. Cohen, The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins, Biomaterials, vol.29, pp.3260-3268, 2008.

G. H. Raguénès, A. Peres, R. Ruimy, P. Pignet, R. Christen et al., Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent, J. Appl. Microbiol, vol.82, pp.422-430, 1997.

O. Roger, N. Kervarec, J. Ratiskol, S. Colliec-jouault, and L. Chevolot, Structural studies of the main exopolysaccharide produced by the deep-sea bacterium Alteromonas infernus, Carbohydr. Res, vol.339, pp.2371-2380, 2004.

C. Merceron, S. Portron, C. Vignes-colombeix, E. Rederstorff, M. Masson et al., Pharmacological modulation of human mesenchymal stem cell chondrogenesis by a chemically over-sulphated polysaccharide of marine origin: Potential application to cartilage regenerative medicine, Stem Cells, vol.30, pp.471-480, 2012.

M. Marquis, J. Davy, A. Fang, and D. Renard, Microfluidics-assisted diffusion self-assembly: Toward the control of the shape and size of pectin hydrogel microparticles, Biomacromolecules, vol.15, pp.1568-1578, 2014.

J. Wang, Y. Li, X. Wang, J. Wang, H. Tian et al., Droplet microfluidics for the production of microparticles and nanoparticles, vol.8, p.22, 2017.

M. Marquis, J. Davy, B. Cathala, and D. Renard, Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles, Carbohydr. Polym, vol.116, pp.189-199, 2015.

A. Zykwinska, M. Marquis, C. Sinquin, S. Cuenot, and S. Colliec-jouault, Assembly of HE800 exopolysaccharide produced by a deep-sea hydrothermal bacterium into microgels for protein delivery applications, Carbohydr. Polym, vol.142, pp.213-221, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01723470

G. T. Grant, E. R. Morris, D. A. Rees, P. J. Smith, and D. Thom, Biological interactions between polysaccharides and divalent cations: The egg-box model, FEBS Lett, vol.32, pp.195-198, 1973.

M. J. Gidley, E. R. Morris, E. J. Murray, D. A. Powell, and D. A. Rees, Spectroscopic and stoichiometric characterization of the calcium-mediated association of pectate chains in gels and in the solid state, J. Chem. Soc. Chem. Commun, vol.22, pp.990-992, 1979.

A. Zykwinska, C. Gaillard, M. Boiffard, J. Thibault, and E. Bonnin, Green labelled pectins with gelling and emulsifying properties can be extracted by enzymatic way from unexploited sources, vol.23, pp.2468-2477, 2009.

N. I. Abu-lail and T. A. Camesano, Polysaccharide properties probed with atomic force microscopy, J. Microsc, vol.212, pp.217-238, 2003.
DOI : 10.1111/j.1365-2818.2003.01261.x

W. E. Rochefort and S. Middleman, Rheology of xanthan gum: Salt, temperature and strain Effects in oscillatory and steady shear experiments, J. Rheol, vol.31, pp.337-369, 1987.

A. Zykwinska, M. Marquis, C. Sinquin, L. Marchand, S. Colliec-jouault et al., Investigation of interactions between the marine GY785 exopolysaccharide and transforming growth factor-?1 by atomic force microscopy, Carbohydr. Polym, vol.202, pp.56-63, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01972188

Y. Hu, Q. Wang, J. Wang, J. Zhu, H. Wang et al., Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking, Biomicrofluidics, vol.6, p.26502, 2012.
DOI : 10.1063/1.4720396

URL : http://europepmc.org/articles/pmc3365911?pdf=render

R. Derynck and Y. E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling, Nature, vol.425, pp.577-584, 2003.

J. E. Lee, K. E. Kim, I. C. Kwon, H. J. Ahn, S. H. Lee et al., Effects of the controlled-released TGF-?1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold, Biomaterials, vol.25, pp.4163-4173, 2004.

, Mar. Drugs, vol.17, pp.65-80, 2019.

M. Hettiaratchi, T. Miller, J. S. Temenoff, R. Guldberg, and T. C. Mcdevitt, Heparin microparticle effects on presentation and bioactivity of Bone Morphogenetic Protein-2, Biomaterials, vol.35, pp.7228-7238, 2014.

K. Senni, F. Gueniche, M. Yousfi, F. Fioretti, G. J. Godeau et al.,

. Mesophilic-marine and . Bacteria, Method for Preparing Same and Use Thereof in Tissue Regeneration, U.S. Patent 9125883B2, 2015.

N. Chopin, C. Sinquin, J. Ratiskol, A. Zykwinska, P. Weiss et al., A direct sulfation process of a marine polysaccharide in ionic liquid, BioMed Res. Int, vol.508656, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01725982

J. P. Kamerling, G. J. Gerwing, J. F. Vliegenthart, and J. R. Clamp, Characterization by gas-liquid chromatography-mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycopeptides, Biochem. J, vol.151, pp.491-495, 1975.

J. Montreuil, S. Bouquelet, H. Debray, B. Fournet, G. Spik et al., , pp.143-204, 1986.