S. T. Chitpatima, S. Makrides, R. Bandyopadhyay, and G. Brawerman, Nucleotide sequence of a major messenger RNA for a 21 kilodalton polypeptide that is under translational control in mouse tumor cells, Nucleic Acids Res, vol.16, p.3357792, 1988.

G. Thomas, G. Thomas, and H. Luther, Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells, Proc Natl Acad Sci U S A, vol.78, p.6946510, 1981.

L. Betsch, J. Savarin, M. Bendahmane, and J. Szecsi, Roles of the Translationally Controlled Tumor Protein (TCTP) in Plant Development, Results Probl Cell Differ, vol.64, p.29149407, 2017.

U. A. Bommer, Cellular function and regulation of the translationally controlled tumour protein TCTP, The Open Allergy Journal, vol.5, pp.19-32, 2012.

U. A. Bommer and B. J. Thiele, The translationally controlled tumour protein (TCTP), Int J Biochem Cell Biol, vol.36, p.14687915, 2004.

F. Brioudes, A. M. Thierry, P. Chambrier, B. Mollereau, and M. Bendahmane, Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants, Proc Natl Acad Sci U S A, vol.107, p.20736351, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521824

L. Susini, TCTP protects from apoptotic cell death by antagonizing bax function, Cell Death Differ, vol.15, p.18274553, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00283256

V. Thayanithy, Evolution and expression of translationally controlled tumour protein (TCTP) of fish, Comp Biochem Physiol B Biochem Mol Biol, vol.142, p.16006164, 2005.

S. H. Chen, A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue-or cell type-specific manner, Mol Biol Cell, vol.18, p.17475776, 2007.

Y. C. Hsu, J. J. Chern, Y. Cai, M. Liu, and K. W. Choi, Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase, Nature, vol.445, p.17301792, 2007.

G. Serino, Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome, Plant Cell, vol.11, p.10521526, 1999.

N. Wei and X. W. Deng, The COP9 signalosome, Annu Rev Cell Dev Biol, vol.19, p.14570571, 2003.

E. Barth, R. Hubler, A. Baniahmad, and M. Marz, The Evolution of COP9 Signalosome in Unicellular and Multicellular Organisms, Genome Biol Evol, vol.8, p.27044515, 2016.

J. R. Lydeard, B. A. Schulman, and J. W. Harper, Building and remodelling Cullin-RING E3 ubiquitin ligases, EMBO Rep, vol.14, p.24232186, 2013.

L. K. Teixeira and S. I. Reed, Ubiquitin ligases and cell cycle control, Annu Rev Biochem, vol.82, p.23495935, 2013.

P. Genschik, K. Marrocco, L. Bach, S. Noir, and M. C. Criqui, Selective protein degradation: a rheostat to modulate cell-cycle phase transitions, J Exp Bot, vol.65, p.24353246, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01048701

S. K. Hotton and J. Callis, Regulation of cullin RING ligases, Annu Rev Plant Biol, vol.59, p.18444905, 2008.

C. Schwechheimer and E. Isono, The COP9 signalosome and its role in plant development, Eur J Cell Biol, vol.89, pp.157-62, 2010.

S. Busch, An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation, Proc Natl Acad Sci U S A, vol.104, p.17470786, 2007.

E. M. Dohmann, C. Kuhnle, and C. Schwechheimer, Loss of the CONSTITUTIVE PHOTOMORPHO-GENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis, Plant Cell, vol.17, p.15923347, 2005.

M. Sharon, Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality, Structure, vol.17, p.19141280, 2009.

E. M. Dohmann, The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability, Development, vol.135, p.18434413, 2008.

N. Ohad, K. Shichrur, and S. Yalovsky, The analysis of protein-protein interactions in plants by bimolecular fluorescence complementation, Plant Physiol, vol.145, p.18056859, 2007.

D. Veylder and L. , Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis, Plant Cell, vol.13, p.11449057, 2001.

R. O. Erickson, Modeling of Plant Growth, Annual Review of Plant Physiology, vol.27, pp.407-434, 1976.

P. M. Donnelly, D. Bonetta, H. Tsukaya, R. E. Dengler, and N. G. Dengler, Cell cycling and cell enlargement in developing leaves of Arabidopsis, Dev Biol, vol.215, p.10545247, 1999.

J. P. Hakenjos, MLN4924 is an efficient inhibitor of NEDD8 conjugation in plants, Plant Physiol, vol.156, p.21527421, 2011.

D. I. Pacurar, The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation, Sci Rep, vol.7, p.28377589, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01602672

M. Dessau, The Arabidopsis COP9 signalosome subunit 7 is a model PCI domain protein with subdomains involved in COP9 signalosome assembly, Plant Cell, vol.20, p.18854373, 2008.

E. M. Dohmann, M. P. Levesque, E. Isono, M. Schmid, and C. Schwechheimer, Auxin responses in mutants of the Arabidopsis CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome, Plant Physiol, vol.147, p.18467458, 2008.

C. Schwechheimer, Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response, Science, vol.292, p.11337587, 2001.

E. Benkova, Local, efflux-dependent auxin gradients as a common module for plant organ formation, Cell, vol.115, p.14651850, 2003.

A. H. Brand and N. Perrimon, Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, vol.118, p.8223268, 1993.

B. Mollereau and P. M. Domingos, Photoreceptor differentiation in Drosophila: from immature neurons to functional photoreceptors, Dev Dyn, vol.232, p.15704118, 2005.

J. Chen, Discovery-based science education: functional genomic dissection in Drosophila by undergraduate researchers, PLoS Biol, vol.3, p.15719063, 2005.

A. Gambis, P. Dourlen, H. Steller, and B. Mollereau, Two-color in vivo imaging of photoreceptor apoptosis and development in Drosophila, Dev Biol, vol.351, p.21215264, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00809185

P. Dourlen, C. Levet, A. Mejat, A. Gambis, and B. Mollereau, The Tomato/GFP-FLP/FRT method for live imaging of mosaic adult Drosophila photoreceptor cells, J Vis Exp, p.24084155, 2013.

B. A. Hay, T. Wolff, and G. M. Rubin, Expression of baculovirus P35 prevents cell death in Drosophila, Development, vol.120, p.7925015, 1994.

C. Bras-pereira, dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis, PLoS Genet, vol.12, p.27442438, 2016.

N. Wei, G. Serino, and X. W. Deng, The COP9 signalosome: more than a protease, Trends Biochem Sci, vol.33, p.18926707, 2008.

G. Serino and X. W. Deng, The COP9 signalosome: regulating plant development through the control of proteolysis, Annu Rev Plant Biol, vol.54, p.14502989, 2003.

L. Pan, Protein competition switches the function of COP9 from self-renewal to differentiation, Nature, vol.514, p.25119050, 2014.

G. P. Xu, Rig-G negatively regulates SCF-E3 ligase activities by disrupting the assembly of COP9 signalosome complex, Biochem Biophys Res Commun, vol.432, p.23415865, 2013.

A. Franciosini, The COP9 SIGNALOSOME Is Required for Postembryonic Meristem Maintenance in Arabidopsis thaliana, Mol Plant, vol.8, p.26277260, 2015.

Y. Y. Choo, Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity, Mol Biol Cell, vol.22, p.22013077, 2011.

G. A. Cope and R. J. Deshaies, COP9 signalosome: a multifunctional regulator of SCF and other cullinbased ubiquitin ligases, Cell, vol.114, p.14505567, 2003.

S. Denti, M. E. Fernandez-sanchez, L. Rogge, and E. Bianchi, The COP9 signalosome regulates Skp2 levels and proliferation of human cells, J Biol Chem, vol.281, p.16943200, 2006.

A. Peth, C. Berndt, W. Henke, and W. Dubiel, Downregulation of COP9 signalosome subunits differentially affects the CSN complex and target protein stability, BMC Biochem, vol.8, p.18093314, 2007.

R. Mosadeghi, Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle, Elife, vol.5, 2016.

S. Jasinski, The CDK inhibitor NtKIS1a is involved in plant development, endoreduplication and restores normal development of cyclin D3; 1-overexpressing plants, J Cell Sci, vol.115, p.11870216, 2002.

J. C. Del-pozo, M. B. Boniotti, and C. Gutierrez, Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF(AtSKP2) pathway in response to light, Plant Cell, vol.14, p.12468727, 2002.

A. Verkest, C. Weinl, D. Inze, L. De-veylder, and A. Schnittger, Switching the cell cycle. Kip-related proteins in plant cell cycle control, Plant Physiol, vol.139, p.16286449, 2005.

M. Menges, S. M. De-jager, W. Gruissem, and J. Murray, Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control, Plant J, vol.41, p.15686519, 2005.

Y. Liu, Anti-tumor effect of germacrone on human hepatoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis, Eur J Pharmacol, vol.698, p.23117090, 2013.

S. Menon, COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor-induced entry into the cell cycle from quiescence, Nat Immunol, vol.8, p.17906629, 2007.

A. Knowles, The COP9 signalosome is required for light-dependent timeless degradation and Drosophila clock resetting, J Neurosci, vol.29, p.19176824, 2009.

B. Moller and D. Weijers, Auxin control of embryo patterning, Cold Spring Harb Perspect Biol, vol.1, p.1545, 2009.

M. Karimi and D. Inze, & Depicker A. GATEWAY vectors for Agrobacterium-mediated plant transformation, Trends Plant Sci, vol.7, p.11992820, 2002.

K. W. Earley, Gateway-compatible vectors for plant functional genomics and proteomics, Plant J, vol.45, p.16441352, 2006.

B. Muller and J. Sheen, Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis, Nature, vol.453, p.18463635, 2008.

P. M. Domingos, Spalt transcription factors are required for R3/R4 specification and establishment of planar cell polarity in the Drosophila eye, Development, vol.131, p.15509769, 2004.

K. J. Mayo, B. J. Gonzales, and H. S. Mason, Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens, Nat Protoc, vol.1, p.17406390, 2006.

J. A. Pedroza-garcia, Role of the Polymerase sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis, Nucleic Acids Res, vol.44, p.27193996, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01904881

J. Szecsi, B. Wippermann, and M. Bendahmane, Genetic and phenotypic analyses of petal development in Arabidopsis, Methods Mol Biol, vol.1110, p.24395257, 2014.

T. H. Tai, Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato, Proc Natl Acad Sci U S A, vol.96, p.10570214, 1999.

J. Azimzadeh, Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin, Plant Cell, vol.20, p.18757558, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00324200

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, p.942051, 1976.