H. Chou, H. Takematsu, and S. Diaz, A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence, Proc Natl Acad Sci USA, vol.95, pp.11751-11756, 1998.

A. Irie, S. Koyama, Y. Kozutsumi, T. Kawasaki, and A. Suzuki, The molecular basis for the Absence ofN-Glycolylneuraminic acid in humans, J Biol Chem, vol.273, pp.15866-15871, 1998.

J. Okerblom and A. Varki, Biochemical, cellular, physiological, and pathological consequences of human loss of N -Glycolylneuraminic acid, ChemBioChem, vol.18, pp.1155-1171, 2017.

R. Amon, E. M. Reuven, L. Ben-arye, S. Padler-karavani, and V. , Glycans in immune recognition and response, Carbohydr Res, vol.389, pp.115-122, 2014.
DOI : 10.1016/j.carres.2014.02.004

U. Galili, Evolution and pathophysiology of the human natural anti-alpha-galactosyl IgG (anti-Gal) antibody, Springer Semin Immunopathol, vol.15, pp.155-171, 1993.

U. Galili, R. E. Mandrell, R. M. Hamadeh, S. B. Shohet, and J. M. Griffiss, Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora, Infect Immun, vol.56, pp.1730-1737, 1988.

R. E. Taylor, C. J. Gregg, and V. Padler-karavani, Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid, J Exp Med, vol.207, pp.1637-1646, 2010.

V. Padler-karavani, H. Yu, and H. Cao, Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease, Glycobiology, vol.18, pp.818-830, 2008.

P. Tangvoranuntakul, P. Gagneux, and S. Diaz, Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid, Proc Natl Acad Sci USA, vol.100, pp.12045-12050, 2003.
DOI : 10.1073/pnas.2131556100

URL : http://www.pnas.org/content/100/21/12045.full.pdf

M. Bardor, D. H. Nguyen, S. Diaz, and A. Varki, Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells, J Biol Chem, vol.280, pp.4228-4237, 2005.

T. Pham, C. J. Gregg, and F. Karp, Evidence for a novel humanspecific xeno-auto-antibody response against vascular endothelium, Blood, vol.114, pp.5225-5235, 2009.
DOI : 10.1182/blood-2009-05-220400

URL : http://www.bloodjournal.org/content/114/25/5225.full.pdf

A. Salama, G. Evanno, J. Harb, and J. Soulillou, Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation, vol.22, pp.85-94, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02147779

G. Couvrat-desvergnes, A. Salama, L. Berre, and L. , Rabbit antithymocyte globulin-induced serum sickness disease and human kidney graft survival, J Clin Invest, vol.125, pp.4655-4665, 2015.
DOI : 10.1172/jci82267

URL : https://hal.archives-ouvertes.fr/inserm-02147235

L. Scobie, V. Padler-karavani, and S. L. Bas-bernardet, Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts, J Immunol, vol.191, pp.2907-2915, 2013.

P. Thompson, I. R. Badell, and M. Lowe, Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function, Am J Transplant, vol.11, pp.2593-2602, 2011.
DOI : 10.1111/j.1600-6143.2011.03720.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-6143.2011.03720.x

W. Lee, H. Hara, D. Cooper, and R. A. Manji, Expression of NeuGc on pig heart valves, Xenotransplantation, vol.22, pp.153-154, 2015.
DOI : 10.1111/xen.12162

E. M. Reuven, L. Ben-arye, S. Marshanski, and T. , Characterization of immunogenic Neu5Gc in bioprosthetic heart valves, Xenotransplantation, vol.23, pp.381-392, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02153354

G. W. Byrne, P. G. Stalboerger, and E. Davila, Proteomic identification of non-Gal antibody targets after pig-to-primate cardiac xenotransplantation, Xenotransplantation, vol.15, pp.268-276, 2008.
DOI : 10.1111/j.1399-3089.2008.00480.x

URL : http://europepmc.org/articles/pmc2586876?pdf=render

P. G. Lopez, L. Girard, and M. Buist, Characterization of N-glycosylation and amino acid sequence features of immunoglobulins from swine, Glycoconj J, pp.1-13, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02153160

M. Buist, E. Komatsu, and P. G. Lopez, Features of N-Glycosylation of immunoglobulins from knockout pig models, J Anal Bioanal Tech, vol.7, p.333, 2016.

R. Amon, S. L. Ben-arye, and L. Engler, Glycan microarray reveal induced IgGs repertoire shift against a dietary carbohydrate in response to rabbit anti-human thymocyte therapy, Oncotarget, vol.8, pp.112236-112244, 2017.
DOI : 10.18632/oncotarget.23096

URL : https://hal.archives-ouvertes.fr/inserm-01885572

A. Salama, G. Evanno, and N. Lim, Anti-gal and ANTI-neu5gc responses in nonimmunosuppressed patients after treatment with rabbit antithymocyte polyclonal Iggs, Transplantation, vol.101, pp.2501-2507, 2017.
DOI : 10.1097/tp.0000000000001686

URL : https://hal.archives-ouvertes.fr/inserm-02156016

N. Kröger, C. Solano, and C. Wolschke, Antilymphocyte globulin for prevention of chronic graft-versus-host disease, N Engl J Med, vol.374, issue.1, pp.43-53, 2016.

V. Padler-karavani, A. H. Tremoulet, H. Yu, X. Chen, J. C. Burns et al., A simple method for assessment of human AntiNeu5Gc antibodies applied to Kawasaki Disease, PLoS ONE, vol.8, p.58443, 2013.

R. Buonomano, C. Tinguely, R. Rieben, P. J. Mohacsi, and U. E. Nydegger, Quantitation and characterization of anti-Galalpha1-3Gal antibodies in sera of 200 healthy persons, Xenotransplantation, vol.6, pp.173-180, 1999.

P. Mathieu, C. Renoult, E. , K. De-march, A. Béné et al., Serum anti-rabbit and anti-horse IgG, IgA, and IgM in kidney transplant recipients, Nephrol Dial Transplant, vol.12, pp.2133-2139, 1997.
DOI : 10.1093/ndt/12.10.2133

URL : https://academic.oup.com/ndt/article-pdf/12/10/2133/9901329/122133.pdf

S. L. Ben-arye, H. Yu, X. Chen, and V. Padler-karavani, Profiling AntiNeu5Gc IgG in human sera with a sialoglycan microarray assay, J Vis Exp, vol.13, issue.125, 2017.

H. L. Mai, M. Treilhaud, and S. L. Ben-arye, Poor patient and graft outcome after induction treatment by antithymocyte globulin in recipients of a kidney graft after nonrenal organ transplantation, Transplant Direct, vol.4, p.357, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881120

I. Ntokou, A. G. Iniotaki, and E. N. Kontou, Long-term follow up for anti-HLA donor specific antibodies postrenal transplantation: High immunogenicity of HLA class II graft molecules, Transpl Int, vol.24, pp.1084-1093, 2011.

M. Lalonde and Y. Durocher, Therapeutic glycoprotein production in mammalian cells, J Biotechnol, vol.251, pp.128-140, 2017.
DOI : 10.1016/j.jbiotec.2017.04.028

URL : https://doi.org/10.1016/j.jbiotec.2017.04.028

D. Ghaderi, M. Zhang, N. Hurtado-ziola, and A. Varki, Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation, Biotechnol Genet Eng Rev, vol.28, pp.147-175, 2012.
DOI : 10.5661/bger-28-147

V. Padler-karavani, N. Hurtado-ziola, and M. Pu, Human xenoautoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer, Cancer Res, vol.71, pp.3352-3363, 2011.
DOI : 10.1158/0008-5472.can-10-4102

URL : http://cancerres.aacrjournals.org/content/71/9/3352.full.pdf

O. Pearce and H. Läubli, Sialic acids in cancer biology and immunity, Glycobiology, vol.26, pp.111-128, 2016.
DOI : 10.1093/glycob/cwv097

URL : https://academic.oup.com/glycob/article-pdf/26/2/111/6947009/cwv097.pdf

A. N. Samraj, O. Pearce, and H. Läubli, A red meat-derived glycan promotes inflammation and cancer progression, Proc Natl Acad Sci USA, vol.112, pp.542-547, 2015.
DOI : 10.1073/pnas.1417508112

URL : http://www.pnas.org/content/112/2/542.full.pdf

P. Randhawa and C. Roufosse, The expanding spectrum of antibodymediated rejection: Should we include cases where no anti-HLA donor-specific antibody is detected?, Am. J. Transplant, 2018.