L. K. Boroughs and R. J. Deberardinis, Metabolic pathways promoting cancer cell survival and growth, Nat. Cell Biol, vol.17, pp.351-359, 2015.

R. J. Deberardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff et al., Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proc. Natl. Acad. Sci, vol.104, 2007.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol.144, pp.646-674, 2011.

M. G. Vander-heiden and R. J. Deberardinis, Understanding the intersections between metabolism and cancer biology, vol.168, pp.657-669, 2017.

O. Warburg, On respiratory impairment in cancer cells, Science, vol.124, pp.269-270, 1956.

O. Warburg, On the origin of cancer cells, Science, vol.123, pp.309-314, 1956.

P. P. Hsu and D. M. Sabatini, Cancer cell metabolism: Warburg and beyond, Cell, vol.134, pp.703-707, 2008.

M. V. Liberti and J. W. Locasale, The warburg effect: How does it benefit cancer cells?, Trends Biochem. Sci, vol.41, pp.211-218, 2016.

, Int. J. Mol. Sci, vol.19, p.3325, 2018.

D. Ackerman, M. C. Simon, L. Hypoxia, and . Cancer, Surviving the harsh tumor microenvironment, Trends Cell Biol, vol.24, pp.472-478, 2014.

F. Baenke, B. Peck, H. Miess, and A. Schulze, Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development, Dis. Model Mech, vol.6, pp.1353-1363, 2013.

C. Cheng, F. Geng, X. Cheng, and D. Guo, Lipid metabolism reprogramming and its potential targets in cancer, Cancer Commun. (Lond, vol.38, 2018.

F. Rohrig and A. Schulze, The multifaceted roles of fatty acid synthesis in cancer, Nat. Rev. Cancer, vol.16, pp.732-749, 2016.

J. C. Holthuis and A. K. Menon, Lipid landscapes and pipelines in membrane homeostasis, Nature, vol.510, pp.48-57, 2014.

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids: Where they are and how they behave, Nat. Rev. Mol. Cell Biol, vol.9, pp.112-124, 2008.

S. Yoon, M. Y. Lee, S. W. Park, J. S. Moon, Y. K. Koh et al., Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells, J. Biol. Chem, vol.282, pp.26122-26131, 2007.

A. Efeyan, W. C. Comb, and D. M. Sabatini, Nutrient-sensing mechanisms and pathways, Nature, vol.517, pp.302-310, 2015.

J. A. Menendez and R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis, Nat. Rev. Cancer, vol.7, pp.763-777, 2007.

L. Dang, D. W. White, S. Gross, B. D. Bennett, M. A. Bittinger et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.462, pp.739-744, 2009.

E. R. Mardis and R. K. Wilson, Cancer genome sequencing: A review, Hum. Mol. Genet, vol.18, pp.163-168, 2009.

D. W. Parsons, S. Jones, X. Zhang, J. C. Lin, R. J. Leary et al., An integrated genomic analysis of human glioblastoma multiforme, Science, vol.321, pp.1807-1812, 2008.

H. Yan, D. W. Parsons, G. Jin, R. Mclendon, B. A. Rasheed et al., IDH1 and IDH2 mutations in gliomas, N. Engl. J. Med, vol.360, pp.765-773, 2009.

G. Marcucci, K. Maharry, Y. Z. Wu, M. D. Radmacher, K. Mrozek et al., IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: A cancer and leukemia group b study, J. Clin. Oncol, vol.28, pp.2348-2355, 2010.

P. Paschka, R. F. Schlenk, V. I. Gaidzik, M. Habdank, J. Kronke et al., IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication, J. Clin. Oncol, vol.28, pp.3636-3643, 2010.

W. C. Chou, S. C. Chou, C. Y. Liu, C. Y. Chen, H. A. Hou et al., TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics, Blood, vol.118, pp.3803-3810, 2011.

N. Boissel, O. Nibourel, A. Renneville, C. Gardin, O. Reman et al., Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: A study by the acute leukemia french association group, J. Clin. Oncol, vol.28, pp.3717-3723, 2010.

S. Gross, R. A. Cairns, M. D. Minden, E. M. Driggers, M. A. Bittinger et al., Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations, J. Exp. Med, vol.207, pp.339-344, 2010.

P. S. Ward, J. Patel, D. R. Wise, O. Abdel-wahab, B. D. Bennett et al., The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate, Cancer Cell, vol.17, pp.225-234, 2010.

W. Xu, H. Yang, Y. Liu, Y. Yang, P. Wang et al., Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases, Cancer Cell, vol.19, 2011.

S. M. Elkashef, A. P. Lin, J. Myers, H. Sill, D. Jiang et al., IDH mutation, competitive inhibition of FTO, and RNA methylation, Cancer Cell, vol.31, pp.619-620, 2017.

M. E. Figueroa, O. Abdel-wahab, C. Lu, P. S. Ward, J. Patel et al., Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation, Cancer Cell, vol.18, pp.553-567, 2010.

S. Jiang, T. Zou, C. G. Eberhart, M. A. Villalobos, H. Y. Heo et al., Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTW) MRI, Magn. Reson. Med, vol.78, pp.1100-1109, 2017.

R. Chowdhury, K. K. Yeoh, Y. M. Tian, L. Hillringhaus, E. A. Bagg et al., The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases, EMBO Rep, vol.12, pp.463-469, 2011.

C. M. Metallo, Expanding the reach of cancer metabolomics, Cancer Prev. Res. (Phila.), vol.5, pp.1337-1340, 2012.

A. R. Mullen and R. J. Deberardinis, Genetically-defined metabolic reprogramming in cancer, Trends Endocrinol. Metab, vol.23, pp.552-559, 2012.

D. R. Wise, P. S. Ward, J. E. Shay, J. R. Cross, J. J. Gruber et al., Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability, Proc. Natl. Acad. Sci, vol.108, 2011.

B. Burla, M. Arita, M. Arita, A. K. Bendt, A. Cazenave-gassiot et al., MS-based lipidomics of human blood plasma: A community-initiated position paper to develop accepted guidelines, J. Lipid Res, vol.59, 2001.

F. Chiappini, A. Coilly, H. Kadar, P. Gual, A. Tran et al., Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients

J. M. Lillington, D. J. Trafford, and H. L. Makin, A rapid and simple method for the esterification of fatty acids and steroid carboxylic acids prior to gas-liquid chromatography, Clin. Chim. Acta, vol.111, pp.91-98, 1981.

A. Barrans, B. Jaspard, R. Barbaras, H. Chap, B. Perret et al., Pre-beta HDL: Structure and metabolism, Biochim. Biophys. Acta, vol.1300, pp.73-85, 1996.

V. W. Daniels, K. Smans, I. Royaux, M. Chypre, J. V. Swinnen et al., Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment, PLoS ONE, vol.9, 2014.

J. J. Kamphorst, J. R. Cross, J. Fan, E. De-stanchina, R. Mathew et al., Hypoxic and ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids, Proc. Natl. Acad. Sci, vol.110, pp.8882-8887, 2013.

N. J. German, H. Yoon, R. Z. Yusuf, J. P. Murphy, L. W. Finley et al., PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2, Mol. Cell, vol.63, pp.1006-1020, 2016.

S. Zhao, Y. Lin, W. Xu, W. Jiang, Z. Zha et al., Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha, Science, vol.324, pp.261-265, 2009.

T. Farge, E. Saland, F. De-toni, N. Aroua, M. Hosseini et al., Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism, vol.7, pp.716-735, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02465205

I. J. Samudio, S. Duvvuri, K. Clise-dwyer, J. C. Watt, D. Mak et al., Activation of p53 signaling by MI-63 induces apoptosis in acute myeloid leukemia cells, Leuk. Lymphoma, vol.51, pp.911-919, 2010.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol, vol.37, pp.911-917, 1959.

J. S. Saulnier-blache, E. Feigerlova, J. M. Halimi, P. Gourdy, R. Roussel et al., Urinary lysophopholipids are increased in diabetic patients with nephropathy, J. Diabetes Complicat, vol.31, pp.1103-1108, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01941536

J. L. Izquierdo-garcia, P. Viswanath, P. Eriksson, M. M. Chaumeil, R. O. Pieper et al., Metabolic reprogramming in mutant IDH1 glioma cells, PLoS ONE, vol.10, 2015.

Z. J. Reitman, G. Jin, E. D. Karoly, I. Spasojevic, J. Yang et al., Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome, Proc. Natl. Acad. Sci, vol.108, pp.3270-3275, 2011.

P. Viswanath, M. Radoul, J. L. Izquierdo-garcia, H. A. Luchman, J. Gregory-cairncross et al., Mutant IDH1 gliomas downregulate phosphocholine and phosphoethanolamine synthesis in a 2-hydroxyglutarate-dependent manner, Cancer Metab, vol.6, issue.3, 2018.

S. Beloribi-djefaflia, S. Vasseur, and F. Guillaumond, Lipid metabolic reprogramming in cancer cells

J. Sikora, S. Dworski, E. E. Jones, M. A. Kamani, M. C. Micsenyi et al., Acid ceramidase deficiency in mice results in a broad range of central nervous system abnormalities, Am. J. Pathol, vol.187, pp.864-883, 2017.

D. Lingwood and K. Simons, Lipid rafts as a membrane-organizing principle, Science, vol.327, pp.46-50, 2010.

F. Mollinedo and C. Gajate, Lipid rafts as major platforms for signaling regulation in cancer, Adv. Biol. Regul, vol.57, pp.130-146, 2015.

A. S. Don, X. Y. Lim, and T. A. Couttas, Re-configuration of sphingolipid metabolism by oncogenic transformation, Biomolecules, vol.4, pp.315-353, 2014.

B. Fielding, Tracing the fate of dietary fatty acids: Metabolic studies of postprandial lipaemia in human subjects, Proc. Nutr. Soc, vol.70, pp.342-350, 2011.

X. M. Persson, A. U. Blachnio-zabielska, and M. D. Jensen, Rapid measurement of plasma free fatty acid concentration and isotopic enrichment using lc/ms, J. Lipid Res, vol.51, pp.2761-2765, 2010.

J. M. Buescher, M. R. Antoniewicz, L. G. Boros, S. C. Burgess, H. Brunengraber et al., A roadmap for interpreting (13)c metabolite labeling patterns from cells, Curr. Opin. Biotechnol, vol.34, pp.189-201, 2015.

J. P. Argus, A. K. Yu, E. S. Wang, K. J. Williams, and S. J. Bensinger, An optimized method for measuring fatty acids and cholesterol in stable isotope-labeled cells, J. Lipid Res, vol.58, pp.460-468, 2017.

M. H. Oosterveer, T. H. Van-dijk, U. J. Tietge, T. Boer, R. Havinga et al., High fat feeding induces hepatic fatty acid elongation in mice, PLoS ONE, vol.4, p.6066, 2009.

P. Millard, F. Letisse, S. Sokol, and J. C. Portais, Isocor: Correcting ms data in isotope labeling experiments, Bioinformatics, vol.28, pp.1294-1296, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268343

C. D. Dinardo, E. M. Stein, S. De-botton, G. J. Roboz, J. K. Altman et al., Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML, N. Engl. J. Med, vol.378, pp.2386-2398, 2018.

J. Popovici-muller, R. M. Lemieux, E. Artin, J. O. Saunders, F. G. Salituro et al., Discovery of ag-120 (ivosidenib): A first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers, ACS Med. Chem. Lett, vol.9, pp.300-305, 2018.

D. Rohle, J. Popovici-muller, N. Palaskas, S. Turcan, C. Grommes et al., An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells, Science, vol.340, pp.626-630, 2013.

S. J. Ricoult, C. C. Dibble, J. M. Asara, and B. D. Manning, Sterol regulatory element binding protein regulates the expression and metabolic functions of wild-type and oncogenic IDH1, Mol. Cell Biol, vol.36, pp.2384-2395, 2016.

H. Boutzen, E. Saland, C. Larrue, F. De-toni, L. Gales et al., Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia, J. Exp. Med, vol.213, pp.483-497, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01886383