S. W. Admiral and P. M. Lafleur, Modelling of latent heat partitioning at a bog peatland, Agricultural and Forest Meteorology, vol.144, issue.3-4, pp.213-229, 2007.
DOI : 10.1016/j.agrformet.2007.02.005

R. Aerts, J. H. Cornelissen, and E. Dorrepaal, Plant performance in a warmer world: General responses of plants from cold, northern biomes and the importance of winter and spring events, Plant Ecology, vol.182, pp.65-77, 2006.

P. Albéric, P. Gautret, and D. Juchelka, irm-LC/MS: ? 13 C Analysis of Dissolved Organic Matter in Natural Waters, Thermo Fisher Scientific Application Note, p.30198, 2010.

J. A. Andrews, R. Matamala, K. M. Westover, and W. H. Schlesinger, Temperature effects on the diversity of soil heterotrophs and the ??13C of soil-respired CO2, Soil Biology and Biochemistry, vol.32, issue.5, pp.699-706, 2000.
DOI : 10.1016/S0038-0717(99)00206-0

E. L. Aronson and S. G. Mcnulty, Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality, Agricultural and Forest Meteorology, vol.149, issue.11, pp.1791-1799, 2009.
DOI : 10.1016/j.agrformet.2009.06.007

J. Balesdent, The significance of organic separates to carbon dynamics and its modelling in some cultivated soils, European Journal of Soil Science, vol.31, issue.4, pp.485-493, 1996.
DOI : 10.1111/j.1365-2389.1996.tb01848.x

R. Benner, M. L. Fogel, E. K. Sprague, and R. E. Hodson, Depletion of 13C in lignin and its implications for stable carbon isotope studies, Nature, vol.329, issue.6141, pp.708-710, 1987.
DOI : 10.1038/329708a0

P. O. Bethge, C. Holmström, and S. Juhlin, Quantitative gas chromatography of mixtures of simple sugars, Svensk Papperstidning, vol.69, pp.60-63, 1996.

N. Blair, A. Leu, E. Munoz, J. Olsen, and E. Kwong, Carbon isotopic fractionation in heterotrophic microbial metabolism, Applied and Environmental Microbiology, vol.50, pp.996-1001, 1985.

H. J. Bohnert, D. E. Nelson, and R. G. Jensen, Adaptations to Environmental Stresses, THE PLANT CELL ONLINE, vol.7, issue.7, pp.1099-1111, 1995.
DOI : 10.1105/tpc.7.7.1099

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC160917

A. V. Brader, J. F. Van-winden, S. J. Bohncke, C. J. Beets, J. Reichart et al., Fractionation of hydrogen, oxygen and carbon isotopes in n-alkanes and cellulose of three Sphagnum species, Organic Geochemistry, vol.41, issue.12, pp.1277-1284, 2010.
DOI : 10.1016/j.orggeochem.2010.09.006

A. Buttler, Permanent plot research in wet meadows and cutting experiment, pp.113-124, 1992.

D. Charman, Peatlands and Environmental Change, 2002.

V. Chaturvedi, A. Bartiss, and B. Wong, Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress., Journal of Bacteriology, vol.179, issue.1, pp.157-162, 1997.
DOI : 10.1128/jb.179.1.157-162.1997

M. R. Chivers, M. R. Turetsky, J. M. Waddington, J. W. Harden, and A. D. Mcguire, Effects of Experimental Water Table and Temperature Manipulations on Ecosystem CO2 Fluxes in an Alaskan Rich Fen, Ecosystems, vol.40, issue.8, pp.1329-1342, 2009.
DOI : 10.1007/s10021-009-9292-y

R. S. Clymo, Peat, Ecosystems of the World, 4A. Mires: Swamp, Bog, Fen and Moor, General Studies, pp.159-224, 1983.

A. Dabros and J. W. Fyles, Effects of open-top chambers and substrate type on biogeochemical processes at disturbed boreal forest sites in northwestern Quebec, Plant and Soil, vol.20, issue.1-2, pp.465-479, 2010.
DOI : 10.1007/s11104-009-0077-z

E. A. Davidson and I. A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, vol.63, issue.7081, pp.165-173, 2006.
DOI : 10.1038/nature04514

E. A. Davidson, S. E. Trumbore, and R. Amundson, Biogeochemistry -Soil warming and organic carbon content, Nature, vol.408, issue.6814, pp.789-790, 2000.
DOI : 10.1038/35048672

F. Delarue, F. Laggoun-défarge, J. R. Disnar, N. Lottier, and S. Gogo, in press. Organic matter sources and decay assessment in a Sphagnum-dominated peatland (Le Forbonnet): impact of moisture conditions, p.10

E. Dorrepaal, R. Aerts, J. H. Cornelissen, T. V. Callaghan, and R. S. Van-logtestijn, Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog, Global Change Biology, vol.86, issue.1, pp.93-104, 2004.
DOI : 10.1007/s004420100691

E. Dorrepaal, S. Toet, R. S. Van-logtestijn, E. Swart, M. J. Van-de-weg et al., Carbon respiration from subsurface peat accelerated by climate warming in the subarctic, Nature, vol.13, issue.7255, pp.616-79, 2009.
DOI : 10.1038/nature08216

N. Fenner, C. Freeman, and B. Reynolds, Hydrological effects on the diversity of phenolic degrading bacteria in a peatland: implications for carbon cycling, Soil Biology and Biochemistry, vol.37, issue.7, pp.1277-1287, 2005.
DOI : 10.1016/j.soilbio.2004.11.024

R. Gerdol, The Growth Dynamics of Sphagnum Based on Field Measurements in a Temperate Bog and on Laboratory Cultures, The Journal of Ecology, vol.83, issue.3, pp.431-437, 1995.
DOI : 10.2307/2261596

E. Gorham, Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming, Ecological Applications, vol.1, issue.2, pp.182-195, 1991.
DOI : 10.2307/1941811

P. M. Groffman, C. T. Driscoll, T. J. Fahey, J. P. Hardy, R. D. Fitzhugh et al., Colder soils in a warmer world: A snow manipulation study in a northern hardwood forest ecosystem, Biogeochemistry, vol.56, issue.2, pp.135-150, 2001.
DOI : 10.1023/A:1013039830323

K. Haider, Problems related to humification processes in soils of the temperate climate, Soil Biochemistry, pp.55-94, 1992.

K. Hansson, D. B. Kleja, K. Kalbitz, and H. Larsson, Amounts of carbon mineralised and leached as DOC during decomposition of Norway spruce needles and fine roots, Soil Biology and Biochemistry, vol.42, issue.2, pp.178-185, 2010.
DOI : 10.1016/j.soilbio.2009.10.013

R. D. Hollister, Response of wet meadow tundra to interannual and manipulated temperature variation: implications for climate change research, 1998.

R. D. Hollister and P. J. Webber, Biotic validation of small open-top chambers in a tundra ecosystem, Global Change Biology, vol.125, issue.7, pp.835-842, 2000.
DOI : 10.1111/j.1365-2486.1997.gcb143.x

C. P. Immirzi and E. Maltby, The global status of peatlands and their role in the carbon cycle, Wetlands Ecosystems Research Group, 1992.

K. Kalbitz, D. Schwesig, J. Schmerwitz, K. Kaiser, L. Haumaier et al., Changes in properties of soil-derived dissolved organic matter induced by biodegradation, Soil Biology and Biochemistry, vol.35, issue.8, pp.1129-1142, 2003.
DOI : 10.1016/S0038-0717(03)00165-2

O. Kracht and G. Gleixner, Isotope analysis of pyrolysis products from Sphagnum peat and dissolved organic matter from bog water, Organic Geochemistry, vol.31, issue.7-8, pp.645-654, 2000.
DOI : 10.1016/S0146-6380(00)00041-3

M. U. Kirschbaum, Will changes in soil organic carbon act as a positive or negative feedback on global warming?, Biogeochemistry, vol.48, issue.1, pp.21-51, 2000.
DOI : 10.1023/A:1006238902976

W. Knorr, I. C. Prentice, J. I. House, and E. A. Holland, Long-term sensitivity of soil carbon turnover to warming, Nature, vol.34, issue.7023, pp.298-301, 2005.
DOI : 10.1046/j.1365-2486.2001.00412.x

R. Laiho, Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels, Soil Biology and Biochemistry, vol.38, issue.8, pp.2011-2024, 2006.
DOI : 10.1016/j.soilbio.2006.02.017

J. Limpens, F. Berendse, C. Blodau, J. G. Canadell, C. Freeman et al., Peatlands and the carbon cycle: from local processes to global implications ??? a synthesis, Biogeosciences, vol.5, issue.5, pp.1475-1491, 2008.
DOI : 10.5194/bg-5-1475-2008

URL : https://hal.archives-ouvertes.fr/hal-00297992

P. M. Medeiros, M. F. Fernandes, R. P. Dick, and B. R. Simoneit, Seasonal variations in sugar contents and microbial community in a ryegrass soil, Chemosphere, vol.65, issue.5, pp.65-832, 2006.
DOI : 10.1016/j.chemosphere.2006.03.025

H. Mellegard, T. Stalheim, V. Hormazabal, P. E. Granum, and S. P. Hardy, against food-borne bacteria, Letters in Applied Microbiology, vol.76, issue.1, pp.85-90, 2009.
DOI : 10.1111/j.1472-765X.2009.02622.x

G. Ménot and S. J. Burns, Carbon isotopes in ombrogenic peat bog plants as climatic indicators: calibration from an altitudinal transect in Switzerland, Organic Geochemistry, vol.32, issue.2, pp.233-245, 2001.
DOI : 10.1016/S0146-6380(00)00170-4

T. R. Moore and R. Knowles, Methane emissions from fen, bog and swamp peatlands in Quebec, Biogeochemistry, vol.11, issue.1, pp.45-61, 1990.
DOI : 10.1007/BF00000851

W. C. Oechel, G. L. Vourlitis, S. J. Hastings, and S. A. Bochkarev, Flux Over Two Decades: Effects of Climate Change at Barrow, Alaska, Ecological Applications, vol.5, issue.3, pp.846-855, 1995.
DOI : 10.2307/1941992

R. H. Okland, T. Okland, and K. Rydgren, A Scandinavian perspective on ecological gradients in north-west European mires: reply to Wheeler and Proctor, Journal of Ecology, vol.43, issue.1, pp.481-486, 2001.
DOI : 10.1046/j.1365-2745.2001.00573.x

K. Opelt, V. Chobot, F. Hadacek, S. Schonmann, L. Eberl et al., Investigations of the structure and function of bacterial communities associated with Sphagnum mosses, Environmental Microbiology, vol.36, issue.11, pp.2795-2809, 2007.
DOI : 10.1111/j.1744-7909.2006.00271.x

A. Pedersen, Growth measurements of five Sphagnum species in south Norway, Norwegian Journal of Botany, vol.22, pp.277-284, 1975.

D. Said-pullicino, K. Kaiser, G. Guggenberger, and G. Gigliotti, Changes in the chemical composition of water-extractable organic matter during composting: Distribution between stable and labile organic matter pools, Chemosphere, vol.66, issue.11, pp.2166-2176, 2007.
DOI : 10.1016/j.chemosphere.2006.09.010

B. N. Smith and S. Epstein, Two Categories of 13C/12C Ratios for Higher Plants, PLANT PHYSIOLOGY, vol.47, issue.3, pp.380-384, 1971.
DOI : 10.1104/pp.47.3.380

P. F. Sullivan, S. J. Arens, R. A. Chimner, and J. M. Welker, Temperature and Microtopography Interact to Control Carbon Cycling in a High Arctic Fen, Ecosystems, vol.40, issue.26, pp.61-76, 2008.
DOI : 10.1007/s10021-007-9107-y

M. N. Thormann, A. V. Rice, and D. W. Beilman, Yeasts in peatlands: A review of richness and roles in peat decomposition, Wetlands, vol.60, issue.3, pp.761-772, 2007.
DOI : 10.1672/0277-5212(2007)27[761:YIPARO]2.0.CO;2

S. J. Traina, J. Novak, and N. E. Smeck, An Ultraviolet Absorbance Method of Estimating the Percent Aromatic Carbon Content of Humic Acids, Journal of Environment Quality, vol.19, issue.1, pp.151-153, 1990.
DOI : 10.2134/jeq1990.00472425001900010023x

T. Tsuboya, K. Takagi, H. Takahashi, Y. Kurashige, and N. Tase, Effect of pore structure on redistribution of subsurface water in Sarobetsu Mire, northern Japan, Journal of Hydrology, vol.252, issue.1-4, pp.100-115, 2001.
DOI : 10.1016/S0022-1694(01)00448-6

C. J. Volk, C. B. Volk, and L. A. Kaplan, Chemical composition of biodegradable dissolved organic matter in streamwater, Limnology and Oceanography, vol.42, issue.1, pp.39-44, 1997.
DOI : 10.4319/lo.1997.42.1.0039

J. M. Waddington and N. T. Roulet, Atmosphere-wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland, 1996.

J. Wasley, The effect of climate change on Antarctic terrestrial flora, 2004.

J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii et al., Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon, Environmental Science & Technology, vol.37, issue.20, pp.4702-4708, 2003.
DOI : 10.1021/es030360x

R. G. Wetzel, Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems, Hydrobiologia, vol.10, issue.1, pp.181-198, 1992.
DOI : 10.1007/BF00007000

B. D. Wheeler and M. C. Proctor, Ecological gradients, subdivisions and terminology of north-west European mires, Journal of Ecology, vol.43, issue.2, pp.187-203, 2000.
DOI : 10.1016/0304-3770(86)90049-5

R. J. Wicks, M. A. Moran, L. J. Pittman, and R. E. Hodson, Carbohydrate signatures of aquatic macrophytes and their dissolved degradation products as determined by a sensitive high-performance ion chromatography method, Applied and Environmental Microbiology, vol.57, pp.3135-3143, 1991.

C. Zaccone, G. Casiello, F. Longobardi, L. Bragazza, A. Sacco et al., Evaluating the " conservative " behavior of stable isotopic ratios (? 13 C, ? 15 N, and ? 18 O) in humic acids and their reliability as paleoenvironmental proxies along a peat sequence, 2011.

C. Zaccone, V. Orazio, W. Shotyk, and T. M. Miano, Chemical and spectroscopic investigation of porewater and aqueous extracts of corresponding peat samples throughout a bog core (Jura Mountains, Switzerland), Journal of Soils and Sediments, vol.113, issue.5, pp.443-456, 2009.
DOI : 10.1007/s11368-009-0093-x

C. Zaccone, D. Said-pullicino, G. Gigliotti, and T. M. Miano, Diagenetic trends in the phenolic constituents of Sphagnum-dominated peat and its corresponding humic acid fraction, Organic Geochemistry, vol.39, issue.7, pp.830-838, 2008.
DOI : 10.1016/j.orggeochem.2008.04.018

A. Zsolnay, Dissolved organic matter: artefacts, definitions, and functions, Geoderma, vol.113, issue.3-4, pp.187-189, 2003.
DOI : 10.1016/S0016-7061(02)00361-0