T. P. Van-boeckel, C. Brower, M. Gilbert, B. T. Grenfell, S. A. Levin et al., Global trends in antimicrobial use in food animals, Proc. Natl. Acad. Sci, pp.5649-5654, 2015.
DOI : 10.1371/journal.pone.0096084

S. Bartelt-hunt, D. D. Snow, T. Damon-powell, and D. Miesbach, Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities, Journal of Contaminant Hydrology, vol.123, issue.3-4, pp.94-103, 2011.
DOI : 10.1016/j.jconhyd.2010.12.010

S. Obimakinde, O. Fatoki, B. Opeolu, and O. Olatunji, Veterinary pharmaceuticals in aqueous systems and associated effects: an update, Environmental Science and Pollution Research, vol.99, issue.9, pp.3274-3297, 2017.
DOI : 10.1016/j.chemosphere.2013.10.091

R. R. Kumar, J. T. Lee, and J. Y. Cho, Fate, occurrence, and toxicity of veterinary antibiotics in environment, Journal of the Korean Society for Applied Biological Chemistry, vol.408, issue.6, pp.701-709, 2012.
DOI : 10.1016/j.scitotenv.2009.11.014

A. Van-epps and L. Blaney, Antibiotic Residues in Animal Waste: Occurrence and Degradation in Conventional Agricultural Waste Management Practices, Current Pollution Reports, vol.9, issue.5, pp.135-155, 2016.
DOI : 10.1186/1744-8603-9-48

L. Du and W. Liu, Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review, Agronomy for Sustainable Development, vol.355, issue.6, pp.309-327, 2012.
DOI : 10.1016/S0140-6736(00)02270-4

URL : https://hal.archives-ouvertes.fr/hal-00930539

K. Kim, G. Owens, S. Kwon, K. So, D. Lee et al., Occurrence and Environmental Fate of Veterinary Antibiotics in the Terrestrial Environment, Water, Air, & Soil Pollution, vol.36, issue.9, pp.163-174, 2011.
DOI : 10.1016/S1872-2040(08)60063-8

R. P. Tasho and J. Y. Cho, Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review, Science of The Total Environment, vol.563, issue.564, pp.563-564, 2016.
DOI : 10.1016/j.scitotenv.2016.04.140

S. A. Kools, A. Boxall, J. F. Moltmann, G. Bryning, J. Koschorreck et al., A Ranking of European Veterinary Medicines Based on Environmental Risks, Integrated Environmental Assessment and Management, vol.4, issue.4, pp.399-408, 2008.
DOI : 10.1897/IEAM_2008-002.1

A. B. , Veterinary Medicines and the Environment, Comp. Vet. Pharmacol, pp.291-314, 2010.

D. S. Jeon, T. Oh, M. Park, D. S. Lee, Y. J. Lim et al., Reactions and Behavior Relevant to Chemical and Physical Properties of Various Veterinary Antibiotics in Soil, pp.59-391, 2014.

H. Bártíková, R. Podlipná, and L. Skálová, Veterinary drugs in the environment and their toxicity to plants, Chemosphere, vol.144, pp.2290-2301, 2016.
DOI : 10.1016/j.chemosphere.2015.10.137

A. Iglesias, C. Nebot, J. M. Miranda, B. I. Vázquez, and A. Cepeda, Detection and quantitative analysis of 21 veterinary drugs in river water using high-pressure liquid chromatography coupled to tandem mass spectrometry, Environmental Science and Pollution Research, vol.1154, issue.8, pp.3235-3249, 2012.
DOI : 10.1016/j.chroma.2007.03.105

A. Iglesias, C. Nebot, B. I. Vázquez, J. M. Miranda, C. M. Abuín et al., Detection of veterinary drug residues in surface waters collected nearby farming areas in Galicia, North of Spain, Environmental Science and Pollution Research, vol.179, issue.3, pp.2367-2377, 2014.
DOI : 10.1016/j.jhazmat.2010.03.110

W. Xie, Q. Shen, and F. J. Zhao, Antibiotics and antibiotic resistance from animal manures to soil: a review, European Journal of Soil Science, vol.98, issue.507, pp.181-195, 2018.
DOI : 10.1016/j.envint.2016.11.001

URL : http://onlinelibrary.wiley.com/doi/10.1111/ejss.12494/pdf

N. Kemper, Veterinary antibiotics in the aquatic and terrestrial environment, Ecological Indicators, vol.8, issue.1, pp.1-13, 2008.
DOI : 10.1016/j.ecolind.2007.06.002

M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali et al., Photochemical Degradation of Marbofloxacin and Enrofloxacin in Natural Waters, Environmental Science & Technology, vol.44, issue.12, pp.44-4564, 2010.
DOI : 10.1021/es100278n

J. J. Guerard, Y. Chin, H. Mash, and C. M. Hadad, Photochemical Fate of Sulfadimethoxine in Aquaculture Waters, Environmental Science & Technology, vol.43, issue.22, pp.43-8587, 2009.
DOI : 10.1021/es9020537

P. Sun, S. G. Pavlostathis, and C. Huang, Photodegradation of Veterinary Ionophore Antibiotics under UV and Solar Irradiation, Environmental Science & Technology, vol.48, issue.22, pp.13188-13196, 2014.
DOI : 10.1021/es5034525

C. P. Youngquist, S. M. Mitchell, and C. G. Cogger, Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review, Journal of Environment Quality, vol.45, issue.2
DOI : 10.2134/jeq2015.05.0256

M. Wang and D. E. Helbling, A non-target approach to identify disinfection byproducts of structurally similar sulfonamide antibiotics, Water Research, vol.102, pp.241-251, 2016.
DOI : 10.1016/j.watres.2016.06.042

H. Dong, Z. Qiang, J. Hu, and J. Qu, Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes, Water Research, vol.121, 2017.
DOI : 10.1016/j.watres.2017.05.030

URL : http://ir.rcees.ac.cn/bitstream/311016/39487/1/Degradation%20of%20chloramphenicol%20by%20UVchlorine%20treatment%20Kinetics%2c%20mechanism%20and%20enhanced%20formation%20of%20halonitromethanes.pdf

C. Postigo and S. D. Richardson, Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment, Journal of Hazardous Materials, vol.279, pp.461-475, 2014.
DOI : 10.1016/j.jhazmat.2014.07.029

V. R. Urbano, M. G. Maniero, M. Pérez-moya, and J. R. Guimarães, Influence of pH and ozone dose on sulfaquinoxaline ozonation, Journal of Environmental Management, vol.195, 2017.
DOI : 10.1016/j.jenvman.2016.08.019

P. M. Peltzer, R. C. Lajmanovich, A. M. Attademo, C. M. Junges, C. M. Teglia et al., Ecotoxicity of veterinary enrofloxacin and ciprofloxacin antibiotics on anuran amphibian larvae, Environmental Toxicology and Pharmacology, vol.51, pp.114-123, 2017.
DOI : 10.1016/j.etap.2017.01.021

S. Jiao, S. Zheng, D. Yin, L. Wang, and L. Chen, Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria, Chemosphere, vol.73, issue.3, 2008.
DOI : 10.1016/j.chemosphere.2008.05.042

K. H. Wammer, A. R. Korte, R. A. Lundeen, J. E. Sundberg, K. Mcneill et al., Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin, Water Research, vol.47, issue.1, pp.439-448, 2013.
DOI : 10.1016/j.watres.2012.10.025

S. L. Leavey-roback, S. W. Krasner, and I. , Mel) H. Suffet, Veterinary antibiotics used in animal agriculture as NDMA precursors, Chemosphere, vol.164, 2016.

M. Sánchez-polo, J. Rivera-utrilla, G. Prados-joya, M. A. Ferro-garcía, and I. Bautista-toledo, Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system, Water Research, vol.42, issue.15, pp.4163-4171, 2008.
DOI : 10.1016/j.watres.2008.05.034

D. S. Aga, M. Lenczewski, D. Snow, J. Muurinen, J. B. Sallach et al., Challenges in the Measurement of Antibiotics and in Evaluating Their Impacts in Agroecosystems: A Critical Review, Journal of Environment Quality, vol.45, issue.2
DOI : 10.2134/jeq2015.07.0393

A. B. Boxall, D. W. Kolpin, B. Halling-sørensen, and J. Tolls, Are veterinary medicines causing environmental risks?, J Env. Sci Technol, vol.37, pp.10-1021, 2003.
DOI : 10.1021/es032519b

URL : http://pubs.acs.org/doi/pdf/10.1021/es032519b

V. Homem and L. Santos, Degradation and removal methods of antibiotics from aqueous matrices ??? A review, Journal of Environmental Management, vol.92, issue.10, 2011.
DOI : 10.1016/j.jenvman.2011.05.023

F. Kaczala and S. Blum, The Occurrence of Veterinary Pharmaceuticals in the Environment: A Review, Current Analytical Chemistry, vol.12, issue.3, pp.169-182, 2016.
DOI : 10.2174/1573411012666151009193108

S. J. Khan, D. J. Roser, C. M. Davies, G. M. Peters, R. M. Stuetz et al., Chemical contaminants in feedlot wastes: Concentrations, effects and attenuation, Environment International, vol.34, issue.6, pp.839-859, 2008.
DOI : 10.1016/j.envint.2007.10.007

K. Kümmerer, Antibiotics in the aquatic environment ? A review ? Part I, Chemosphere, pp.75-417, 2009.

K. Kümmerer, Antibiotics in the aquatic environment ??? A review ??? Part II, Chemosphere, vol.75, issue.4, pp.435-441, 2009.
DOI : 10.1016/j.chemosphere.2008.12.006

J. Lumaret, F. Errouissi, K. Floate, J. Rombke, and K. Wardhaugh, A Review on the Toxicity and Non-Target Effects of Macrocyclic Lactones in Terrestrial and Aquatic Environments, Current Pharmaceutical Biotechnology, vol.13, issue.6, pp.13-1004, 2012.
DOI : 10.2174/138920112800399257

A. K. Sarmah, M. T. Meyer, and A. B. , A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, vol.65, issue.5, pp.725-759, 2006.
DOI : 10.1016/j.chemosphere.2006.03.026

M. Slana and M. S. Dolenc, Environmental Risk Assessment of antimicrobials applied in veterinary medicine???A field study and laboratory approach, Environmental Toxicology and Pharmacology, vol.35, issue.1, 2013.
DOI : 10.1016/j.etap.2012.11.017

D. D. Snow, S. L. Bartelt, ?. Hunt, D. L. Brown, J. Sangster et al., Detection, Occurrence and Fate of Pharmaceuticals and Steroid Hormones in Agricultural Environments, Water Environment Research, vol.82, issue.10, pp.869-882, 2010.
DOI : 10.2175/106143010X12756668800618

S. Thiele-bruhn, Pharmaceutical antibiotic compounds in soils ??? a review, Journal of Plant Nutrition and Soil Science, vol.166, issue.2, pp.145-167, 2003.
DOI : 10.1002/jpln.200390023

J. Tolls, Sorption of Veterinary Pharmaceuticals in Soils:?? A Review, Environmental Science & Technology, vol.35, issue.17, 2001.
DOI : 10.1021/es0003021

P. J. Van-den-brink, J. V. Tarazona, K. R. Solomon, T. Knacker, N. W. Van-den-brink et al., THE USE OF TERRESTRIAL AND AQUATIC MICROCOSMS AND MESOCOSMS FOR THE ECOLOGICAL RISK ASSESSMENT OF VETERINARY MEDICINAL PRODUCTS, Environmental Toxicology and Chemistry, vol.24, issue.4, pp.24-820, 2005.
DOI : 10.1897/04-268R.1

S. R. Wegst-uhrich, D. A. Navarro, L. Zimmerman, and D. S. Aga, Assessing antibiotic sorption in soil: a literature review and new case studies on sulfonamides and macrolides, Chemistry Central Journal, vol.8, issue.1, 2014.
DOI : 10.1016/S0045-6535(99)00450-6

URL : https://ccj.springeropen.com/track/pdf/10.1186/1752-153X-8-5?site=ccj.springeropen.com

Y. Li, B. Liu, X. Zhang, J. Wang, and S. Gao, The distribution of veterinary antibiotics in the river system in a livestock-producing region and interactions between different phases, Environmental Science and Pollution Research, vol.159, issue.16, pp.16542-16551, 2016.
DOI : 10.1016/j.envpol.2011.04.037

L. Yao, Y. Wang, L. Tong, Y. Li, Y. Deng et al., Seasonal variation of antibiotics concentration in the aquatic environment: a case study at Jianghan Plain, central China, Science of The Total Environment, vol.527, issue.528, pp.527-528, 2015.
DOI : 10.1016/j.scitotenv.2015.04.091

L. Yao, Y. Wang, L. Tong, Y. Deng, Y. Li et al., Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China, Ecotoxicology and Environmental Safety, vol.135, pp.236-242, 2017.
DOI : 10.1016/j.ecoenv.2016.10.006

Y. Yang, Y. S. Ok, K. Kim, E. E. Kwon, and Y. F. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, Science of The Total Environment, vol.596, issue.597, pp.596-597
DOI : 10.1016/j.scitotenv.2017.04.102

M. J. Ahmed, Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review, Environmental Toxicology and Pharmacology, vol.50, 2017.
DOI : 10.1016/j.etap.2017.01.004

J. Olsen, E. Björklund, K. A. Krogh, and M. Hansen, Development of an analytical methodology for the determination of the antiparasitic drug toltrazuril and its two metabolites in surface water, soil and animal manure, Analytica Chimica Acta, vol.755, pp.69-76, 2012.
DOI : 10.1016/j.aca.2012.10.015

T. S. Thompson, D. K. Noot, F. Forrest, J. P. Van-den-heever, J. Kendall et al., Large volume injection for the direct analysis of ionophores and avermectins in surface water by liquid chromatography???electrospray ionization tandem mass spectrometry, Analytica Chimica Acta, vol.633, issue.1, pp.127-135, 2009.
DOI : 10.1016/j.aca.2008.11.024

M. J. Bernot, L. Smith, and . Frey, Human and veterinary pharmaceutical abundance and transport in a rural central Indiana stream influenced by confined animal feeding operations (CAFOs), Science of The Total Environment, vol.445, issue.446, pp.445-446, 2013.
DOI : 10.1016/j.scitotenv.2012.12.039

L. Zhou, Q. L. Wu, B. Zhang, Y. Zhao, and B. Zhao, Occurrence, spatiotemporal distribution, mass balance and ecological risks of antibiotics in subtropical shallow Lake Taihu, China, Environmental Science: Processes & Impacts, vol.36, issue.36, pp.10-1039, 2016.
DOI : 10.1016/j.etap.2013.09.001

L. Tong, S. Huang, Y. Wang, H. Liu, and M. Li, Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China, Science of The Total Environment, vol.497, issue.498, pp.497-498, 2014.
DOI : 10.1016/j.scitotenv.2014.07.068

L. Tong, P. Li, Y. Wang, K. Zhu, and S. Ms, Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS, Chemosphere, vol.74, issue.8, 2009.
DOI : 10.1016/j.chemosphere.2008.10.051

S. Managaki, A. Murata, H. Takada, B. C. Tuyen, and N. H. Chiem, Distribution of Macrolides, Sulfonamides, and Trimethoprim in Tropical Waters: Ubiquitous Occurrence of Veterinary Antibiotics in the Mekong Delta, Environmental Science & Technology, vol.41, issue.23, pp.41-8004, 2007.
DOI : 10.1021/es0709021

Y. Luo, L. Xu, M. Rysz, Y. Wang, H. Zhang et al., Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China, Environmental Science & Technology, vol.45, issue.5, pp.1827-1833, 2011.
DOI : 10.1021/es104009s

J. Jiang, L. Ye, and Y. Chen, Contamination of Surface Water with Veterinary Antibiotics in Tiaoxi River Basin, East China, Asian Journal of Chemistry, vol.26, issue.24, pp.8453-8459, 2014.
DOI : 10.14233/ajchem.2014.17941

URL : https://doi.org/10.14233/ajchem.2014.17941

V. Burke, D. Richter, J. Greskowiak, A. Mehrtens, L. Schulz et al., Occurrence of Antibiotics in Surface and Groundwater of a Drinking Water Catchment Area in Germany, Water Environment Research, vol.88, issue.7, pp.652-659, 2016.
DOI : 10.2175/106143016X14609975746604

A. Selvam, K. Kwok, Y. Chen, A. Cheung, K. S. Leung et al., Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong, Environmental Science and Pollution Research, vol.179, issue.10, pp.9058-9066, 2017.
DOI : 10.1016/j.jhazmat.2010.03.110

Y. S. Ok, S. Kim, K. Kim, S. S. Lee, D. H. Moon et al., Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea, Environmental Monitoring and Assessment, vol.49, issue.5/6, pp.693-701, 2011.
DOI : 10.1007/s10661-008-0513-1

R. Wei, F. Ge, S. Huang, M. Chen, and R. Wang, Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China, Chemosphere, vol.82, issue.10, pp.1408-1414, 2011.
DOI : 10.1016/j.chemosphere.2010.11.067

Y. Kim, K. Lee, and K. Choi, Effect of runoff discharge on the environmental levels of 13 veterinary antibiotics: A case study of Han River and Kyungahn Stream, South Korea, Marine Pollution Bulletin, vol.107, issue.1, pp.347-354, 2016.
DOI : 10.1016/j.marpolbul.2016.03.011

X. Zhang, Y. Li, B. Liu, J. Wang, C. Feng et al., Prevalence of Veterinary Antibiotics and Antibiotic-Resistant Escherichia coli in the Surface Water of a Livestock Production Region in Northern China, PLoS ONE, vol.458, issue.236
DOI : 10.1371/journal.pone.0111026.s004

Y. Matsui, T. Ozu, T. Inoue, and T. Matsushita, Occurrence of a veterinary antibiotic in streams in a small catchment area with livestock farms, Desalination, vol.226, issue.1-3, 2008.
DOI : 10.1016/j.desal.2007.01.243

J. Pailler, A. Krein, L. Pfister, L. Hoffmann, and C. Guignard, Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg, Science of The Total Environment, vol.407, issue.16, pp.4736-4743, 2009.
DOI : 10.1016/j.scitotenv.2009.04.042

M. S. Díaz-cruz, M. J. García-galán, and D. Barceló, Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography???quadrupole linear ion trap???mass spectrometry, Journal of Chromatography A, vol.1193, issue.1-2, pp.50-59, 2008.
DOI : 10.1016/j.chroma.2008.03.029

A. Murata, H. Takada, K. Mutoh, H. Hosoda, A. Harada et al., Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers, Science of The Total Environment, vol.409, issue.24, pp.5305-5312, 2011.
DOI : 10.1016/j.scitotenv.2011.09.014

A. Pena, D. Chmielova, C. M. Lino, and P. Solich, Determination of fluoroquinolone antibiotics in surface waters from Mondego River by high performance liquid chromatography using a monolithic column, Journal of Separation Science, vol.38, issue.17, pp.2924-2928, 2007.
DOI : 10.1002/jssc.200700363

S. Kurwadkar, V. Sicking, B. Lambert, A. Mcfarland, and F. Mitchell, Preliminary studies on occurrence of monensin antibiotic in Bosque River Watershed, Journal of Environmental Sciences, vol.25, issue.2, pp.268-273, 2013.
DOI : 10.1016/S1001-0742(12)60041-2

P. Sun, D. Barmaz, M. L. Cabrera, S. G. Pavlostathis, and C. Huang, Detection and quantification of ionophore antibiotics in runoff, soil and poultry litter, Journal of Chromatography A, vol.1312, pp.1312-1322, 2013.
DOI : 10.1016/j.chroma.2013.08.044

M. Zrn?i?, M. Gros, S. Babi?, M. Ka?telan-macan, D. Barcelo et al., Analysis of anthelmintics in surface water by ultra high performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry, Chemosphere, vol.99, pp.224-232, 2014.
DOI : 10.1016/j.chemosphere.2013.10.091

M. Wagil, J. Maszkowska, A. Bia?k-bieli?ska, P. Stepnowski, and J. Kumirska, A comprehensive approach to the determination of two benzimidazoles in environmental samples, Chemosphere, vol.119, 2015.
DOI : 10.1016/j.chemosphere.2014.04.106

M. Wagil, A. Bia?k-bieli?ska, J. Maszkowska, P. Stepnowski, and J. Kumirska, Critical points in the evaluation of analytical methods based on liquid chromatography separation for the determination of doramectin in different environmental samples, Chemosphere, vol.119, 2015.
DOI : 10.1016/j.chemosphere.2014.03.137

M. Wagil, J. Maszkowska, A. Bia?k-bieli?ska, M. Caban, P. Stepnowski et al., Determination of metronidazole residues in water, sediment and fish tissue samples, Chemosphere, vol.119, 2014.
DOI : 10.1016/j.chemosphere.2013.12.061

F. Hu, L. He, J. Yang, K. Bian, Z. Wang et al., Determination of 26 veterinary antibiotics residues in water matrices by lyophilization in combination with LC???MS/MS, Journal of Chromatography B, vol.949, issue.950, pp.949-950, 2014.
DOI : 10.1016/j.jchromb.2014.01.008

N. Watanabe, B. A. Bergamaschi, K. A. Loftin, M. T. Meyer, and T. Harter, Use and Environmental Occurrence of Antibiotics in Freestall Dairy Farms with Manured Forage Fields, Environmental Science & Technology, vol.44, issue.17, pp.6591-6600, 2010.
DOI : 10.1021/es100834s

X. Hu, Q. Zhou, and Y. Luo, Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China, Environmental Pollution, vol.158, issue.9, 2010.
DOI : 10.1016/j.envpol.2010.05.023

M. J. García-galán, T. Garrido, J. Fraile, A. Ginebreda, M. S. Díaz-cruz et al., Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain), Journal of Hydrology, vol.383, issue.1-2, pp.93-101, 2010.
DOI : 10.1016/j.jhydrol.2009.06.042

F. Balzer, S. Zuhlke, and S. Hannappel, Antibiotics in groundwater under locations with high livestock density in Germany, Water Science and Technology: Water Supply, vol.16, issue.5, pp.1361-1369, 2016.
DOI : 10.2166/ws.2016.050

N. Watanabe, T. H. Harter, and B. A. Bergamaschi, Environmental Occurrence and Shallow Ground Water Detection of the Antibiotic Monensin from Dairy Farms, Journal of Environment Quality, vol.37, issue.5_Supplement, 2008.
DOI : 10.2134/jeq2007.0371

, Campagne nationale d'occurrence des résidus de medicaments dans les eaux destinées à la consummation humaine, ANSES, 2011.

Y. M. Awad, S. Kim, S. A. Abd-el-azeem, K. Kim, K. Kim et al., Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility, Environmental Earth Sciences, vol.18, issue.3, pp.1433-1440, 2014.
DOI : 10.1002/rcm.1598

A. Jaffrézic, E. Jardé, A. Soulier, L. Carrera, E. Marengue et al., Veterinary pharmaceutical contamination in mixed land use watersheds: from agricultural headwater to water monitoring watershed, Science of The Total Environment, vol.609, pp.992-1000, 2017.
DOI : 10.1016/j.scitotenv.2017.07.206

D. J. Lapworth, N. Baran, M. E. Stuart, and R. S. Ward, Emerging organic contaminants in groundwater: A review of sources, fate and occurrence, Environmental Pollution, vol.163, 2012.
DOI : 10.1016/j.envpol.2011.12.034

URL : https://hal.archives-ouvertes.fr/hal-00687127

D. D. Snow, S. L. Bartelt-hunt, S. E. Saunders, S. L. Devivo, and D. A. , Detection, Occurrence and Fate of Emerging Contaminants in Agricultural Environments, Water Environment Research, vol.80, issue.10, pp.868-2092, 2008.
DOI : 10.2175/106143008X328518

, Summary report on antimicrobials sold or distributed for use in food-producing animal, Food and Drug Administration (FDA), 2017.

Y. Hu and H. Cheng, Health risk from veterinary antimicrobial use in China's food animal production and its reduction, Environmental Pollution, vol.219, pp.993-997, 2016.
DOI : 10.1016/j.envpol.2016.04.099

A. European-medicines, European Surveillance of Veterinary Antimicrobial Consumption. Sales of veterinary antimicrobial agents in 30 European countries in 2015, 2017.

, Regulation (EC) No. 1831/2003 of the European Parliament, European Commission (EC) on Additives for Use in Animal Nutrition, 2003.

D. Méheust, A. Chevance, and G. Moulin, , 2017.

, Veterinary Medicines Directorate, UK Veterinary Antibiotic Resistance and Sales Surveillance Report, 2016.

P. Collignon and A. Voss, China, what antibiotics and what volumes are used in food production animals?, Antimicrobial Resistance and Infection Control, vol.11, issue.5, 2015.
DOI : 10.1016/S1473-3099(11)70059-7

W. Y. Mo, Z. Chen, H. M. Leung, and A. O. Leung, Application of veterinary antibiotics in China???s aquaculture industry and their potential human health risks, Environmental Science and Pollution Research, vol.159, issue.10, pp.8978-8989, 2017.
DOI : 10.1016/j.envpol.2011.04.037

A. Ministry, Food and Rural Affairs (MAFRA), Monitoring and characterization of antimicrobial resistance of bacteria from livestock products, 2015.

A. Ministry, Sales Amounts and Sales Volumes (Active Substance) of Antibiotics, Synthetic Antibacterials, Forestry & Fisheries (MAFF) Antihelmintics and Antiprotozoals, 2015.

A. Ministry, Sales Amounts and Sales Volumes (Active Substance) of Antibiotics, Synthetic Antibacterials, Forestry & Fisheries (MAFF) Antihelmintics and Antiprotozoals, 2007.

, Australian Pesticides and Veterinary Medicines Authority (APVMA) Quantity of antimicrobial products sold for veterinary use in Australia, 2005.

, Ministry for Primary Industries, 2011.

D. Dong, L. Zhang, S. Liu, Z. Guo, and X. Hua, Antibiotics in water and sediments from Liao River in Jilin Province, China: occurrence, distribution, and risk assessment, Environmental Earth Sciences, vol.159, issue.16, pp.10-1007, 2016.
DOI : 10.1016/j.envpol.2011.03.034

D. Cheng, X. Liu, S. Zhao, B. Cui, J. Bai et al., Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China, Science of The Total Environment, vol.578, pp.649-659, 2017.
DOI : 10.1016/j.scitotenv.2016.11.012

K. Schauss, A. Focks, H. Heuer, A. Kotzerke, H. Schmitt et al., Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems, TrAC Trends in Analytical Chemistry, vol.28, issue.5, pp.612-618, 2009.
DOI : 10.1016/j.trac.2009.02.009

S. Jechalke, H. Heuer, J. Siemens, W. Amelung, and K. Smalla, Fate and effects of veterinary antibiotics in soil, Trends in Microbiology, vol.22, issue.9, 2014.
DOI : 10.1016/j.tim.2014.05.005

Q. Li, J. Gao, Q. Zhang, L. Liang, and H. Tao, Distribution and Risk Assessment of Antibiotics in a Typical River in North China Plain, Bulletin of Environmental Contamination and Toxicology, vol.41, issue.7, pp.478-483, 2017.
DOI : 10.1080/10643380903392692

J. Yang, G. Ying, J. Zhao, R. Tao, H. Su et al., Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC???MS/MS, Science of The Total Environment, vol.408, issue.16, pp.3424-3432, 2010.
DOI : 10.1016/j.scitotenv.2010.03.049

S. Kim and K. Carlson, Temporal and Spatial Trends in the Occurrence of Human and Veterinary Antibiotics in Aqueous and River Sediment Matrices, Environmental Science & Technology, vol.41, issue.1, pp.41-50, 2007.
DOI : 10.1021/es060737+

X. Liang, B. Chen, X. Nie, Z. Shi, X. Huang et al., The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China, Chemosphere, vol.92, issue.11, pp.1410-1416, 2013.
DOI : 10.1016/j.chemosphere.2013.03.044

D. Cheng, X. Liu, L. Wang, W. Gong, G. Liu et al., Seasonal variation and sediment???water exchange of antibiotics in a shallower large lake in North China, Science of The Total Environment, vol.476, issue.477, pp.476-477, 2014.
DOI : 10.1016/j.scitotenv.2014.01.010

L. Zhou, G. Ying, J. Zhao, J. Yang, L. Wang et al., Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China, Environmental Pollution, vol.159, issue.7, pp.1877-1885, 2011.
DOI : 10.1016/j.envpol.2011.03.034

M. Schaffer and T. Licha, A framework for assessing the retardation of organic molecules in groundwater: Implications of the species distribution for the sorption-influenced transport, Science of The Total Environment, vol.524, issue.525, pp.524-525, 2015.
DOI : 10.1016/j.scitotenv.2015.04.006

L. Ge, J. Chen, X. Qiao, J. Lin, and X. Cai, Light-Source-Dependent Effects of Main Water Constituents on Photodegradation of Phenicol Antibiotics: Mechanism and Kinetics, Environmental Science & Technology, vol.43, issue.9, pp.3101-3107, 2009.
DOI : 10.1021/es8031727

R. Li, C. Zhao, B. Yao, D. Li, S. Yan et al., Photochemical Transformation of Aminoglycoside Antibiotics in Simulated Natural Waters, Environmental Science & Technology, vol.50, issue.6, pp.2921-2930, 2016.
DOI : 10.1021/acs.est.5b05234

L. Ge, J. Chen, X. Wei, S. Zhang, X. Qiao et al., Aquatic Photochemistry of Fluoroquinolone Antibiotics: Kinetics, Pathways, and Multivariate Effects of Main Water Constituents, Environmental Science & Technology, vol.44, issue.7, pp.2400-2405, 2010.
DOI : 10.1021/es902852v

S. Babi?, M. Peri?a, and I. ?kori?, Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media, Chemosphere, vol.91, issue.11
DOI : 10.1016/j.chemosphere.2012.12.072

Y. Chen, C. Hu, J. Qu, and M. Yang, Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation, Journal of Photochemistry and Photobiology A: Chemistry, vol.197, issue.1, pp.81-87, 2008.
DOI : 10.1016/j.jphotochem.2007.12.007

D. Prabhakaran, P. Sukul, M. Lamshöft, M. A. Maheswari, S. Zühlke et al., Photolysis of difloxacin and sarafloxacin in aqueous systems, Chemosphere, vol.77, issue.6, pp.739-746, 2009.
DOI : 10.1016/j.chemosphere.2009.08.031

Y. Li, J. Niu, and W. Wang, Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products, Chemosphere, vol.85, issue.5, pp.892-897, 2011.
DOI : 10.1016/j.chemosphere.2011.07.008

M. Sturini, A. Speltini, F. Maraschi, L. Pretali, A. Profumo et al., Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts, Water Research, vol.46, issue.17, pp.5575-5582, 2012.
DOI : 10.1016/j.watres.2012.07.043

Y. Li, J. Niu, E. Shang, M. Zheng, and T. Luan, Effects of nitrate and humic acid on enrofloxacin photolysis in an aqueous system under three light conditions: kinetics and mechanism, Environmental Chemistry, vol.11, issue.3, 2014.
DOI : 10.1071/EN13192

R. Xuan, L. Arisi, Q. Wang, S. R. Yates, and K. C. Biswas, Hydrolysis and photolysis of oxytetracycline in aqueous solution, Journal of Environmental Science and Health, Part B, vol.67, issue.1, pp.73-81, 2009.
DOI : 10.1002/jps.2600671107

S. Bahnmüller, U. Von-gunten, and S. Canonica, Sunlight-induced transformation of sulfadiazine and sulfamethoxazole in surface waters and wastewater effluents, Water Research, vol.57, 2014.
DOI : 10.1016/j.watres.2014.03.019

B. Xu, D. Mao, Y. Luo, and L. Xu, Sulfamethoxazole biodegradation and biotransformation in the water???sediment system of a natural river, Bioresource Technology, vol.102, issue.14, pp.7069-7076, 2011.
DOI : 10.1016/j.biortech.2011.04.086

M. Radke, C. Lauwigi, G. Heinkele, T. E. Mürdter, and M. , Fate of the Antibiotic Sulfamethoxazole and Its Two Major Human Metabolites in a Water Sediment Test, Environmental Science & Technology, vol.43, issue.9, pp.3135-3141, 2009.
DOI : 10.1021/es900300u

T. Su, H. Deng, J. P. Benskin, and M. Radke, Biodegradation of sulfamethoxazole phototransformation products in a water/sediment test, Chemosphere, vol.148, 2016.

E. Adamek, W. Baran, and A. Sobczak, Assessment of the biodegradability of selected sulfa drugs in two polluted rivers in Poland: Effects of seasonal variations, accidental contamination, turbidity and salinity, Journal of Hazardous Materials, vol.313, 2016.
DOI : 10.1016/j.jhazmat.2016.03.064

K. Kümmerer, Pharmaceuticals in the environment: sources, fate, effects and risks ; with 62 tables, 3., rev. and enl, 2008.

A. Bia?k-bieli?ska, S. Stolte, M. Matzke, A. Fabia?ska, J. Maszkowska et al., Hydrolysis of sulphonamides in aqueous solutions, Journal of Hazardous Materials, vol.221, issue.222, pp.221-222, 2012.
DOI : 10.1016/j.jhazmat.2012.04.044

M. J. García-galán, M. S. Díaz-cruz, and D. Barceló, Kinetic studies and characterization of photolytic products of sulfamethazine, sulfapyridine and their acetylated metabolites in water under simulated solar irradiation, Water Research, vol.46, issue.3, pp.711-722, 2012.
DOI : 10.1016/j.watres.2011.11.035

N. D. Khaleel, W. M. Mahmoud, G. M. Hadad, R. A. Abdel-salam, and K. Kümmerer, Photolysis of sulfamethoxypyridazine in various aqueous media: Aerobic biodegradation and identification of photoproducts by, J. Hazard. Mater, pp.244-245, 2013.

X. Niu, J. Glady-croué, and J. Croué, Photodegradation of sulfathiazole under simulated sunlight: Kinetics, photo-induced structural rearrangement, and antimicrobial activities of photoproducts, Water Research, vol.124, pp.576-583, 2017.
DOI : 10.1016/j.watres.2017.08.019

K. H. Wammer, K. C. Anderson, P. R. Erickson, S. Kliegman, M. E. Moffatt et al., Environmental Photochemistry of Altrenogest: Photoisomerization to a Bioactive Product with Increased Environmental Persistence via Reversible Photohydration, Environ. Sci. Technol, pp.50-7480, 2016.

Z. Ye, H. S. Weinberg, and M. T. Meyer, Trace Analysis of Trimethoprim and Sulfonamide, Macrolide, Quinolone, and Tetracycline Antibiotics in Chlorinated Drinking Water Using Liquid Chromatography Electrospray Tandem Mass Spectrometry, Analytical Chemistry, vol.79, issue.3, pp.1135-1144, 2007.
DOI : 10.1021/ac060972a

H. W. Leung, L. Jin, S. Wei, M. M. Tsui, B. Zhou et al., Pharmaceuticals in Tap Water: Human Health Risk Assessment and Proposed Monitoring Framework in China, Environmental Health Perspectives, vol.121, issue.7, pp.839-846, 2013.
DOI : 10.1289/ehp.1206244

N. Li, K. W. Ho, G. Ying, and W. Deng, Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong, Environment International, vol.108, pp.246-252, 2017.
DOI : 10.1016/j.envint.2017.08.014

M. R. Boleda, M. T. Galceran, and F. Ventura, Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments, Environmental Pollution, vol.159, issue.6, pp.1584-1591, 2011.
DOI : 10.1016/j.envpol.2011.02.051

N. Cimetiere, I. Soutrel, M. Lemasle, A. Laplanche, and A. Crocq, Standard addition method for the determination of pharmaceutical residues in drinking water by SPE???LC???MS/MS, Environmental Technology, vol.5, issue.22, pp.3031-3041, 2013.
DOI : 10.1016/S0048-9697(98)00335-0

URL : https://hal.archives-ouvertes.fr/hal-00870208

M. Gros, S. Rodríguez-mozaz, and D. Barceló, Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, Journal of Chromatography A, vol.1248, pp.104-121, 2012.
DOI : 10.1016/j.chroma.2012.05.084

T. Qiao, Z. Yu, X. Zhang, and D. W. Au, Occurrence and fate of pharmaceuticals and personal care products in drinking water in southern China, Journal of Environmental Monitoring, vol.31, issue.12, pp.3097-3107, 2011.
DOI : 10.1016/S0043-1354(97)00155-3

E. Vulliet, C. Cren-olivé, and M. Grenier-loustalot, Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters, Environmental Chemistry Letters, vol.13, issue.1, pp.103-114, 2011.
DOI : 10.1065/espr2006.01.004

URL : https://hal.archives-ouvertes.fr/hal-00509280

P. Paíga, L. H. Santos, and C. Delerue-matos, Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC???MS/MS, Journal of Pharmaceutical and Biomedical Analysis, vol.135, pp.75-86, 2017.
DOI : 10.1016/j.jpba.2016.12.013

M. L. Castillo-garcía, M. P. Aguilar-caballos, and A. , Gómez-Hens, Determination of veterinary penicillin antibiotics by fast high-resolution liquid chromatography and luminescence detection, Talanta, vol.170, 2017.

K. V. Plakas and A. J. Karabelas, Removal of pesticides from water by NF and RO membranes ??? A review, Desalination, vol.287, pp.255-265, 2012.
DOI : 10.1016/j.desal.2011.08.003

D. Dolar, A. Vukovi?, D. A?perger, and K. Ko?uti?, Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes, Journal of Environmental Sciences, vol.23, issue.8, pp.1299-1307, 2011.
DOI : 10.1016/S1001-0742(10)60545-1

X. Zhang, W. Guo, H. H. Ngo, H. Wen, N. Li et al., Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water, Journal of Environmental Management, vol.172, 2016.
DOI : 10.1016/j.jenvman.2016.02.038

J. Rivera-utrilla, M. Sánchez-polo, M. Á. Ferro-garcía, G. Prados-joya, and R. Ocampo-pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, vol.93, issue.7, pp.1268-1287, 2013.
DOI : 10.1016/j.chemosphere.2013.07.059

N. K. Shammas, L. K. Wang, G. M. Fair, J. C. Geyer, and D. A. Okun, Water engineering: hydraulics, distribution and treatment, 1, 2016.

T. Lin, S. Yu, and W. Chen, Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China, Chemosphere, vol.152, 2016.
DOI : 10.1016/j.chemosphere.2016.02.109

K. Choi, S. Kim, and S. Kim, Removal of antibiotics by coagulation and granular activated carbon filtration, Journal of Hazardous Materials, vol.151, issue.1, 2008.
DOI : 10.1016/j.jhazmat.2007.05.059

F. Dong, C. Li, G. He, X. Chen, and X. Mao, Kinetics and degradation pathway of sulfamethazine chlorination in pilot-scale water distribution systems, Chemical Engineering Journal, vol.321, pp.521-532, 2017.
DOI : 10.1016/j.cej.2017.03.130

V. M. Frade, M. Dias, A. C. Teixeira, and M. S. Palma, Environmental contamination by fluoroquinolones, Braz, J. Pharm. Sci, vol.50, pp.41-54, 2014.
DOI : 10.1590/s1984-82502011000100004

URL : http://www.scielo.br/pdf/bjps/v50n1/1984-8250-bjps-50-1-0041.pdf

T. Garoma, S. K. Umamaheshwar, and A. Mumper, Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation, Chemosphere, vol.79, issue.8, 2010.
DOI : 10.1016/j.chemosphere.2010.02.060

H. W. Sun, Comparison on Permanganate and Ozone as Pre-Oxidation Agents, Advanced Materials Research, vol.955, issue.959, pp.955-959, 2014.
DOI : 10.4028/www.scientific.net/AMR.955-959.3408

X. Zhong, C. Cui, and S. Yu, Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants, Chemosphere, vol.179, 2017.
DOI : 10.1016/j.chemosphere.2017.03.103

W. Ben, Y. Shi, W. Li, Y. Zhang, and Z. Qiang, Oxidation of sulfonamide antibiotics by chlorine dioxide in water: Kinetics and reaction pathways, Chemical Engineering Journal, vol.327, 2017.
DOI : 10.1016/j.cej.2017.06.157

A. Azzouz and E. Ballesteros, Influence of seasonal climate differences on the pharmaceutical, hormone and personal care product removal efficiency of a drinking water treatment plant, Chemosphere, vol.93, issue.9
DOI : 10.1016/j.chemosphere.2013.07.037

A. M. De-oliveira, M. G. Maniero, C. Rodrigues-silva, and J. R. Guimarães, Antimicrobial activity and acute toxicity of ozonated lomefloxacin solution, Environmental Science and Pollution Research, vol.37, issue.501, pp.6252-6260, 2017.
DOI : 10.1016/S0043-1354(02)00457-8

M. Sui, Kinetics of Ozonation of Typical Sulfonamides in Water, Biomed Env. Sci, vol.24, pp.255-260, 2011.

J. Liu, Q. Sun, C. Zhang, H. Li, W. Song et al., Removal of typical antibiotics in the advanced treatment process of productive drinking water, Desalination and Water Treatment, vol.27, issue.12, pp.11386-11391, 2015.
DOI : 10.1016/j.watres.2007.11.023

R. Daghrir and P. Drogui, Tetracycline antibiotics in the environment: a review, Environmental Chemistry Letters, vol.20, issue.1???3, pp.209-227, 2013.
DOI : 10.1016/j.cclet.2012.01.039

H. Fu, X. Li, J. Wang, P. Lin, C. Chen et al., Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling, Journal of Environmental Sciences, vol.56, pp.145-152, 2017.
DOI : 10.1016/j.jes.2016.09.010

S. Metsämuuronen, M. Sillanpää, A. Bhatnagar, and M. Mänttäri, Natural Organic Matter Removal from Drinking Water by Membrane Technology, Separation & Purification Reviews, vol.20, issue.1, 2014.
DOI : 10.1016/S0011-9164(00)90003-1

A. Ogutverici, L. Yilmaz, U. Yetis, and F. B. Dilek, Triclosan removal by NF from a real drinking water source ??? Effect of natural organic matter, Chemical Engineering Journal, vol.283, 2016.
DOI : 10.1016/j.cej.2015.07.065

I. Koyuncu, O. A. Arikan, M. R. Wiesner, and C. Rice, Removal of hormones and antibiotics by nanofiltration membranes, Journal of Membrane Science, vol.309, issue.1-2, 2008.
DOI : 10.1016/j.memsci.2007.10.010

M. Lutskiy, S. Avneri-katz, N. Zhu, M. Itsko, Z. Ronen et al., A microbiology-based assay for quantification of bacterial early stage biofilm formation on reverse-osmosis and nanofiltration membranes, Separation and Purification Technology, vol.141, pp.214-220, 2015.
DOI : 10.1016/j.seppur.2014.12.003

S. Navalon, M. Alvaro, and H. Garcia, Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three ??-lactam antibiotics with ClO2, Water Research, vol.42, issue.8-9, 1935.
DOI : 10.1016/j.watres.2007.11.023

P. Wang, Y. He, and C. Huang, Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation, Water Research, vol.44, issue.20, 2010.
DOI : 10.1016/j.watres.2010.07.053

S. Snowberger, H. Adejumo, K. He, K. P. Mangalgiri, M. Hopanna et al., Direct Photolysis of Fluoroquinolone Antibiotics at 253.7 nm: Specific Reaction Kinetics and Formation of Equally Potent Fluoroquinolone Antibiotics, Environmental Science & Technology, vol.50, issue.17, pp.9533-9542, 2016.
DOI : 10.1021/acs.est.6b01794

H. Yao, P. Sun, D. Minakata, J. C. Crittenden, and C. Huang, Environmental Science & Technology, vol.47, issue.9, pp.47-4581, 2013.
DOI : 10.1021/es3052685

C. Cui, L. Jin, L. Jiang, Q. Han, K. Lin et al., Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate, Science of The Total Environment, vol.572, pp.244-251, 2016.
DOI : 10.1016/j.scitotenv.2016.07.183

P. E. Stackelberg, J. Gibs, E. T. Furlong, M. T. Meyer, S. D. Zaugg et al., Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds, Science of The Total Environment, vol.377, issue.2-3, pp.255-272, 2007.
DOI : 10.1016/j.scitotenv.2007.01.095

C. J. Houtman, J. Kroesbergen, K. Lekkerkerker-teunissen, and J. P. Van-der-hoek, Human health risk assessment of the mixture of pharmaceuticals in Dutch drinking water and its sources based on frequent monitoring data, Science of The Total Environment, vol.496, pp.54-62, 2014.
DOI : 10.1016/j.scitotenv.2014.07.022

B. , L. Bot, J. Lucas, F. Lacroix, and P. Glorennec, Exposure of children to metals via tap water ingestion at home: Contamination and exposure data from a nationwide survey in France, Environ. Int, vol.94, pp.500-507, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390976

S. Fingler, G. Menda?, M. Dvor??ak, S. Stipi?evi?, V. Vasili? et al., Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia, Environmental Science and Pollution Research, vol.90, issue.260, pp.11017-11030, 2017.
DOI : 10.1007/s00128-012-0915-1

M. Jiang, L. Wang, and R. Ji, Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment, Chemosphere, vol.80, issue.11, 2010.
DOI : 10.1016/j.chemosphere.2010.05.048

X. Li, W. Zheng, M. L. Machesky, S. R. Yates, and M. Katterhenry, Degradation Kinetics and Mechanism of Antibiotic Ceftiofur in Recycled Water Derived from a Beef Farm, Journal of Agricultural and Food Chemistry, vol.59, issue.18, pp.10176-10181, 2011.
DOI : 10.1021/jf202325c

H. Pouliquen, R. Delépée, M. Larhantec-verdier, M. Morvan, and H. L. Bris, Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline oxolinic acid, flumequine and florfenicol) in deionised water, freshwater and seawater under abiotic conditions, Aquaculture, vol.262, issue.1, pp.23-28, 2007.
DOI : 10.1016/j.aquaculture.2006.10.014

S. M. Mitchell, J. L. Ullman, A. L. Teel, and R. J. Watts, Hydrolysis of amphenicol and macrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin, Chemosphere, vol.134, 2015.
DOI : 10.1016/j.chemosphere.2014.08.050

P. Bohn, S. A. Bak, E. Björklund, K. A. Krogh, and M. Hansen, Abiotic degradation of antibiotic ionophores, Environmental Pollution, vol.182, 2013.
DOI : 10.1016/j.envpol.2013.06.040

A. Längin, R. Alexy, A. König, and K. Kümmerer, Deactivation and transformation products in biodegradability testing of ??-lactams amoxicillin and piperacillin, Chemosphere, vol.75, issue.3, p.75, 2009.
DOI : 10.1016/j.chemosphere.2008.12.032

S. M. Mitchell, J. L. Ullman, A. L. Teel, and R. J. Watts, pH and temperature effects on the hydrolysis of three ?-lactam antibiotics: Ampicillin, cefalotin and cefoxitin, Sci. Total Environ, pp.466-467, 2014.

I. Braschi, S. Blasioli, C. Fellet, R. Lorenzini, A. Garelli et al., Persistence and degradation of new ??-lactam antibiotics in the soil and water environment, Chemosphere, vol.93, issue.1, pp.152-159, 2013.
DOI : 10.1016/j.chemosphere.2013.05.016

R. Nassar, A. Trivella, S. Mokh, M. Al-iskandarani, H. Budzinski et al., Photodegradation of sulfamethazine, sulfamethoxypiridazine, amitriptyline, and clomipramine drugs in aqueous media, Journal of Photochemistry and Photobiology A: Chemistry, vol.336, pp.176-182, 2017.
DOI : 10.1016/j.jphotochem.2016.12.008

K. A. Loftin, C. D. Adams, M. T. Meyer, and R. Surampalli, Effects of Ionic Strength, Temperature, and pH on Degradation of Selected Antibiotics, Journal of Environment Quality, vol.37, issue.2, 2008.
DOI : 10.2134/jeq2007.0230

D. Hu and J. R. Coats, AEROBIC DEGRADATION AND PHOTOLYSIS OF TYLOSIN IN WATER AND SOIL, Environmental Toxicology and Chemistry, vol.26, issue.5, pp.884-889, 2007.
DOI : 10.1897/06-197R.1

D. Dolar, Photolysis of enrofloxacin and removal of its photodegradation products from water by reverse osmosis and nanofiltration membranes, Separation and Purification Technology, vol.115
DOI : 10.1016/j.seppur.2013.04.042

. Tylosin,

, FQs Danofloxacin ND -214 / [53] Difloxacin 31 -3530

, Norfloxacin, vol.10510853104, pp.31723-68065

N. Pefloxacin,