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Abstract 

Bacterial decomposition of organic matter in soils is generally believed to be mainly 

controlled by the accessibility of bacteria to their substrate. The influence of bacterial 

metabolic traits on this control has however received little attention in highly heterogeneous 

spatial conditions under advective-dispersive transport of bacteria and substrates. Here, we 

develop a bioreactive transport model to screen the interactive impacts of dispersion and 
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metabolic traits on mineralization. We compare the model results with two sets of previously 

performed cm-scale soil-core experiments in which the mineralization of the pesticide 2,4-D 

was measured under well-controlled initial distributions and transport conditions. Bacterial 

dispersion away from the initial location of substrate induced a significant increase in 2,4-D 

mineralization, revealing the existence of a control of decomposition by the bacterial 

density, in addition to the dilution of substrate concentration. This regulation of degradation 

by density becomes dominant for bacteria with an efficient uptake of substrate at low 

substrate concentrations (a common feature of oligotrophs). The model output suggests that 

the distance between bacteria adapted to oligotrophic environments is a stronger regulator 

of degradation than the distance between these bacteria and the substrate initial location. 

Such oligotrophs, commonly found in soils, compete with each other for substrate even 

under remarkably low population densities. The ratio-dependent Contois growth model, 

which includes a density regulation in the expression of the uptake efficiency, appears more 

versatile and accurate than the substrate-dependent Monod model. In view of their strong 

interactions, bioreactive and transport processes cannot be handled independently but 

should be integrated, in particular when reactive processes of interest are carried out by 

oligotrophs.  

Keywords: biodegradation of organic matter; heterogeneous spatial distributions; 

bioreactive transport model; competition for substrate; metabolic traits; ratio-dependent 

growth 
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1. Introduction 

Organic carbon (C) is involved in most ecological functions provided by soils (Bünemann et 

al., 2018). Its cycling in soil is fundamentally driven by microorganisms. Soluble organic 

molecules can be taken up as substrates by specific populations of soil bacteria, and 

degraded inside the cells by endoenzymes to provide carbon and energy,.This is precisely 

the case for the 2,4-Dichlorophenoxyacetic acid (2,4-D) used in this study as a generic model 

compound (Don and Weightman, 1985; Pieper et al., 1988; Boivin et al., 2005). Bacterial 

degradation of soil C has generally been modeled with the Monod equation, where the 

specific substrate uptake rate is controlled by substrate concentration and metabolic traits 

such as the maximum specific growth rate, the yield (or carbon use efficiency) and the 

maximum uptake efficiency  (e.g. Monod, 1949; Sinton et al., 1986; Cheyns et al., 2010). 

More precisely, at the lowest substrate concentration, the specific uptake rate is linearly 

proportional to the substrate concentration. The proportionality factor is called here 

“maximum uptake efficiency” and reflects the maximal ability of the cell to effectively 

capture any substrate molecule that collides its membrane (Button, 1978, 1983). This 

efficiency could also be understand as the volume to which the cell has access to harvest its 

substrate per unit of time, as used in some studies (Desmond-Le Quéméner and Bouchez, 

2014; Nunan et al., 2020; Ugalde-Salas et al., 2020). Each bacteria is assumed to be exposed 

to the whole substrate concentration of its environment, without any limitation by the 

population density (Lobry and Harmand, 2006). 

The direct contact (exposure) between bacteria and substrate depends on their spatial 

distributions (Holden and Firestone, 1997; Nunan et al., 2007). Bacteria and substrate are 

both heterogeneously distributed as a result of numerous biotic and abiotic processes 
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(Dechesne et al., 2014; Kuzyakov and Blagodatskaya, 2015). Their distributions interact with 

dispersive transport processes, such as diffusion and hydrodynamic dispersion (Madsen and 

Alexander, 1982; Breitenbeck et al., 1988), and the bacterial activity itself, such as 

consumption and growth (Poll et al., 2006). 

Clustered bacterial distributions, as observed at mm-scale for 2,4-D degraders (Vieublé 

Gonod et al., 2003), has been shown to decrease degradation rates when the distribution of 

substrate is homogeneous (Pallud et al., 2004; Dechesne et al., 2010). Yet, the role of 

bacterial metabolic traits on the impact of bacteria and substrate distributions on 

degradation remains mostly unknown especially when substrate and bacteria are 

heterogeneously and dynamically redistributed in soils over µm-to-cm scales by numerous 

spatial disturbances (Madsen and Alexander, 1982; Breitenbeck et al., 1988; König et al., 

2020). We investigated the extent to which metabolic activity and transport processes can 

be handled independently or should be integrated to characterize, understand and predict 

degradation under various advective, diffusive and dispersive conditions. The simultaneous 

characterization of the impacts of biological metabolic traits and transport parameters 

through their mutual interactions is methodologically challenging. It requires several 

well-controlled experiments with specific distributions of substrate and degraders in 

comparable degradation conditions, controlled transport conditions, and a time-space 

monitoring of carbon pools.  

Among the scarce relevant datasets (Dechesne et al., 2010), we used the two sets of cm-scale 

soil-core experiments of Pinheiro et al. (2015, 2018) performed on similar repacked soil 

columns for the degradation of 2,4-D under different initial distributions and transport 

conditions. Mostly reported independently, they have shown first that the proximity 
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between bacteria and the initial location of a heterogeneously distributed substrateis a 

strong control of mineralization. Even though most of the initial soluble substrate diffuses 

away from its initial location, bacteria may benefit more from staying close to the initial 

location of substrate, as bacteria located far from it are only exposed to highly diluted 

substrate concentrations (Babey et al., 2017). However, the hydrodynamic dispersion of 

both bacteria and substrate away from the substrate initial location increased more than 

four times the decomposition of the substrate that was not leached out, to the point that it 

almost reached the same performance as in homogeneous conditions, despite dispersed 

bacteria are exposed to a substrate eventually diluted 100 times more (Pinheiro et al., 2018).  

In the heterogeneous experiments, as the average distance between bacteria and the initial 

location of substrate increased with dispersion, resulting in bacteria exposed to more diluted 

substrate concentrations, the increase in mineralization is surprising, in comparison with the 

hydrostatic heterogeneous experiment where bacteria remained close to the initial 

substrate location. It suggests a control of mineralization by population density besides 

substrate dilution, the former enhancing the activity of bacteria when they are diluted by 

the dispersive percolation events. The bacterial dilution and its positive effect on 

degradation seem to counterbalance the negative effect of the substrate dilution. While such 

regulations by bacterial density have not been yet considered in soils, presumably because 

of the extremely low apparent bacterial densities found in soils (Young et al., 2008), they are 

well known in bioreactors, where they are usually modeled by the ratio-dependent Contois 

growth law (Contois, 1959; Harmand and Godon, 2007). 

To assess the relative importance of the mentioned processes and controls, we developed a 

quantitative approach to model the two sets of experiments within the same unified 
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framework (section 2). We assessed the relevance of previously developed models, 

improved the calibration of a Monod-based model and investigated an alternative 

Contois-based model (section 3). We discussed the implication of the results on the 

controlling factors of soil organic carbon cycling, on the relevant bacterial growth models 

and on the possible bacterial strategies (section 4). 

2. Models and methods 

2.1. Experiment scheme, geometry and initial distributions 

We briefly introduce the experiments performed previously and their characteristics 

important for the current model (Fig. 1). The full experimental setting is presented in the 

supplementary materials (Fig. S1 and Table S1) for the sake of completeness. Soil columns 

were packed with two homogeneous or heterogeneous arrangements of soil cubes, either 

sterilized, or hosting their indigenous soil microbial communities (referred to as “degraders”) 

and amended with 14C-labelled 2,4-D (referred to as “substrate”). Two sets of experiments, 

referred to as “hydrostatic” and “percolation” conditions, were performed respectively with 

only substrate diffusion (Pinheiro et al., 2015), or with additional substrate and bacterial 

advection and dispersion caused by water percolation (Pinheiro et al., 2018). The initial 

locations of bacteria and substrate were set in the model accordingly to the experimental 

conditions (Fig 1A). Initial concentrations used in the model are detailed in Table 1. In the 

previous experiments, the mass of mineralized 14C derived from the degradation of the 

labelled 2,4-D was monitored at the core scale during at least two weeks (Fig. 1B). These 

data were used to compare the model outputs with a real system, as detailed in section 2.5. 
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2.2. Bioreactive model 

The bioreactive model extends the model published by Babey et al. (2017) (Fig. 2) to account 

for Contois growth law as an alternative of Monod’s. The sorption processes as well as the 

bacterial lag phase and the nutrient recycling described below had been previously discussed 

and justified in Babey et al. (2017) to best predict the data, and were kept as they were. It is 

yet important to add that these processes did not alter the highlights of the present work. 

The r(∙) notation expresses the reaction rates of the biochemical dynamics that are 

expressed as follows: 

𝑟𝑟(𝑆𝑆) = 𝑘𝑘𝐴𝐴𝐴𝐴 𝐴𝐴 − 𝑘𝑘𝐴𝐴𝐴𝐴 𝑆𝑆 − 𝑘𝑘𝑅𝑅 𝑆𝑆 −
𝜇𝜇
𝑦𝑦
𝐵𝐵 + 𝑚𝑚𝑡𝑡 𝜒𝜒 𝐵𝐵 (1) 

𝑟𝑟(𝐴𝐴) = 𝑘𝑘𝐴𝐴𝐴𝐴 𝑆𝑆 − 𝑘𝑘𝐴𝐴𝐴𝐴 𝐴𝐴 (2) 

𝑟𝑟(𝑅𝑅𝐴𝐴) = 𝑘𝑘𝑅𝑅 𝑆𝑆 (3) 

𝑟𝑟(𝐶𝐶𝑂𝑂2) =
(1 − 𝑦𝑦)

𝑦𝑦
𝜇𝜇 𝐵𝐵 (4) 

𝑟𝑟(𝐵𝐵) = 𝜇𝜇 𝐵𝐵 −𝑚𝑚𝑡𝑡 𝐵𝐵  (5) 

𝑟𝑟(𝑅𝑅𝐵𝐵) = 𝑚𝑚𝑡𝑡(1 − 𝜒𝜒)𝐵𝐵 (6) 

All variable and parameter definitions are listed in Table 1. The dynamics of the specific 

growth rate µ are given, for the Monod-based model, by:  

𝜕𝜕𝜇𝜇
𝜕𝜕𝜕𝜕

= 𝛼𝛼 �𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝜅𝜅𝑀𝑀 + 𝑆𝑆
− 𝜇𝜇� (7) 

and, for the Contois-based model, by: 

𝜕𝜕𝜇𝜇
𝜕𝜕𝜕𝜕

= 𝛼𝛼 �𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆 𝐵𝐵⁄

𝜅𝜅𝐶𝐶 + 𝑆𝑆 𝐵𝐵⁄
− 𝜇𝜇� = 𝛼𝛼 �𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆
𝜅𝜅𝐶𝐶𝐵𝐵 + 𝑆𝑆

− 𝜇𝜇�  (8) 

where µ = 0 at t = 0. 
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The soluble substrate S is either reversibly adsorbed to soil particles (pool A) or irreversibly 

adsorbed (pool RS) (Eqs. (1), (2), (3)), or taken up by bacteria B (Eq. (1)) and metabolized into 

CO2 (Eq. (4)) and new biomass B (Eq. (5)). kSA and kAS are the reversible sorption coefficients. 

kR is the irreversible one. Note that the reversible sorption accounted for less than 2% of the 

initial carbon mass and therefore did not alter the highlights of the present work. Bacteria 

death occurs at a constant rate mt (Eq. (5)) and a fraction of the bacterial necromass is 

considered to return to the soluble substrate pool S to account for nutrient recycling 

(Eq. (1)), while the rest is transformed to biotic residues RB (Eq. (6)). The nutrient recycling 

was necessary to best predict the late dynamics of mineralization. However, its impact on 

mineralization was neglectable during the first five days and its impact on late mineralization 

did not to alter the highlights of the present work. The adsorbed substrate and biotic 

residues form the pool of insoluble carbon A + RS + RB. The substrate S is consumed by 

bacteria B according to their specific uptake rate (1/y)·µ expressed either by the 

substrate-dependent Monod growth law (Eq. (7)) (Monod, 1949) or by the ratio-dependent 

Contois growth law (Eq. (8)) (Contois, 1959). y is the yield coefficient and relates the specific 

uptake rate (1/y)·µ to the specific growth rate µ. µmax is the maximum specific growth rate. 

κM and κC are Monod and Contois constants respectively. The effective uptake is delayed by 

the accommodation rate α, which explicitly takes into account the “memory” effects of the 

bacteria when adapting to new conditions (Patarinska et al., 2000). This delay was necessary 

to capture the mineralization lag time during the first days. However, it did not alter the 

highlights of the present work (see section S...). Over long time periods (𝜕𝜕 ≫ 1/𝛼𝛼), µ follows 

the exact expression of the Monod or Contois equations. All modeled pools (S, B, CO2, A, RS 

and RB) were expressed as carbon concentrations in µg·g-1 (mass of carbon per mass of dry 

soil) considering the experimental soil water content of 0.205 g·g-1 (mass of water per mass 
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of dry soil) corresponding to a water potential adjusted at -31.6 kPa (pF 2.5), a bulk density 

of the soil column of 1.3 103 g·l-1 (mass of dry soil per apparent soil volume) as set up in the 

experiments and an average bacterial dry weight of 2.8 10-13 g corresponding to 1.49 10-13 g 

of carbon per cell (Dechesne et al., 2010; Pinheiro et al., 2015). The water-filled pore space 

(54%, volume of water per volume of pores) was such that oxygen was not considered a 

limiting factor for 2,4-D degradation. 

2.3. Reactive transport model 

The transport model extends the diffusion model of Babey et al. (2017) to the 

advective-dispersive processes explored in the experiments of Pinheiro et al. (2018). 

Bacterial leaching out and dispersion were observed only in the percolation experiments 

while the substrate was also reported to diffuse. Hydrodynamic leaching and dispersion were 

modeled independently, as resulting respectively from a bypass flow through large pores 

and a redistribution of saturation in the pore network. Bacteria and substrates were 

assumed to be transported with the same advective and dispersive parameters. This 

assumption did not significantly alter the results (Fig. S3). Coupled to the equations of the 

bioreactive model ((1)-(8)), the full reactive transport model is given by:  

𝜕𝜕𝑆𝑆
𝜕𝜕𝜕𝜕

= 𝑟𝑟(𝑆𝑆) + ∇�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∇𝑆𝑆� +  𝐺𝐺 �∇�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∇𝑆𝑆� − 𝜈𝜈 𝑆𝑆� (9) 

𝜕𝜕𝐵𝐵
𝜕𝜕𝜕𝜕

= 𝑟𝑟(𝐵𝐵) + 𝐺𝐺 �∇�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∇𝐵𝐵� − 𝜈𝜈 𝐵𝐵� (10) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑟𝑟(𝜕𝜕) for U = A, RB, RS and CO2 (11) 
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where ddiff is the effective molecular diffusion coefficient of S, ddisp is the effective 

hydrodynamic dispersion coefficient of S and B and ν is their leaching rate. Note that the 

dispersion coefficient ddisp mostly affected the spreading of bacteria, given that substrate 

was mainly spread by diffusion, as noted in section 2.2 and confirmed by consistent results 

from equivalent models without hydrodynamic dispersion of S (Fig. S4). Effective diffusion 

and dispersion processes were assumed isotropic and uniform at the column-scale. 

Dispersion and leaching were active only during the observed 1-hour percolation events at 

days 0, 3 and 6 as controlled by the function G defined by:  

𝐺𝐺(𝜕𝜕) = 1      𝜕𝜕 = [0d – 0d1h]; [3d – 3d1h]; [6d – 6d1h] 

𝐺𝐺(𝜕𝜕) = 0      otherwise. 
(12) 

No-flow boundary conditions were imposed on the edges of the soil core (∇S = 0 and ∇B = 0) 

at any time outside of the percolation events. The transient evolutions of the water content 

and their effects on concentrations were not considered because of the short duration of 

the percolation events (1 h) and the absence of detectable effects on the experimental 

mineralization curve around the percolation events (Fig. 1D). Hydration conditions were thus 

considered constant, constrained by the water potential adjusted at -31.6 kPa. No bacterial 

mobility was observed in the hydrostatic experiments, suggesting that the bacterial mobility 

observed in the percolation experiments resulted primarily from hydrodynamic dispersion. 

While an increase of bacterial motility due to changes in water saturation in the percolation 

experiments cannot be ruled out, we assume that its effect on bacterial mobility is accounted 

for by the effective hydrodynamic dispersion coefficient. 

Concentration dynamics were simulated on a 3 × 6 × 6 regular mesh grid. Although the shape 

of the grid was slightly different from that of the cylindrical soil-core, it did not have any 
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observable impact (Babey et al., 2017). We recall that substrate and bacteria were initially 

colocalized in the same cube(s). Each cube was considered to be physically, chemically and 

biologically homogeneous. Diffusion and dispersion were simulated using a finite-difference 

scheme (Iserles, 2009) and coupled with the bioreactive model, itself solved by the 4th order 

Runge-Kutta integration method function of MATLAB (Shampine and Reichelt, 1997). The 

coupling between transport and bioreactive models was achieved with a sequential non-

iterative operator-splitting method, where the equations were resolved for each time step 

in a sequence of one transport step followed by one biochemical step (Carrayrou et al., 2004; 

Lagneau and van der Lee, 2010). The time steps were smaller than the characteristic diffusion 

and reaction times to avoid any coupling issues. 

2.4. Exploratory screening 

Parameters and their values are listed in Table 1. Sorption parameters and diffusion 

coefficient were set at their values calibrated and validated by Babey et al. (2017) on 

independent experiments without degradation. The mortality rate and the nutrient recycling 

yield were also kept at their values calibrated in Babey et al. (2017) as they were considered 

well constrained by the residual mineralization dynamics of the homogeneous hydrostatic 

experiment (Fig. 1D). Explored parameters were screened within the theoretically and 

physically relevant ranges given by Babey et al. (2017) and calibrated through the screening. 

The four biological parameters primarily involved in the biological response of bacteria to 

the concentration of substrate, either (1/y)·µmax, (1/y)·µmax/κM, α and B(t=0) for the 

Monod-based model or (1/y)∙µmax, (1/y)∙µmax/(B(t=0)∙κC), α and B(t=0) for the 

Contois-based model, were screened over 7 logarithmically-distributed values (Table S2). 
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We recall that the “maximum uptake efficiency” (1/y)·µmax/κM characterizes the specific 

bacterial uptake of substrate at the lowest substrate concentration (Button, 1991), while the 

maximum specific uptake rate (1/y)·µmax characterizes the bacterial uptake at the highest 

substrate concentration. Note that the uptake yield y was fixed at its value calibrated by 

Babey et al. (2017), where it has been well identified. For the Contois-based model, the initial 

maximum uptake efficiency (1/y)·µmax/(B(t=0)·κC) was screened in the same range as 

(1/y)·µmax/κM. The accommodation rate α of the degrader response ranged from negligible 

delay of few minutes (α = 934 d-1) to prolonged delay of around 10 days (α = 9.34 10-2 d-1). 

B(t=0) values were screened around the initial experimental measurements of tfdA gene 

copy number, assuming that one tfdA sequence corresponded to one bacterium. They 

ranged over two orders of magnitude to account for the uncertainty of the conversion of 

tfdA copy number into alive 2,4-D degraders (Bælum et al., 2006, 2008). In the uptake 

efficiency expression, bacterial density will also be expressed in g·l-1 (mass of bacteria per 

volume of water) for more direct comparison with the relevant literature. 

The spatial distribution of bacteria observed at the end of the experiments could not be used 

to determine the effective dispersion coefficient ddisp (Fig. S2). While they qualitatively 

ascertained that bacteria were dispersed orthogonally to the percolation direction, 

experimental data were not sufficiently resolved to be used quantitatively. The dispersion 

coefficient was thus screened over 10 values ranging from no dispersion (ddisp = 0) to 

complete instant homogenization of the soil core (ddisp = inf) (Table S2). The effective 

diffusion coefficient ddiff had been calibrated independently from percolation conditions 

(Pinheiro et al., 2015; Babey et al., 2017). The leaching rates ν were determined based on 
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the experimental masses of leached 14C (Pinheiro et al., 2018) (Table 1). Detailed values for 

the screened parameters are listed in Table S2.  

2.5. Model to data comparison 

The comparison between the results of the model and the experimental data was based on 

the core-scale data of mineralization deduced from the carbon mass mCO2 of 14CO2 emissions: 

𝑚𝑚𝐶𝐶𝑂𝑂2(𝜕𝜕) =  � 𝐶𝐶𝑂𝑂2(𝑥𝑥, 𝜕𝜕)𝑑𝑑𝑥𝑥
𝑉𝑉

 

 

(13) 

with V the volume of the soil cores. Mineralization at a given time t was expressed as the 

carbon mass of cumulated 14CO2 emissions (𝑚𝑚𝐶𝐶𝑂𝑂2,𝑞𝑞(𝜕𝜕)) per initial carbon mass of 

14C-substrate S (𝑚𝑚𝐴𝐴,𝑞𝑞(𝜕𝜕 = 0)) where the index q identifies the experiment at hand. Indices 1, 

2, 3 and 4 are respectively given to the homogeneous hydrostatic, heterogeneous 

hydrostatic, homogeneous percolation and heterogeneous percolation 

experiments.Data-to-model adequacy was assessed for each of the experiments by a 

classical root-mean-square evaluation function Jq comparing the modeled mineralization of 

Eq. (4) to the measured mineralization at the nq available sampling times ti:  

𝐽𝐽𝑞𝑞 = �
1
𝑛𝑛𝑞𝑞
��

𝑚𝑚𝐶𝐶𝑂𝑂2,𝑞𝑞
𝑚𝑚𝑚𝑚𝑑𝑑 (𝜕𝜕𝑑𝑑) −𝑚𝑚𝐶𝐶𝑂𝑂2,𝑞𝑞

𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚 (𝜕𝜕𝑑𝑑)
𝑚𝑚𝐴𝐴,𝑞𝑞(t = 0)

�
2𝑛𝑛𝑞𝑞

𝑑𝑑=1

�

1
2

 
(14) 

Discrepancies over the full set of experiments J1234 were thus expressed as:  

𝐽𝐽1234 = �
1
4
�𝐽𝐽𝑘𝑘2
4

𝑘𝑘=1

�

1
2

 
(15) 
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The measurement errors were higher in percolation experiments than in hydrostatic 

experiments due to an intrinsic greater monitoring complexity. This difference contributes 

to strongly limit the importance of percolation experiments when determining the 

parameter set best-fitting the whole set of experiments (J1234). We have made the choice to 

give an equal importance to all experiments by taking into account the sole CO2 values 

averaged over the replica. Besides the parameter screening approach, the parameter sets 

minimizing J1234 were determined and referred to as the “set calibrated on both hydrostatic 

and percolation experiments”. 

3. Results 

3.1. Model calibration 

The previous calibration of the reactive transport model realized on the sole hydrostatic 

experiments (Babey et al., 2017) corresponded to a minimal discrepancy between data and 

model of J12 = 0.023 (Fig. 3-A1 and A2). This pre-existing parameterization was used to 

provide blind predictions of the percolation experiments, with the effective dispersion 

coefficient ddisp as an additional fitting parameter. It gave a reasonable prediction of 

mineralization in the homogeneous percolation experiment (J3 = 0.038, Fig. 3-A3) but failed 

in the heterogeneous percolation experiment (J4 = 0.151, Fig. 3-A4), no matter the 

dispersion. The smallest discrepancy J4 was surprisingly obtained without any bacterial 

dispersion (ddisp = 0) in contradiction with the bacterial spreading observed in the 

experimental data (Fig. S2). The final predicted mineralization was at the highest when 

bacteria remained aggregated close to the substrate initial location. The highest predicted 

mineralization was however four times lower than the experimental data. In this scenario 
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where mineralization is improved by bacteria proximity to the substrate initial location, the 

large gap between the best simulation and the observations suggest that the proximity of 

bacteria to the initial substrate location may not be the explanatory mechanism. On the 

contrary, it suggests that degradation might benefit more from bacterial dispersion away 

from the initial substrate location. 

In order to investigate the capacity of the reactive transport model to fit both hydrostatic 

and percolation experimental data, the biological parameters ((1/y)·µmax/κM, (1/y)·µmax, α, 

B(t=0)) and the dispersion coefficient (ddisp) were calibrated on both hydrostatic and 

percolation experiments following the screening approach given in section 2.2 to minimize 

J1234. The mineralization dynamics were adequately predicted in all four experiments with 

the biological parameter set giving the lowest overall discrepancy (J1234 = 0.032) and a 

non-zero dispersion coefficient (ddisp = 1.78 10-4 m2·d-1) (Fig. 3, Table 2). The non-zero 

dispersion coefficient indicates that the calibrated model accounts for a beneficial impact of 

bacterial dispersion on degradation, seemingly necessary to successfully predict the high 

degree of degradation in the experimental data. Compared to the parameters calibrated on 

the sole hydrostatic experiments, the parameter set calibrated on both hydrostatic and 

percolation experiments also displayed a much higher maximum uptake efficiency 

(1/y)·µmax/κM = 26.5 g·µg-1·d-1 (mass of dry soil per mass of bacterial carbon per unit of time) 

(Table 2). The systematic exploration of the parameter space showed that higher maximum 

uptake efficiency was a common feature to the 1% best-fitting parameterizations to both 

hydrostatic and percolation experiments (smallest J1234), with values of 159 and 

26.5 g·µg-1·d-1, corresponding respectively to 1.73 104 and 2.89 103 l·g-1·d-1 (volume of water 

per mass of bacteria per unit of time). It underlines the essential role of the maximum uptake 
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efficiency for modulating the impact of dispersion on degradation, further detailed and 

explained in section 3.2.3. 

3.2. Exploration of the controls of degradation by substrate dilution and 

bacterial density 

The effect of dispersion on degradation widely differed between the two calibrated sets of 

biological parameters of the previous section 3.1. To explain this, we investigated more 

systematically the interactive impact of bacterial dispersion and bacterial traits on 

degradation, revealing its control by substrate dilution and bacterial density.  

3.2.1 Impact of dispersion on degradation 

We used the mineralization at the end of the experimental time (day 24) as a proxy for 

degradation and determined its sensitivity to dispersion, depending on bacterial traits 

parameterization. Fig. 4 shows the impact of the dispersion coefficient ddisp on the final 

predicted mineralization for the two calibrated biological parameter sets, all other 

parameters being kept constant (thick red and blue lines). The thin mauve lines correspond 

to parameterizations with the same maximum uptake efficiency (1/y)·µmax/κM but different 

maximum specific uptake rates (1/y)·µmax, accommodation rates α and initial bacterial 

population densities B(t=0). For the biological model calibrated on hydrostatic experiments 

and most parameterizations sharing the same maximum uptake efficiency, the final 

mineralization monotonously decreased with dispersion (Fig. 4A). For the model calibrated 

on both hydrostatic and percolation experiments and most parameterizations sharing the 

same maximum uptake efficiency, the final mineralization first increased, reached a 

maximum around ddisp ≈ 10-4 m2·d-1 and then decreased (Fig. 4B). The non-monotonous 
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impact of dispersion on degradation remarkably highlights the existence of an optimal 

bacterial dispersion for which mineralization is the highest. The comparison between Fig. 4A 

and Fig. 4B suggests that the optimal dispersion value depends on the bacterial uptake 

efficiency. Note that, although the optimal dispersion value varied with time due to the 

dynamics of spatial distributions of bacteria and substrate (Fig. S6), it tended towards a limit 

that was mostly reached within 4 to 7 days and is thus represented at day 24 on Fig. 4.  

3.2.2 Double control of degradation by substrate dilution and bacterial density 

The non-monotonous effect of bacterial dispersion on degradation is a surprising and key 

feature of the model calibrated on both hydrostatic and percolation experiments. It results 

from a non-monotonous substrate profile derived from the respective effects of substrate 

dilution and bacterial density as illustrated on Fig. 5. 

While bacterial degradation impacts substrate gradients and subsequently diffusive 

transfers, in a system where the profile of substrate concentration is dominated by its 

initial heterogeneity (dotted pink lines on Fig. 5), the flux of substrate reaching each 

bacterium is primarily determined by the distance between the bacteria and the initial 

location of substrate. The exposure of a single bacterium to the substrate would increase 

with its proximity to the substrate initial location. This effect is referred to as “substrate 

dilution”. In the hydrostatic calibrated model, the substrate uptake by bacteria located in 

the initial cube created an inversion of substrate gradient (Fig. 5A). This gradient inversion 

remained however limited, and the dispersion of bacteria would likely expose them to 

more diluted substrate by moving them away from the substrate initial location, hence 

reducing mineralization (Fig. 4A). Mineralization was still mainly controlled by substrate 

dilution. In the model calibrated on both hydrostatic and percolation experiments, without 
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any bacterial dispersion, bacteria depleted the substrate in the initial cube over 5 days 

(Fig. 5B). The bacteria aggregated at their initial location consumed the substrate much 

faster than it was replenished by backward diffusion and dispersion, leading to an 

intra-population competition for substrate. The dispersion of bacteria reduced competition 

by diluting the highest bacterial densities, thus enhancing mineralization. In this case, 

mineralization was mainly controlled by bacterial density. However, if bacteria were 

dispersed too far, substrate dilution became the dominant control again. Therefore, an 

optimal bacterial spreading exists (Fig. 5C) for which the dilution of substrate is 

compensated by the dilution of high local bacterial densities. The optimal dispersion 

coefficient for the 300 best-fitting parameterizations to both hydrostatic and percolation 

experiments (smallest J1234 values) was on average ddisp ≈ 2 10-5 m2·d-1 (Fig. S7), 

corresponding to a root-mean-square displacement of bacteria of 1.5 to 3.5 mm during 

each percolation event. 

3.2.3 Effect of bacterial uptake efficiency on the impact of dispersion on degradation 

A non-monotonous substrate concentration profile only occurs when bacterial degradation 

locally depletes the substrate faster than it is replenished by diffusion. This area of high local 

competition results from high local densities of bacteria with high competiveness. Bacterial 

competiveness is related to their maximum uptake efficiency (1/y)·µmax/κM, which also 

describes their capacity to maintain their activity and growth under diluted substrate 

concentrations (Healey, 1980; Button, 1991; Lobry et al., 1992). Bacteria with high maximum 

uptake efficiency were thus expected to benefit more from dispersion. Fig. 6 shows the 

optimal dispersion coefficient as a function of the maximum uptake efficiency, all other 

parameters equal to those of the model calibrated on both hydrostatic and percolation 
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experiments. For maximum uptake efficiencies smaller than 30 l·g-1·d-1, dispersion did not 

enhance degradation, and the optimal dispersion was hence zero. For larger efficiencies, the 

optimal dispersion coefficient increased with the maximum uptake efficiency. When the 

maximum uptake efficiency increased, degradation shifted from being regulated by 

substrate dilution to being regulated by bacterial densities, because bacteria were both more 

prone to competition between themselves and more efficient under diluted substrate 

conditions. In other words, the detrimental proximity to other bacteria became more 

constraining than the beneficial proximity to the substrate initial location. This positive effect 

of the maximum uptake efficiency on the impact of bacterial dispersion on degradation was 

a general relationship common to all parameterizations (Fig. S8). 

3.3. The Contois-based model as an alternative to Monod 

Given that degradation is controlled by both substrate dilution and bacterial densities, and 

that their relative importance is modulated by bacterial uptake efficiency at the lowest 

substrate concentration, (1/y)·µmax/κM, we investigated the relevance of the model of 

Contois by applying the calibration methodology of section 2.2 as used in section 3.1. The 

interest of the Contois growth law (Eq. (8)) is to include the regulation by density in the 

expression of the uptake efficiency at the lowest substrate concentration, then equal to 

(1/y)·µmax/(B(t)·κC). 

The results show that the Contois-based model has three advantages. First, the 1% 

best-fitting parameterizations of the Contois-based model (smallest J1234 values) captured 

the degradation dynamics better than the 1% best-fitting parameterizations of the 

Monod-based model (Fig. S9). The calibrated Contois-based model had an overall 
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discrepancy of J1234 = 0.022 (Fig. 7), smaller than the lowest value of J1234 = 0.032 obtained 

for the calibrated Monod-based model (Fig. 3). Second, the smallest discrepancies for the 

heterogeneous percolation experiment became correlated with the smallest discrepancies 

for the homogeneous experiments. For any biological parameter set calibrated in 

homogeneous conditions, there was a value of dispersion coefficient ddisp that made it match 

the heterogeneous percolation experiment. It was not the case for the Monod-based 

calibrated parameter sets (Fig. S10). It is an important advantage as it confers a better 

capacity to predict degradation kinetics under dispersive conditions, once calibrated in 

high-densities homogeneous conditions. Third, the dependence of the final mineralization 

on the dispersion coefficient became mostly limited, especially for the calibrated model 

(Fig. 8, thick blue line). This is because, at low substrate concentrations, the number of active 

bacteria in a soil volume is exactly counterbalanced by the regulation of their uptake 

efficiency by population density (Eq. (8)), resulting in limited effects of bacterial spreading 

on overall mineralization (Fig. 8, constant part of the curves). Note that variations can appear 

when the saturation effect of the ratio S/B on the specific activity or the accommodation 

delay α decouple the activity from the bacterial density. The lower dependence of 

mineralization on dispersion shows that the effects of dispersion on the final cumulated 

mineralization are included in the Contois-based model more than in the Monod-based 

model, providing better modelling perspectives.  

Despite these advantages, Contois models have also a classical drawback with the diverging 

efficiency of bacteria at low densities (Gleeson, 1994; Abrams, 2015). Predicted uptake 

efficiencies of dispersed bacteria can reach extremely high values, which do not correspond 

to any physical nor biochemical process. In the soil conditions represented by the 
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experiments, it was not however critical, as these extremely high uptake efficiencies 

corresponded to a negligible fraction of bacteria mostly exposed to a negligible fraction of 

substrate. 

4. Discussion 

4.1. Relevance of density control to 2,4-D degradation and soil carbon cycling 

4.1.1 Density control of soil oligotroph bacteria 

Bulk soil and highly-diluted environments are usually found to be dominated by bacteria with 

high maximum uptake efficiency, named oligotrophs (Fierer et al., 2007; Nunan et al., 2020). 

Their high maximum uptake efficiency differentiates their life-history strategies and 

conditions their ability to thrive in resource poor environments (Button, 1993), also 

assimilated to K-strategy (Tecon and Or, 2017), by opposition to copiotrophic bacteria 

adapted to rich environments (r-strategy). The maximum uptake efficiency values of the 1% 

best-fitting parameter sets were of the order of 103-104 l·g-1·d-1 (volume of water per mass 

of bacteria per unit of time), within the range proposed by Button (1991) to define 

oligotrophs. Similar or higher maximum uptake efficiency values of the order of 

104-105 l·g-1·d-1 have been reported for soil oligotrophs (Ohta and Taniguchi, 1988; Zelenev 

et al., 2005). Values up to 1.64 105 have been reported by Tuxen et al. (2002) for 2,4-D 

degraders in an aerobic aquifer, for bacteria 1.6 times smaller in average than the ones we 

considered (Balkwill et al., 1988) and values beyond might be reachable (see section S5). The 

high maximum uptake efficiencies predicted in section 3.1 for the best-fitting 

parameterizations are therefore a plausible metabolic trait among 2,4-D degraders as well 
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as bulk soil bacteria in general. It suggests that density control might be appropriate for a 

part of soil bacteria, which would benefit from dispersion as suggested by Fig. 6, even under 

the low bacterial densities observed in bulk soils (Raynaud and Nunan, 2014; Kuzyakov and 

Blagodatskaya, 2015).Reciprocally, the model shows that competition for substrate between 

copiotrophic bacteria only appears for much larger population densities, like the ones in soil 

biofilms (Holden et al., 1997, Or et al., 2007). Interestingly, copiotrophic bacteria have been 

reported to cohabit with oligotrophic bacteria even in diluted environments (Gözdereliler et 

al., 2012). Results from the screening suggests that, may copiotrophs have densities as low 

as oligotrophs, their impact on overall decomposition in dilution-dominated environments 

would be much lower due to their inadapted uptake efficiency (Fig. 4A). Conversely, this 

striking density regulation might be one of the main limitations of the overall population 

densities in soils. Note that this density regulation occurs within a single population with 

homogeneous biological constants. Spatial heterogeneities and low substrate 

concentrations may shift competition from inter-population to inter-individual as also 

reported by Roller and Schmidt (2015).  

4.1.2 A new perspective on Regulatory Gate hypothesis 

Density regulation might partially contribute to explain the common paradox of the apparent 

uncoupling between the overall mineralization of a soil volume and the size of its microbial 

population (Kemmitt et al., 2008). The rate of soil C mineralization remains the same even if 

90% of the microbial decomposers are killed. This observation is classically explained by the 

Regulatory Gate hypothesis, where mineralization is assumed to be controlled by an abiotic 

process that limits the availability of the substrate, such as desorption or diffusion, resulting 

in a mineralization independent of the degrader abundance. We propose that the density 
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regulation of decomposition in oligotrophic environments may contribute to this 

phenomenon. The density regulation reduces the dependence of the overall C mineralization 

on degrader abundance, as any increase of population density counterbalances the effect of 

the increased population size. Note that the involved abiotic process, namely the substrate 

diffusion backward to bacteria (see section 3.2), becomes limiting only in situations of high 

bacterial competition. 

4.2. Ratio-dependent modeling in soils 

4.2.1 Relevance of Contois-based model in soils 

To the best of our knowledge, ratio-dependent growth models such as Contois model have 

not yet been considered to model microbial degradation in soils. However, the Contois 

growth equation is generally accepted to be more appropriate than the Monod equation for 

modeling microbial ecosystems, immobilized cultures or heterogeneous spatial distributions 

(Arditi and Saiah, 1992; Harmand and Godon, 2007), which all characterize soils. It has also 

been widely used to model anaerobic digestion of organic wastes and has been related to 

kinetic restrictions by surface processes (Nelson and Holder, 2009). In fact, the regulation of 

individual activity by population density has long been recognized among various fields of 

biology (Hammond, 1938; Read, 1951; Contois, 1959) and has frequently been justified as a 

“crowding effect” associated with high population densities leading to competition for 

substrate (Lobry and Harmand, 2006; Harmand and Godon, 2007; Krichen et al., 2018). 

However, little is known about possible density regulation when apparent microbial 

densities are low, as is observed in bulk soil (Raynaud and Nunan, 2014; Kuzyakov and 

Blagodatskaya, 2015), although some studies have mentioned ratio-dependence in 
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highly-diluted environments such as aquifers (Hansen et al., 2017). As discussed in 

section 4.1.1, the high oligotrophic capacities commonly observed for soil bacteria are 

relevant to consider the importance of density control in soils. In comparison with the 

substrate-dependent growth law of Monod, Contois ratio-dependence includes not only the 

effect of competition for substrate at the scale of measurement, it can also reasonably reflect 

the spatial variability of bacterial distributions at finer scales related to their high degree of 

local aggregation in microcolonies (Raynaud and Nunan, 2014). It has been shown 

independently that the fast local aggregation of bacteria leads naturally to ratio-dependent 

models (Haegeman and Rapaport, 2008; Rapaport, 2018). Moreover, ratio-dependence may 

include as well the cumulative effects of ecological interactions other than competition (Sibly 

and Hone, 2002). As also argued in section 3.3, ratio-dependence may facilitate degradation 

modeling at least in the soil conditions typical of the experiments analyzed here, since it 

reduces the need to determine which scale is relevant for measuring the spatial distributions 

and densities of bacteria in soil, a major limit of current knowledge (Juyal et al., 2019). Finally, 

the similarity between KM and KCB exposes the need to consider population density when 

measuring the apparent maximum uptake efficiency of soil bacteria to avoid 

underestimating it by unintentionally including density regulation. 

4.3. Hypothetical relationship between bacterial metabolic traits and their 

spatial strategies 

Density regulation might be at the origin of a relationship between bacterial oligotrophy, 

their location in soil and their mobility strategy. Soil copiotroph bacteria have a maximum 

uptake efficiency mostly between 100 l·g-1·d-1 (Button, 1991) and 800 l·g-1·d-1 (Daugherty and 
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Karel, 1994; Zelenev et al., 2005). For copiotrophs with maximum uptake efficiency values 

below 288 l·g-1·d-1, bacterial dispersion was largely detrimental (Fig. 4A, Fig. 6), in agreement 

with the results of Pagel et al. (2020) suggesting that copiotrophs have more aggregated 

distributions than oligotrophs. The negligible mineralization even without dispersion 

(Fig. 3-A4, Fig. S8) also highlights that copiotrophs are particularly inefficient for degrading 

substrates that diffuses in the environment, as also evidenced by Babey et al. (2017). To 

remain significantly active, soil copiotrophs are likely to remain immobile in the close 

surroundings of the substrate source or any immobile substrate, likely attached to surfaces 

or embedded in EPS matrices. If not, they would be dispersed towards more diluted area 

where their low maximum uptake efficiency would result in negligible uptake. On the 

contrary, to survive and develop, soil oligotrophs should be able to easily disperse and 

escape high competition areas. Given that soil is a poor and heterogeneous environment, 

this dispersion would be essentially passive (Nunan et al., 2020), like through advective 

processes. We therefore suggest the existence of a theoretical relation between proximity 

to substrate sources (respectively remoteness), copiotrophy (respectively oligotrophy) and 

attachment (respectively mobility). 

5. Conclusions 

Heterogeneous distributions of degraders and substrate in soils strongly control soil organic 

matter degradation through their interactions with the bacterial metabolic activity. Taking 

2,4-D as a model organic solute substrate for soil bacteria, we investigated the coupled 

effects of bacteria and substrate distributions on one side and bacterial metabolic traits on 

the other side on substrate degradation. The analysis of experiments previously performed 
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with contrasted spreading conditions of both bacteria and substrate reveals that, in addition 

to the proximity of bacteria to high substrate concentrations (substrate dilution regulation), 

mineralization is also surprisingly controlled by the remoteness between bacteria (bacteria 

density regulation) even under the low bacterial densities commonly observed in bulk soils. 

Moreover, the impact of bacterial dispersion on solute substrate degradation can shift from 

negative to positive depending on the bacterial maximum uptake efficiency. Soil oligotrophs 

activity would be mostly determined by bacterial density rather than by substrate dilution, 

echoing the population size paradox regularly observed. It follows that the ratio-dependent 

Contois model might be more relevant to model soil mineralization in the heterogeneous 

conditions investigated than the substrate-dependent Monod model. To predict the impact 

of spatial distributions on degradation in oligotrophic soil, and more particularly the impact 

of bacterial dispersion, we suggest that bacterial densities might be a more useful 

measurement than the volumes of soil devoid or occupied with bacteria. With respect to the 

current lack of direct microscale data on microbial processes and distributions, we propose 

some key perspectives on the bacterial kinetics and distributions. 
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Tables 

Table 1. 

Values and range of values of the reactive transport model. The effective dispersion 

coefficient ddisp applies only to heterogeneous percolation experiments. B(t=0) is the initial 

density of bacteria in the natural cubes. It is considered 1.6 times smaller in the percolation 

experiments than in the hydrostatic experiments according to the initial experimental 

measurements. 

Parameter description Symbol Unit 
Fixed values and 
admissible ranges 
for screening 

initial 
substrate 
concentrati
on 

hydrostatic 
experiments 

S(t=0) 

µg·g-1 (mass of substrate 
carbon per mass of dry soil) 0.825 b 

percolation 
experiments µg·g-1 6.52 b 

reversible adsorption 
coefficient kSA d-1 0.09207  

reversible desorption 
coefficient kAS d-1 4.361  

irreversible 

adsorption coefficient 
kC d-1 0.01296  

uptake yield y - 0.5206  

maximum specific 
uptake rate (1/y)·µmax d-1 [0.0190 – 19.5] 

uptake efficiency  
at the lowest substrate 
concentration 

(1/y)·µmax/κ a 
where κ is κM or 
B(t=0)·κC 

g·µg-1·d-1 (mass of dry soil per 
mass of bacterial carbon per 
unit of time) 

[0.0152 – 159] c 

accommodation 

rate 
α d-1 [0.00934 – 934] 

initial 
degrader 

hydrostatic 
experiments B(t=0) 

µg·g-1 (mass of 
bacterial carbon per mass of 
dry soil) 

[0.0161 – 1.61] d 
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population 
density 

percolation 
experiments B(t=0) µg·g-1 [0.0101 – 1.01] d 

mortality rate mt d-1 0.0602  

nutrient recycling yield χ - 0.6010  

effective diffusion 
coefficient ddiff m2·d-1 1 10-5  e  

effective dispersion 
coefficient ddisp m2·d-1 [0 – ∞] 

leaching 
rates 
(days 0; 3; 
6) 

homogeneous 
experiments 

ν - 
0.108; 0.226; 0.180  

heterogeneous 
experiments 0.107; 0.223; 0.178  

a The half-saturation constant κ corresponds to κM for the Monod-based model and B(t=0)·κC 

for the Contois-based model (where B(t=0) is the value from the hydrostatic experiments). 

b The initial substrate concentration S(t=0) is set equal to the 14C-2,4-D concentration 

amended in the experiments. 

c The values of (1/y)·µmax/κ correspond to ranges of [1.65 – 1.73 104] l·g-1·d-1 (volume of 

water per mass of bacteria per unit of time) 

d The values of B(t=0) correspond respectively to ranges of [1.48 10-4 – 1.48 10-2] g·l-1 (mass 

of bacteria per volume of water) for the hydrostatic experiments and [9.24 10-5 – 9.24 

10-3] g·l-1 for the percolation experiments. 

e The value of ddiff has been calibrated on a 3 × 6 × 6 grid in similar conditions (Babey et al., 

2017). 
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Table 2.  

Parameters for the Monod-based model calibrated by the screening approach (section 2.2) 

on the hydrostatic experiments only (Babey et al., 2017) and on both hydrostatic and 

percolation experiments, and for the Contois-based model calibrated on both hydrostatic 

and percolation experiments, as described in sections 2.1, 2.2 and 2.4 

Parameter symbol Unit 

Monod model calibration Contois 
model 

calibration 
on both 

hydrostatic & 
percolation 
experiments 

on the sole 
hydrostatic 

experiments 

on both 
hydrostatic & 
percolation 
experiments 

(1/y)·µmax d-1 1.22 9.73 4.86 

(1/y)·µmax/κ a 
g·µg-1·d-1 (mass of 
dry soil per mass of 
bacterial carbon per 
unit of time) 

2.65 b 26.5 b 2.65 b 

α d-1 9.341 10-1 9.34 10-2 9.34 10-2 

B(t=0) 

hydrostatic 
experiments 

µg·g-1 (mass of 
bacterial carbon per 
mass of dry soil) 

1.61 10-1 3.23 10-2 3.76 10-1 

percolation 
experiments µg·g-1 1.01 10-1 2.01 10-2 2.34 10-1 

ddisp m2·d-1 0 c 1.78 10-4  c 10-5  c 

J1234 - 0.079 0.032 0.022 

a The half-saturation constant κ corresponds to κM for the Monod-based model and 

B(t=0)·κC for the Contois-based model (where B(t=0) is the value from the hydrostatic 

experiments). 

b Values of (1/y)·µmax/κ correspond respectively to 2.89 102, 2.89 103 and 2.89 102 l·g-1·d-1 

(volume of water per mass of bacteria per unit of time). 
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c The corresponding spreading values induced by the hydrodynamic dispersion 

(root-mean-square displacements) for each percolation events are respectively 0, 3.8 and 

0.91 mm, to be compared to the 25 mm radius of the soil column. 
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Figure captions 

Fig. 1. Sketch of the model experimental design, geometry and initial distributions (A) based 

on previously performed experiments in hydrostatic (Pinheiro et al., 2015) and percolation 

(Pinheiro et al., 2018) conditions. The red and green arrows refer respectively to the 2,4-D 

and degrader reported displacements. (B) Experimental cumulated production of CO2 

(adapted from Pinheiro et al. (2018, 2015), permission for reproduction granted by Elsevier). 

 

Fig. 2. Graphical representation of the biochemical model and carbon fluxes identified by the 

arrows. Under low substrate concentrations S, the specific uptake rate (1/y)·µ becomes 

equal to S·(1/y)·µmax/κM, where (1/y)·µmax/κM is referred to as the “maximum uptake 

efficiency”. 

 

Fig. 3. Mineralization dynamics predicted with the Monod-based model calibrated on the 

hydrostatic experiment only (A) and on both hydrostatic and percolation experiments (B). 

The related experimental setups are indicated in the top right corner of each graph. The 

agreement between experiments and model is indicated by the value of discrepancy J 

displayed on top and can be visually assessed by the proximity between the black line and 

the dots representing respectively the model results and experimental data. The red line 

refers to the carbon mass of substrate remaining in the soil core. In the percolation 

experiments (A3,4 and B3,4), around 51% of the initial mass of 14C was lost through leaching 
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at each percolation events (t = 0, 3 and 6 days, blue arrows). The carbon balance among the 

different pools is detailed in Fig. S5. 

 

Fig. 4. Influence of the dispersion coefficient ddisp on mineralization predicted at day 24 

mCO2(t=24) for the biological model calibrated on the sole hydrostatic experiments (A, thick 

red line) and on both hydrostatic and percolation experiments (B, thick blue line). The thin 

mauves lines correspond to parameter sets with the same specific maximum uptake 

efficiency (1/y)·µmax/κM but different maximum specific uptake rate (1/y)·µmax, 

accommodation rate α and initial bacterial population density B(t=0). The maximum uptake 

efficiency is the main determinant of the dispersion leading to the highest final 

mineralization (see section 3.2.3) while the other biological parameters determine the 

corresponding mineralization level. Note that for the model calibrated on both hydrostatic 

and percolation experiments, the value of ddisp leading to the highest final mineralization 

(ddisp = 1.78 10-4 m2·d-1, thick blue line) is also equal to its calibrated value leading to the best 

adequacy with mineralization kinetics (Table 2). 

 

Fig. 5. Predicted substrate and bacterial concentration profiles after some time of diffusion 

and dispersion in the conditions of heterogeneous percolation experiment where bacteria 

and substrate are initially located exclusively in the central cube (between 0 and 3 mm). 

Results are simulated on a 9 × 18 × 18 grid obtained by subdividing the 3 × 6 × 6 grid used for 

the screenings. The results are represented for the parameter set calibrated on the sole 

hydrostatic experiment (A), and for the biological parameter set calibrated on both 
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hydrostatic and percolation experiments, without dispersion (B) and with the calibrated 

dispersion (C). On one hand, bacteria are exposed to smaller substrate concentrations if they 

are far from the source (right part of the graphs). On the other hand, bacteria undergo 

competition if they are too close from each other (left part of the graphs). In (B), the bacteria 

aggregated below d consume the substrate faster than it is replenished by backward 

diffusion and dispersion. 

 

Fig. 6. Dispersion coefficient giving the highest predicted mineralization at day 24 as a 

function of maximum uptake efficiency, all other parameters equal to those of the model 

calibrated on both hydrostatic and percolation experiments. 

 

Fig. 7. Mineralization dynamics predicted with the Contois-based model calibrated on both 

hydrostatic and percolation experiments. For representation and legend, see Fig. 3. The 

carbon balance among the different pools is detailed in Fig. S5. 

 

Fig. 8. Influence of the dispersion coefficient on mineralization at day 24 for the 

Contois-based models calibrated on the sole hydrostatic experiments (thick red line) and on 

both hydrostatic and percolation experiments (thick blue line). For representation and 

legend, see Fig. 4. 
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