V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection, ACM Computing Surveys, vol.41, issue.3, pp.1-1558, 2009.
DOI : 10.1145/1541880.1541882

C. Phua, D. Alahakoon, and V. C. Lee, Minority report in fraud detection, ACM SIGKDD Explorations Newsletter, vol.6, issue.1, pp.50-59, 2004.
DOI : 10.1145/1007730.1007738

F. Angiulli and F. Fassetti, Distance-based outlier queries in data streams: the novel task and algorithms, Data Mining and Knowledge Discovery, vol.8, issue.3???4, pp.290-324, 2010.
DOI : 10.1007/s10618-009-0159-9

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, A sense of self for Unix processes, Proceedings 1996 IEEE Symposium on Security and Privacy, pp.120-128, 1996.
DOI : 10.1109/SECPRI.1996.502675

S. Kasif, S. Salzberg, D. L. Waltz, J. Rachlin, and D. W. Aha, A probabilistic framework for memory-based reasoning, Artificial Intelligence, vol.104, issue.1-2, pp.287-311, 1998.
DOI : 10.1016/S0004-3702(98)00046-0

D. Ienco, R. G. Pensa, and R. Meo, From Context to Distance, ACM Transactions on Knowledge Discovery from Data, vol.6, issue.1, 2012.
DOI : 10.1145/2133360.2133361

L. Yu and H. Liu, Feature selection for high-dimensional data: A fast correlation-based filter solution, Proc. of ICML, pp.856-863, 2003.

K. Noto, C. E. Brodley, and D. K. Slonim, FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection, Data Mining and Knowledge Discovery, vol.52, issue.3-4, pp.109-133, 2012.
DOI : 10.1007/s10618-011-0234-x

F. E. Grubbs, Procedures for Detecting Outlying Observations in Samples, Technometrics, vol.6, issue.7, pp.1-21, 1969.
DOI : 10.1080/00401706.1969.10490657

M. M. Breunig, R. T. H-p, J. Kriegel, and . Sander, Lof: identifying density-based local outliers, Proc. of SIGMOD, pp.93-104, 2000.

C. Wang, Outlier identification and market segmentation using kernel-based clustering techniques, Expert Systems with Applications, vol.36, issue.2, pp.3744-3750, 2009.
DOI : 10.1016/j.eswa.2008.02.037

H. Kriegel, M. Schubert, and A. Zimek, Angle-based outlier detection in high-dimensional data, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.444-452, 2008.
DOI : 10.1145/1401890.1401946

V. Chandola, S. Boriah, and V. Kumar, A Framework for Exploring Categorical Data, Proc. of SDM, pp.185-196, 2009.
DOI : 10.1137/1.9781611972795.17

B. Scholkopf, J. C. Platt, J. Shawe-taylor, A. J. Smola, and R. C. Williamson, Estimating the Support of a High-Dimensional Distribution, Neural Computation, vol.6, issue.1, 1999.
DOI : 10.1214/aos/1069362732

S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and T. Kanamori, Statistical outlier detection using direct density ratio estimation, Knowledge and Information Systems, vol.17, issue.2, pp.309-336, 2011.
DOI : 10.1007/s10115-010-0283-2

V. J. Hodge and J. Austin, A Survey of Outlier Detection Methodologies, Artificial Intelligence Review, vol.22, issue.2, pp.85-126, 2004.
DOI : 10.1023/B:AIRE.0000045502.10941.a9

L. Wei, W. Qian, A. Zhou, W. Jin, and J. X. Yu, Hot: Hypergraphbased outlier test for categorical data, Proc. of PAKDD, pp.399-410, 2003.

Z. He, X. Xu, J. Z. Huang, and S. Deng, FP-outlier: Frequent pattern based outlier detection, Computer Science and Information Systems, vol.2, issue.1, pp.103-118, 2005.
DOI : 10.2298/CSIS0501103H

Z. He, S. Deng, X. Xu, and J. Z. Huang, A Fast Greedy Algorithm for Outlier Mining, Proc. of PAKDD, pp.567-576, 2006.
DOI : 10.1007/11731139_67

A. Koufakou, E. G. Ortiz, M. Georgiopoulos, G. C. Anagnostopoulos, and K. M. Reynolds, A Scalable and Efficient Outlier Detection Strategy for Categorical Data, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007), pp.210-217, 2007.
DOI : 10.1109/ICTAI.2007.125

K. Das, J. G. Schneider, and D. B. Neill, Anomaly pattern detection in categorical datasets, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.169-176, 2008.
DOI : 10.1145/1401890.1401915

L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos, Fast and reliable anomaly detection in categorical data, Proceedings of the 21st ACM international conference on Information and knowledge management, CIKM '12, pp.415-424, 2012.
DOI : 10.1145/2396761.2396816

K. Smets and J. Vreeken, The Odd One Out: Identifying and Characterising Anomalies, Proceedings of the 11th SIAM International Conference on Data Mining, SDM 2011. SIAM / Omnipress, pp.804-815, 2011.
DOI : 10.1137/1.9781611972818.69

S. Boriah, V. Chandola, and V. Kumar, Similarity Measures for Categorical Data: A Comparative Evaluation, Proc. of SDM, pp.243-254, 2008.
DOI : 10.1137/1.9781611972788.22

R. J. Quinlan and C. , 5: Programs for Machine Learning, ser. Morgan Kaufmann Series in Machine Learning, 1993.

C. L. Blake and C. J. Merz, UCI repository of machine learning databases, 1998.

U. Brandes and C. Pich, Eigensolver Methods for Progressive Multidimensional Scaling of Large Data, Proc. of Graph Drawing, pp.42-53, 2006.
DOI : 10.1007/978-3-540-70904-6_6

A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition, vol.30, issue.7, pp.1145-1159, 1997.
DOI : 10.1016/S0031-3203(96)00142-2

D. J. Hand and R. J. , A simple generalisation of the area under the roc curve for multiple class classification problems, Machine Learning, vol.45, issue.2, pp.171-186, 2001.
DOI : 10.1023/A:1010920819831

J. Demsar, Statistical comparisons of classifiers over multiple data sets, Jour. of Mach. Lear. Res, vol.7, pp.1-30, 2006.

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res, vol.3, pp.1157-1182, 2003.

D. Ienco-obtained-his and M. Sc, degree in Computer Science in 2006 and his Ph.D. in Computer Science in 2010, both at the University of Torino. From 2010 to 2011 he had a post-doctoral position at the same University he was postdoc in Montpellier at Cemagref. Since September 2011 he obtained a permanent position as researcher at the Irstea Institute His research interests are in the areas of data mining and machine learning with particular emphasis on unsupervised techniques (clustering and co-clustering), data stream analysis and spatio-temporal data mining, 2011.

I. Postdoctoral, I. , and T. , Since 2011, he is Assistant Professor at the Department of His main research interests include data mining and knowledge discovery, data science, privacy-preserving algorithms for data management, social network analysis and spatio-temporal data analysis. He served in the programme committee of many international conferences on data mining and machine learning, which IEEE ICDM, ACM CIKM, SIAM SDM, ECML PKDD, 2007.