R. Agrawal and R. Srikant, Fast algorithms for mining association rules in large databases, Proceedings of the 20th International Conference on Very Large Data Bases, VLDB '94, pp.487-499, 1994.

R. Agrawal and R. Srikant, Mining sequential patterns, Data Engineering, International Conference on 0, p.3, 1995.

H. Alatrista-salas, S. Bringay, F. Flouvat, N. Selmaoui-folcher, and M. Teisseire, The pattern next door: Towards spatiosequential pattern discovery, Proceedings of the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'12), 2012.
URL : https://hal.archives-ouvertes.fr/lirmm-00802125

H. Cao, N. Mamoulis, and D. Cheung, Mining frequent spatio-temporal sequential patterns, Proc of IEEE ICDM, pp.82-89, 2005.

M. Celik, S. Shekhar, J. Rogers, and J. Shine, Mixed-drove spatiotemporal co-occurrence pattern mining, Proc of IEEE TKDE, vol.20, issue.10, pp.1322-1335, 2008.

C. Chand, A. Thakkar, and A. Ganatra, Sequential pattern mining: Survey and current research challenges, International Journal of Soft Computing and Engineering, vol.2, issue.1, pp.185-193, 2012.

L. Geng and H. J. Hamilton, Interestingness measures for data mining: A survey, ACM Computing Surveys (CSUR), vol.38, issue.3, 2006.

F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, Trajectory pattern mining, Proc of ACM SIGKDD, pp.330-339, 2007.

J. Han, K. Koperski, and N. Stefanovic, Geominer: A system prototype for spatial data mining, Proc of ACM SIGMOD, SIGMOD '97, pp.553-556, 1997.

J. Han, J. Pei, B. Mortazavi-asl, Q. Chen, U. Dayal et al., Freespan: Frequent pattern-projected sequential pattern mining, Proc of ACM SIGKDD, KDD '00, pp.355-359, 2000.

Y. Huang, L. Zhang, and P. Zhang, A framework for mining sequential patterns from spatio-temporal event data sets, Proc of IEEE TKDE, vol.20, issue.4, pp.433-448, 2008.

M. V. Joshi, G. Karypisx, and V. Kumar, A universal formulation of sequential patterns, Workshop on Temporal Data Mining, vol.1, p.7, 2001.

M. Lafont, A conceptual approach to the biomonitoring of freshwater: The ecological ambience system, The Journal of Limnology, vol.60, issue.1, pp.17-24, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02580440

L. Wang, K. Hu, T. Ku, and X. Yan, Mining frequent trajectory pattern based on vague space partition, Knowledge-Based Systems, vol.50, pp.100-111, 2013.

Y. C. Liu, Discovering forward sequences from temporal data, in: Knowledge-Based Systems, vol.39, pp.67-78, 2013.

K. Mcgarry, A survey of interestingness measures for knowledge discovery, The Knowledge Engineering Review, vol.20, issue.1, pp.39-61, 2005.

P. Mohan, S. Shekhar, J. A. Shine, and J. P. Rogers, Cascading spatio-temporal pattern discovery: A summary of results, SDM, pp.327-338, 2010.

B. Mortazavi-asl, H. Pinto, and U. Dayal, PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth, Proc of 17th International Conference on Data Engineering, pp.215-224, 2000.

J. Pei, J. Han, B. Mortazavi-asl, J. Wang, H. Pinto et al., Mining sequential patterns by pattern-growth: The prefixspan approach, Proc of IEEE TKDE, vol.16, issue.11, pp.1424-1440, 2004.

S. Shekhar and Y. Huang, Discovering Spatial Co-Location Patterns A Summary Of Results, Advances in Spatial and Temporal Databases, pp.236-256, 2001.

A. A. Shaw and N. P. Gopalan, Finding longest frequent trajectory of dynamic objects using association approaches, Intelligent Data Analysis, pp.637-651, 2014.

R. Srikant and R. , Advances in Database Technology EDBT'96

I. Tsoukatos and D. Gunopulos, Efficient mining of spatiotemporal patterns, Advances in Spatial and Temporal Databases, pp.425-442, 2001.

J. Wang, W. Hsu, and M. Lee, Mining generalized spatio-temporal patterns, Database Systems For Advanced Applications, pp.649-661, 2005.

T. Wu, Y. Chen, and J. Han, Re-examination of interestingness measures in pattern mining: a unified framework, Data Mining and Knowledge Discovery, vol.21, issue.3, pp.371-397, 2010.

M. Yuan, Knowledge toward discovery about geographic dynamics in spatiotemporal databases, Geographic Data Mining and Knowledge Discovery, pp.347-365, 2009.

M. J. Zaki, Spade: An efficient algorithm for mining frequent sequences, Machine Learning, vol.42, issue.1, pp.31-60, 2001.