S. Sur-bois, Essais86 b. Essais sur bois sec, p.88

.. Essais-définitifs-en-flexion-longitudinale, 89 a. Essais sur échantillons humides89 b. Essais sur échantillons secs à l'air, ., p.92

.. Matériel-végétal, 92 2. Test de traction dans le plan transversal, p.92

T. Essais-définitifs-dans-le-plan, 94 a. Essai de traction simple du peuplier de tension selon la direction radiale, p.95

.. Essai-de-flexion-quatre-points-dans-la-direction-longitudinale, 96 b. Echantillon sec à l'air, p.97

.. Essai-de-compression-sur-l-'épicéa, 107 a. Compression radiale, p.109

.. Essai-de-compression-sur-le-peuplier, 111 a. Compression radiale, p.113

P. Ander and K. Nyholm, ? Deformations in wood and spruce pulp fibre: Their importance for wood and pulp properties, Proc. Int. Symp. on wood machinig Stanzl- Tschegg and Reiterer, pp.3-19, 2000.

P. Ander, Dislocations and balloon swelling in spruce kraft pulp fibres ? Effect of cellulose, Xylan and Laccase/HTB, Special issue biotechnol, Pulp paper Ind ., Progr. Biotechnol, 2002.

L. D. Armstrong and R. S. Kingston, Effect of moisture changes on the deformation of wood under stress, Australia Journal of Applied Science, vol.13, pp.4257-276, 1962.

E. Badel and P. Perré, Détermination des propriétés élastiques d'éléments individuels du plan ligneux du chêne par des essais de traction sur micro-éprouvettes ? Ann, For. Sci, vol.65, pp.467-478, 1999.

S. G. Bardenhagen, J. U. Brackbill, and D. Sulsky, The material-point method for granular materials, Computer Methods in Applied Mechanics and Engineering, vol.187, issue.3-4, pp.529-541, 2000.
DOI : 10.1016/S0045-7825(99)00338-2

A. Bergander and L. Salmen, Cell wall properties and their effects on the mechanical properties of fibres, Journal of Materials Science, vol.37, issue.1, pp.151-156, 2002.
DOI : 10.1023/A:1013115925679

S. G. Bardenhagen, A. D. Brydon, and J. E. Guilkey, Insight into the physics of foam densification via numerical simulation, Journal of the Mechanics and Physics of Solids, vol.53, issue.3, pp.597-617, 2005.
DOI : 10.1016/j.jmps.2004.09.003

J. Batoz and G. Dhatt, ? Modélisation des structure par éléments finis, 1990.

J. B. Boutelje, The relationship of structure to transverse anisotropy in wood with reference to shrinkage and elasticity ? Holzforschung 16, 1962.

J. Boyd, Relationship between fibre morphology and shrinkage of wood, Wood Science and Technology, vol.3, issue.4, pp.3-22, 1977.
DOI : 10.1007/BF00353597

J. Brackbill and R. H. , FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions, Journal of Computational Physics, vol.65, issue.2, pp.314-343, 1986.
DOI : 10.1016/0021-9991(86)90211-1

J. U. Brackbill, D. Kothe, and H. M. , Flip: A low-dissipation, particle-in-cell method for fluid flow, Computer Physics Communications, vol.48, issue.1, pp.25-38, 1988.
DOI : 10.1016/0010-4655(88)90020-3

L. Brancheriau, H. Bailleres, and D. Guitard, Comparison between modulus of elasticity values calculated using 3 and 4 point bending tests on wooden samples, Wood Science and Technology, vol.36, issue.5, pp.367-383, 2002.
DOI : 10.1007/s00226-002-0147-3

Z. Chen and R. Brannon, An evaluation of the Material Point Method ? Sand report, prepared by Sandia National Laboratories, 2002.

C. B. Et-thibaut and B. , Shrinkage of the gelatinous layer of poplar and beech tension wood, IAWA Journal, vol.22, issue.2, pp.121-131, 2001.

C. Coutand, G. Jeronimidis, B. Chanson, and C. Loup, Comparison of mechanical properties of tension and opposite wood in Populus, Wood Science and Technology, vol.38, issue.1, pp.11-28, 2004.
DOI : 10.1007/s00226-003-0194-4

URL : https://hal.archives-ouvertes.fr/hal-01190891

J. Danvind, Analysis of drying wood based on nondestructive measurements and numerical tools ? Rapport de these, 2005.

C. De-la and M. Sanchez, Mesure des constantes élastiques du bois d'épinette noire (Picéa mariana (Mill.) B.S.P) dans des conditions d'équilibre du séchage à basse température, 2006.

D. Magistris, F. Salmén, and L. , ? Finite element modelling of wood cell deformation transverse to the fibre axis ? Nodric Pulp and Paper Research Journal, pp.240-246, 2008.

P. Doumalin, Microextensométrie locale par correlation d'images numériques: Appliquation aux etudes micromécaniques par Microscopie Electronique à balayage ?, 2000.

D. Frédéric, ? Modélisations numériques des comportements viscoélastiques vieillissants des matériaux du génie civil ? Mémoire de HDR, 2004.

S. J. Eichhorn and R. J. Young, The Young's modulus of a microcrystalline cellulose ? Cellulose, pp.197-207, 2001.

M. W. Evan and F. Harlow, H (1957) ? The particle-in ?cell method for hydrodynamic calculation ? Los Alamos Scientific Laboratory

F. Farruggia and . Nancy, Détermination du comportement élastique d'un ensemble de fibres de bois à partir de son organisation cellulaire et d'essais mécaniques sous microscope, 1998.

F. Farruggia and P. Perré, Microscopic tensile tests in the transverse plane of earlywood and latewood part of spruce ? Wood Science and Technology, pp.65-82, 2000.

X. Frank and P. Perré, The potential of meshless methods to address physical and mechanical phenomena involved during drying at the pore level ? Drying technology, pp.932-943, 2010.

C. Gachet, Inventaire et hiérarchisation de paramètres structuraux et ultrastructuraux facteurs de variabilité intra spécifique de certaines propriétés mécano physiques des tissus ligneux, 2003.

A. Gaissen, The effect of temperature and moisture content on the elastic and strength properties of wood in the freezing range, .D. Diss;, Dept. Biol, 1976.

L. J. Gibson and M. F. Ashby, Cellular solids: structure and properties ? second edition, 1997.
DOI : 10.1017/CBO9781139878326

P. Gillis, Orthotropic elastic constants of wood, Wood Science and Technology, vol.9, issue.3, pp.138-156, 1972.
DOI : 10.1007/BF00350827

G. Joseph-grosser and D. , Une modélisation du comportement hygro-rhéologique du bois à partir de sa microstructure ?, Die Hölzer Mitteleuropas, p.208, 1977.

. P. Grossmann, A (1976) ? Requirements for a model that exhibits mechano-sorptive behaviour ? Wood sci. Technol, pp.10-163

D. Guitard and M. Et-fournier, Comportement mécanique du bois -Le bois, 1994.

A. I. Hapca, Distribution du bois de compression dans l'arbre en relation avec sa forme externe. Application à l'Epicéa commun (Picea Abies Karst) ?, 2004.

B. J. Hardy, Molecular dynamics simulations and diffraction-based analysis of the native cellulose fibre: structural modelling of the I-?? and I-?? phases and their interconversion, Polymer, vol.37, issue.10, pp.1833-1839, 1996.
DOI : 10.1016/0032-3861(96)87299-5

F. H. Harlow, The particle-in-cell method for numerical solution of problems in fluid dynamics, Symp. Appl. Math. ?, vol.15, p.269, 1963.
DOI : 10.1090/psapm/015/9942

F. H. Harlow, Fluid dynamics in Group T-3 Los Alamos National Laboratory, Journal of Computational Physics, vol.195, issue.2, pp.414-433, 2004.
DOI : 10.1016/j.jcp.2003.09.031

R. F. Hearmon, S -The elasticity of wood and plywood -Dept, Sci. and Indust. Res., For. Prod. Res., Spec. Rept, issue.7, 1948.

A. P. Heine and O. Teleman, Structural reporter parameters for the characterisation of crystalline cellulose ? Pure & Appl, Chem, vol.68, issue.11, pp.2187-2192, 1996.

S. Holmberg, K. Persson, and H. Petersson, Nonlinear mechanical behaviour and analysis of wood and fibre materials. Computers and Structures 72, pp.459-480, 1999.

F. Huber, ? Modélisation de l'infradensité du bois en fonction de la largeur de cerne et de l'âge médullaire chez les chênes indigènes (Quercus robur L, et Quercus petraea Liebl.). Annexe au Compte-Rendu final du contrat CEE « Genetics and Breeding of Oaks, p.21, 1991.

J. M. Husson, Loi de comportement viscoélastique avec effet mémoire application à la mécanosorption dans le bois ?, 2009.

R. Keller, La constitution du bois -Le bois, matériau d'ingénierie, Textes rassemblés par, 1994.

. Kollmann and . Côté, Principles of wood science and technology ? Volume I: Solid Wood, 1984.

S. Koponen, T. Toratti, and P. Kanerva, Modelling longitudinal elastic an shrinkage properties of wood, Wood Science and Technology, vol.6, issue.1, pp.55-63, 1989.
DOI : 10.1007/BF00350607

R. Lahbabi, Mesure par analyse d'image de paramètres microscopiques requis pour une prédiction déterministe des propriétés du bois ?, 1995.

R. Marhofer, S. Reiling, and J. Brickmann, Computer simulations of crystal structures and elastic properties of cellulose, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.27, issue.8, pp.1350-1354, 1996.
DOI : 10.1002/bbpc.19961000813

R. L. Mccullogh, C. T. Wu, J. C. Seferis, and P. H. Lindenmeyer, Predictions of limiting mechanical performance for anisotropic crystalline polymers, Polymer Engineering and Science, vol.15, issue.5, pp.371-387, 1976.
DOI : 10.1002/pen.760160517

S. A. Meguid, S. S. Cheon, and N. El-abbasi, ? FE modelling of deformation localization in metallic foams ? Finite Elements in Analysis and Design 38, pp.631-643, 2002.

J. A. Nairn, ? Numerical simulations of transverse compression and densification in wood ? Wood and Fiber Science ?, pp.576-591, 2006.

J. A. Nairn, Material point method simulations of transverse fracture in wood with realistic morphologies ? Holzforschung, pp.375-381, 2007.

P. Navi, Three dimensional analysis of wood microstructural influences on wood elastic properties, proceedings of the 1988 international conference on timber ingineering, pp.411-429, 1988.

G. Nepveu, ? Variabilité ? Le bois, matériau d'ingénierie ? Textes rassemblés par, 1994.

A. Nishiguchi and T. Yabe, Second-order fluid particle scheme, Journal of Computational Physics, vol.52, issue.2, pp.390-413, 1983.
DOI : 10.1016/0021-9991(83)90037-2

M. Norimoto, S. Hayashi, and T. Yamada, Anisotropy of Dielectric Constant in Coniferous Wood, Holzforschung, vol.32, issue.5, pp.167-172, 1978.
DOI : 10.1515/hfsg.1978.32.5.167

T. Okuyama, H. Yamamoto, M. Iguchi, and M. Yoshida, Generation process of growth stresses in cell walls. II. Growth stress in tension wood, Mokuzai Gakkaishi, vol.36, pp.797-803, 1990.

M. Oudjene and M. Khlifa, Finite element modelling of wooden structures at large deformations and brittle failure prediction, Materials & Design, vol.30, issue.10, pp.4081-4087, 2009.
DOI : 10.1016/j.matdes.2009.05.024

A. Outahyon, Influences de paramètres d'usinage et de stockage sur les propriétés fonctionnelles des surfaces de bois de Douglas ?, 2008.

P. Perré, Le séchage convectif de bois résineux : Choix, validation et utilisation d'un modèle ? Rapport de thèse, 1987.

P. Perré, Le séchage du bois ? Le bois, matériau d'ingénierie. Textes rassemblés par, 1994.

P. Perré, Meshpore: A Software Able to Apply Image-Based Meshing Techniques to Anisotropic and Heterogeneous Porous Media, Drying Technology, vol.60, issue.9-11, pp.1993-2006, 2005.
DOI : 10.1081/DRT-120004013

P. Perré and F. Huber, ), Annals of Forest Science, vol.64, issue.3, pp.255-265, 2007.
DOI : 10.1051/forest:2007003

P. Perré and X. Frank, ? Modélisation par MPM du comportement de l'agencement cellulaire du bois en grandes déformations ? Congrès Français de Mécanique, pp.24-28, 2009.

V. Placet, Conception et exploitation d'un dispositif expérimental innovant pour la caractérisation du comportement viscoélastique et de la dégradation thermique du bois dans des conditions sévères ?, 2006.

G. Pluvinage, La rupture du bois et de ses composites, 1992.

H. Randriambolona, ? Modélisation du comportement différé du bois en environnement variable ?, 2003.

J. B. Ressel, ? Wood anatomy -an introduction ? Fundamental of wood drying, 2007.

J. Ruelle, H. Yamamoto, and B. Thibaut, ? Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperm species- BioResources, pp.235-251, 2007.

I. Sakudara, Y. Nukushina, and T. Ito, Experimental determination of the elastic modulus of crystalline regions of oriented polymers, Journal of polymer science, vol.57, pp.651-660, 1962.

S. Samarasinghe and D. Kulasiri, Stress Intensity Factor of Wood from Crack-Tip Displacement Fields Obtained from Digital Image Processing ? Sylva Fennica, pp.267-278, 2004.

E. Sano, Effects of temprerature on the mechanical propertie of wood. I. Compression parallel to grain, Japanese.) J. Japan Wood Res, pp.147-150, 1961.

W. Scurfield, The nature of reaction wood. VI. The reaction anatomy of seedlings of woody perennials., Australian Journal of Botany, vol.10, issue.2, pp.93-105, 1962.
DOI : 10.1071/BT9620093

J. F. Siau, Wood: Influence of moisture on physical properties ? Department of Wood Science and Forest Products Virginia Tech -USA, 1995.

P. Simon, Approche multiéchelle du comportement mécanique du bois dans le plan transverse ? Rapport de thèse ? I, 2009.

D. Sulsky, S. J. Zhou, and H. L. Schreyer, Application of a particle-in-cell method to solid mechanics, Computer Physics Communications, vol.87, issue.1-2, pp.236-252, 1995.
DOI : 10.1016/0010-4655(94)00170-7

Z. Sun, J. S. Lyons, and S. R. Mcneill, Measuring Microscopic Deformations with Digital Image Correlation, Optics and Lasers in Engineering, vol.27, issue.4, pp.409-428, 1997.
DOI : 10.1016/S0143-8166(96)00041-3

S. Du-'and-yamamoto and F. , An overview of the biology of reaction wood formation, Journal of Integrative Plant Biology, vol.49, issue.2, pp.131-143, 2007.

B. Thibaut, J. Gril, and M. Fournier, Mechanics of wood and trees: some new highlights for an old story, Série II b, pp.701-716, 2001.
DOI : 10.1016/S1620-7742(01)01380-0

URL : https://hal.archives-ouvertes.fr/hal-01032151

P. Viéville and D. Guitard, Simulation num??rique des liaisons microstructure-anisotropie du mat??riau bois ?? ses diff??rentes ??chelles d'h??t??rog??n??it??, Annales des Sciences Foresti??res, vol.53, issue.6, pp.1137-1151, 1996.
DOI : 10.1051/forest:19960608

U. Watanabe, M. Norimoto, T. Ohgama, and M. Fujita, Tangential Young's modulus of coniferous early wood investigated using cell models ? Holzforschung, pp.209-214, 1999.

U. Watanabe, M. Fujita, and M. Norimoto, Transverse Young's Moduli and Cell Shapes in Coniferous Early Wood, Holzforschung, vol.56, issue.1, pp.1-6, 2002.
DOI : 10.1515/HF.2002.001

H. Yamamoto, T. Okuyama, K. Sugiyama, and M. Yoshida, Generation process of growth stresses in cell walls. IV. Action of the cellulose microfibrils upon the generation of the tensile stresses, Mokuzai Gakkaishi, vol.38, pp.107-113, 1992.

H. Yamamoto, Role of the gelatinous layer on the origin of the physical properties of the tension wood, Journal of Wood Science, vol.50, issue.3, pp.197-208, 2004.
DOI : 10.1007/s10086-003-0556-4

URL : https://hal.archives-ouvertes.fr/hal-00004591

H. Yamamoto, K. Abe, Y. Arakawa, T. Okuyama, and J. Gril, Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum, Journal of Wood Science, vol.51, issue.3, pp.222-233, 2005.
DOI : 10.1007/s10086-004-0639-x

URL : https://hal.archives-ouvertes.fr/hal-00004591

A. York, D. Sulsky, and H. Schreyer, The material point method for simulation of thin membranes ? International journal for numerical methods in engineering ?, pp.1429-1456, 1999.

S. Youssef, E. Maire, and R. Gaertner, Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Materialia, vol.53, issue.3, pp.719-730, 2004.
DOI : 10.1016/j.actamat.2004.10.024

URL : https://hal.archives-ouvertes.fr/hal-00436799

S. Zhou, The numerical prediction of material failure based on the material point method ? Rapport de these ? University of, 1998.

H. X. Zhu, N. J. Mills, and J. F. Knott, Analysis of the high strain compression of opencell foams ?, J. Mech. Phys. Solids, vol.4512, issue.11, pp.1875-1904, 1997.