P. Cohen, Protein kinases -the major drug targets of the twenty-first century?, Nat. Rev. Drug Discov, vol.1, pp.309-315, 2002.

Y. Av-gay and M. Everett, The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis, Trends Microbiol, vol.8, pp.238-244, 2000.

A. E. Greenstein, C. Grundner, N. Echols, L. M. Gay, T. N. Lombana et al., Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis, J. Mol. Microbiol. Biotechnol, vol.9, pp.167-181, 2005.

A. M. Stock, V. L. Robinson, and P. N. Goudreau, Two-component signal transduction, Ann. Rev. Biochem, vol.69, pp.183-215, 2000.

P. Cashin, L. Goldsack, D. Hall, and R. O'toole, Contrasting signal transduction mechanisms in bacterial and eukaryotic gene transcription, FEMS Microbiol. Lett, vol.261, pp.155-164, 2006.

P. N. Goudreau and A. M. Stock, Signal transduction in bacteria: molecular mechanisms of stimulus-response coupling, Curr. Opin. Microbiol, vol.1, pp.160-169, 1998.

V. L. Robinson, D. R. Buckler, and A. M. Stock, A tale of two components: a novel kinase and a regulatory switch, Nat. Struct. Biol, vol.7, pp.626-633, 2000.

C. M. Fraser, J. D. Gocayne, O. White, M. D. Adams, R. A. Clayton et al., The minimal gene complement of Mycoplasma genitalium, Science, vol.270, pp.397-403, 1995.

R. Himmelreich, H. Hilbert, H. Plagens, E. Pirkl, B. C. Li et al., Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae, Nucl. Acids Res, vol.24, pp.4420-4449, 1996.

T. Mizuno, T. Kaneko, and S. Tabata, Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803, DNA Res, vol.3, pp.407-414, 1996.

T. Parish, D. A. Smith, S. Kendall, N. Casali, G. J. Bancroft et al., Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis, Infect. Immun, vol.71, pp.1134-1140, 2003.

T. Parish, D. A. Smith, G. Roberts, J. Betts, and N. G. Stoker, The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence, Microbiology, vol.149, pp.1423-1435, 2003.

E. Perez, S. Samper, Y. Bordas, C. Guilhot, B. Giquel et al., An essential role for phoP in Mycobacterium tuberculosis virulence, Mol. Microbiol, vol.41, pp.179-187, 2001.

L. Rickman, J. W. Saldanha, D. M. Hunt, D. N. Hoar, M. J. Colston et al., A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice, Biochem. Biophys. Res. Commun, vol.314, pp.259-267, 2004.

T. C. Zahrt and V. Deretic, Mycobacterium tuberculosis signal transduction system required for persistent infections, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.12706-12711, 2001.

T. C. Zahrt and V. Deretic, An essential two-component signal transduction system in Mycobacterium tuberculosis, J. Bacteriol, vol.182, pp.3832-3838, 2000.

S. T. Cole, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, pp.537-544, 1998.

P. S. Fontan, S. Walters, and I. Smith, Cellular signaling pathways and transcriptional regulation in Mycobacterium tuberculosis, Curr. Sci, vol.86, pp.122-134, 2004.

Y. Av-gay and V. Deretic, Two-component systems, protein kinases and signal transduction in Mycobacterium tuberculosis, Tuberculosis and the Tubercle Bacillus, pp.359-367, 2005.

A. Narayan, P. Sachdeva, K. Sharma, A. K. Saini, A. K. Tyagi et al., Serine threonine protein kinases of mycobacterial genus: phylogeny to function, Physiol. Genomics, vol.29, pp.66-75, 2007.

S. K. Hanks and T. Hunter, Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification, FASEB J, vol.9, pp.576-596, 1995.

G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, The protein kinase complement of the human genome, Science, vol.298, pp.1912-1934, 2002.

M. Ortiz-lombardia, F. Pompeo, B. Boitel, and P. M. Alzari, Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis, J. Biol. Chem, vol.278, pp.13094-13100, 2003.

T. A. Young, B. Delagoutte, J. A. Endrizzi, A. M. Falick, and T. Alber, Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases, Nat. Struct. Biol, vol.10, pp.168-174, 2003.

B. Boitel, M. Ortiz-lombardia, R. Duran, F. Pompeo, S. T. Cole et al., PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, Mol. Microbiol, vol.49, pp.1493-1508, 2003.

A. Wehenkel, P. Fernandez, M. Bellinzoni, V. Catherinot, N. Barilone et al., The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria, FEBS Lett, vol.580, pp.3018-3022, 2006.

L. M. Gay, H. L. Ng, and T. Alber, A conserved dimer and global conformational changes in the structure of apo-PknE Ser/Thr protein kinase from Mycobacterium tuberculosis, J. Mol. Biol, vol.360, pp.409-420, 2006.

A. C. Dar, T. E. Dever, and F. Sicheri, Higher-order substrate recognition of eIF2a by the RNA-dependent protein kinase PKR, Cell, vol.122, pp.887-900, 2005.

M. Dey, C. Cao, A. C. Dar, T. Tamura, K. Ozato et al., Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition, Cell, vol.122, pp.901-913, 2005.

E. Madec, A. Laszkiewicz, A. Iwanicki, M. Obuchowski, and S. Seror, Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, Mol. Microbiol, vol.46, pp.571-586, 2002.

A. E. Greenstein, N. Echols, T. N. Lombana, D. S. King, and T. Alber, Allosteric activation by dimerization of the PknD receptor Ser/Thr protein kinase from Mycobacterium tuberculosis, J. Biol. Chem, vol.282, pp.11427-11435, 2007.

M. C. Good, A. E. Greenstein, T. A. Young, H. Ng, and T. Alber, Sensor domain of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknD, forms a highly symmetric b propeller, J. Mol. Biol, vol.339, pp.459-469, 2004.

C. Yeats, R. D. Finn, and A. Bateman, The PASTA domain: a b-lactambinding domain, Trends Biochem. Sci, vol.27, pp.438-440, 2002.

E. Gordon, N. Mouz, E. Duee, and O. Dideberg, The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance, J. Mol. Biol, vol.299, pp.477-485, 2000.

G. Jones and P. Dyson, Evolution of transmembrane protein kinase implicated in coordinating remodelling of Gram-positive peptidoglycan: inside versus outside, J. Bacteriol, vol.188, pp.7470-7476, 2006.

N. H. Keep, J. M. Ward, M. Cohen-gonsaud, and B. Henderson, Wake up! Peptidoglycan lysis and bacterial non-growth states, Trends Microbiol, vol.14, pp.271-276, 2006.

M. D. Jackson and J. M. Denu, Molecular reactions of protein phosphatasesinsights from structure and chemistry, Chem. Rev, vol.101, pp.2313-2340, 2001.

P. Chopra, B. Singh, R. Singh, R. Vohra, A. Koul et al., Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serinethreonine kinases PknA and PknB, Biochem. Biophys. Res. Commun, vol.311, pp.112-120, 2003.

R. Duran, A. Villarino, M. Bellinzoni, A. Wehenkel, P. Fernandez et al., Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases, Biochem. Biophys. Res. Commun, vol.333, pp.858-867, 2005.

K. E. Pullen, H. L. Ng, P. Y. Sung, M. C. Good, S. M. Smith et al., PstP/Ppp, the M. tuberculosis PP2C-Family Ser/Thr protein phosphatase, vol.12, pp.1947-1954, 2004.

M. Bellinzoni, A. Wehenkel, W. Shepard, and P. M. Alzari, Insights into the catalytic mechanism of PPM Ser/Thr phosphatases from the atomic resolution structures of a mycobacterial enzyme, Structure, vol.15, pp.863-872, 2007.

A. K. Das, N. R. Helps, P. T. Cohen, and D. Barford, Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 Å resolution, EMBO J, vol.15, pp.6798-6809, 1996.

M. K. Rantanen, L. Lehtio, L. Rajagopal, C. E. Rubens, and A. Goldman, Structure of Streptococcus agalactiae serine/threonine phosphatase. The subdomain conformation is coupled to the binding of a third metal ion, FEBS J, vol.274, pp.3128-3137, 2007.

A. Koul, A. Choidas, M. Treder, A. K. Tyagi, K. Drlica et al., Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis, J. Bacteriol, vol.182, pp.5425-5432, 2000.

A. Koul, T. Herget, B. Klebl, and A. Ullrich, Interplay between mycobacteria and host signalling pathways, Nat. Rev, vol.2, pp.189-202, 2004.

C. Madhurantakam, E. Rajakumara, P. A. Mazumdar, B. Saha, D. Mitra et al., Crystal structure of lowmolecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9 Å resolution, J. Bacteriol, vol.187, pp.2175-2181, 2005.

C. Grundner, H. Ng, and T. Alber, Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site, Structure, vol.13, pp.1625-1634, 2005.

N. Beresford, S. Patel, J. Armstrong, B. Szoor, A. P. Fordham-skelton et al., MptpB, a virulence factor from Mycobacterium tuberculosis exhibits triple-specificity phosphatase activity, Biochem. J, vol.406, pp.13-18, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478808

R. Singh, V. Rao, H. Shaklla, R. Gupta, A. Khera et al.,

Y. Koul, M. Singh, P. R. Naseerna, C. N. Narayanan, V. D. Paramaslvan et al., Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs, Mol. Microbiol, vol.50, pp.751-762, 2003.

C. Grundner, D. Perrin, R. Hooft-van-huijsduijnen, D. Swinnen, J. Gonzalez et al., Structural basis for selective inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB, Structure, vol.15, pp.499-509, 2007.

S. T. Cole, K. Eiglmeier, J. Parkhill, K. D. James, N. R. Thomson et al., Nature, vol.409, pp.1007-1011, 2001.

C. M. Sassetti, D. H. Boyd, and E. J. Rubin, Genes required for mycobacterial growth defined by high density mutagenesis, Mol. Microbiol, vol.48, pp.77-84, 2003.

C. M. Sassetti and E. J. Rubin, Genetic requirements for mycobacterial survival during infection, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.12989-12994, 2003.

P. Fernandez, B. Saint-joanis, N. Barilone, M. Jackson, B. Gicquel et al., The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth, J. Bacteriol, vol.188, pp.7778-7784, 2006.

K. G. Papavinasasundaram, B. Chan, J. Chung, M. J. Colston, E. O. Davis et al., Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in the BalB/c mice, J. Bacteriol, vol.187, pp.5751-5760, 2005.

J. Perez, R. Garcia, H. Bach, J. H. De-waard, W. R. Jacobs et al., Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD, Biochem. Biophys. Res. Commun, vol.348, pp.6-12, 2006.

P. Deol, R. Vohra, A. K. Saini, A. Singh, H. Chandra et al., Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division, J. Bacteriol, vol.187, pp.3415-3420, 2005.

J. M. Curry, R. Whalan, D. M. Hunt, K. Gohil, M. Strom et al., An ABC transporter containing a forkhead-associated domain interacts with a serine-threonine protein kinase and is required for growth of Mycobacterium tuberculosis in mice, Infect. Immun, vol.73, pp.4471-4477, 2005.

V. Molle, D. Soulat, J. Jault, C. Grangeasse, A. J. Cozzone et al., The two FHA domains on an ABC transporter, Rv1747, mediate its phosphorylation by PknF, a Ser/Thr protein kinase from Mycobacterium tuberculosis, FEMS Microbiol. Lett, vol.234, pp.215-223, 2004.

S. Cowley, M. Ko, N. Pick, R. Chow, K. J. Downing et al., The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo, Mol. Microbiol, vol.52, pp.1691-1702, 2004.

L. Nguyen, A. Walburger, E. Houben, A. Koul, S. Muller et al., Role of protein kinase G in growth and glutamine metabolism of Mycobacterium bovis BCG, J. Bacteriol, vol.187, pp.5852-5856, 2005.

A. Niebisch, A. Kabus, C. Schultz, B. Weil, and M. Bott, Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein, J. Biol. Chem, vol.281, pp.12300-12307, 2006.

A. Walburger, A. Koul, G. Ferrari, L. Nguyen, C. Prescianotto-baschong et al., Protein kinase G from pathogenic mycobacteria promotes survival within macrophages, Science, vol.304, pp.1800-1804, 2004.

N. Scherr, S. Honnappa, G. Kunz, P. Mueller, R. Jayachandran et al., Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.12151-12156, 2007.

M. Matsuhashi, Utilization of lipid-linked precursors and the formation of peptidoglycan in the process of cell growth and division

, Bacterial Cell Wall, pp.55-71, 1994.

A. O. Henriques, P. Glaser, P. J. Piggot, and C. P. Moran, Control of cell shape and elongation by the rodA gene in Bacillus subtilis, Mol. Microbiol, vol.28, pp.235-247, 1998.

R. Sol, J. G. Mullins, N. Grantcharova, K. Flärdh, and P. Dyson, Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor, J. Bacteriol, vol.188, pp.1540-1550, 2006.

C. M. Kang, D. W. Abbott, S. T. Park, C. C. Dascher, L. C. Cantley et al., The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape, Genes Dev, vol.19, pp.1692-1704, 2005.

Y. Av-gay, S. Jamil, and S. J. Drews, Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB, Infect. Immun, vol.67, pp.5676-5682, 1999.

A. Singh, Y. Singh, R. Pine, L. Shi, R. Chandra et al., Protein kinase I of Mycobacterium tuberculosis: cellular localization and expression during infection of macrophage-like cells, Tuberculosis, vol.86, pp.28-33, 2006.

J. C. Betts, P. T. Lukey, L. C. Robb, R. A. Mcadam, and K. Duncan, Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling, Mol. Microbiol, vol.43, pp.717-731, 2002.

R. Chaba, M. Raje, and P. K. Chakraborti, Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division, Eur. J. Biochem, vol.269, pp.1078-1085, 2002.

M. Thakur and P. K. Chakraborti, GTPase Activity of mycobacterial FtsZ is impaired due to its transphosphorylation by eukaryotic-type Ser/Thr kinase, PknA, J. Biol. Chem, vol.281, pp.40107-40113, 2006.

C. J. Kristich, C. L. Wells, and G. M. Dunny, A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.3508-3513, 2007.

A. K. Bendt, A. Burkovski, S. Schaffer, M. Bott, M. Farwick et al., Towards a phosphoproteome map of Corynebacterium glutamicum, Proteomics, vol.3, pp.1637-1646, 2003.

A. Levine, F. Vannier, C. Absalon, L. Kuhn, P. Jackson et al., Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes, Proteomics, vol.6, pp.2157-2173, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00196143

B. Macek, I. Mijakovic, J. V. Olsen, F. Gnad, C. Kumar et al., The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis, Mol. Cell. Proteomics, vol.6, pp.697-707, 2007.

P. Peirs, L. Wit, M. Braibant, K. Huygen, and J. Content, A serine/ threonine protein kinase from Mycobacterium tuberculosis, Eur. J. Biochem, vol.244, pp.604-612, 1997.

A. Koul, A. Choidas, A. K. Tyagi, K. Drlica, Y. Singh et al., Serine/ threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization, Microbiology, vol.147, pp.2307-2314, 2001.

V. Molle, C. Girard-blanc, L. Kremer, P. Doublet, A. J. Cozzone et al., Protein PknE, a novel transmembrane eukaryotic-like serine/ threonine kinase from Mycobacterium tuberculosis, Biochem. Biophys. Res. Commun, vol.308, pp.820-825, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02282931

V. Molle, L. Kremer, C. Girard-blanc, G. S. Besra, A. J. Cozzone et al., An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis, Biochemistry, vol.42, pp.15300-15309, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02282926

R. Gopalaswamy, P. R. Narayanan, and S. Narayanan, Cloning, overexpression, and characterization of a serine/threonine protein kinase pknI from Mycobacterium tuberculosis H37Rv, Prot. Expr. Purif, vol.36, pp.82-89, 2004.

D. C. Berwick and J. M. Tavaré, Identifying protein kinase substrates: hunting for the organgrinder's monkey, Trends Biochem. Sci, vol.29, pp.227-232, 2004.

V. Molle, I. Zanella-cleon, J. P. Robin, S. Mallejac, A. J. Cozzone et al., Characterization of the phosphorylation sites of Mycobacterium tuberculosis serine/threonine protein kinases, PknA, PknD, PknE, and PknH by mass spectrometry, Proteomics, vol.6, pp.3754-3766, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00314725

E. Madec, A. Stensballe, S. Kjellstrom, L. Cladiere, M. Obuchowski et al.,

S. J. Jensen and . Seror, Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis, J. Mol. Biol, vol.330, pp.459-472, 2003.

A. Dasgupta, P. Datta, M. Kundu, and J. Basu, The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillinbinding protein required for cell division, Microbiology, vol.152, pp.493-504, 2006.

D. Durocher, J. Henckel, A. R. Fersht, and S. P. Jackson, The FHA domain is a modular phosphopeptide recognition motif, Mol. Cell, vol.4, pp.387-394, 1999.

D. Durocher and S. P. Jackson, The FHA domain, FEBS Lett, vol.513, pp.58-66, 2002.

M. B. Yaffe and S. J. Smerdon, PhosphoSerine/threonine binding domains: you can't pSERious, vol.9, pp.33-38, 2001.

L. J. Alderwick, V. Molle, L. Kremer, A. J. Cozzone, T. R. Dafforn et al., Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.2558-2563, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02282917

C. Grundner, L. M. Gay, and T. Alber, Mycobacterium tuberculosis serine/ threonine kinases PknB, PknD, PknE, and PknF phosphorylate multiple FHA domains, Protein Sci, vol.14, pp.1918-1921, 2005.

A. Villarino, R. Duran, A. Wehenkel, P. Fernandez, P. England et al., Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions, J. Mol. Biol, vol.350, pp.953-963, 2005.

K. Sharma, M. Gupta, A. Krupa, N. Srinivasan, and Y. Singh, EmbR, a regulatory protein with ATPase activity, is a substrate of multiple serine/ threonine kinases and phosphatase in Mycobacterium tuberculosis, FEBS J, vol.273, pp.2711-2721, 2006.

V. Molle, A. K. Brown, G. S. Besra, A. J. Cozzone, and L. Kremer, The condensing activities of the Mycobacterium tuberculosis Type II fatty acid synthase are differentially regulated by phosphorylation, J. Biol. Chem, vol.281, pp.30094-30103, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00314933

A. E. Greenstein, J. A. Macgurn, C. E. Baer, A. M. Falick, J. S. Cox et al., tuberculosis Ser/Thr protein kinase D phosphorylates an antianti-sigma factor homolog, PLoS Pathog, vol.3, p.49, 2007.

A. E. Belanger and G. F. Hatfull, Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis, J. Bacteriol, vol.181, pp.6670-6678, 1999.

R. M. Biondi and A. R. Nebreda, Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions, Biochem. J, vol.372, pp.1-13, 2003.

J. Hu, J. Liu, R. Ghirlando, A. R. Saltie, and S. R. Hubbard, Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor, Mol. Cell, vol.12, pp.1379-1389, 2003.

R. Capdeville, E. Buchdunger, J. Zimmermann, and A. Matter, Glivec (STI571, imatinib), a rationally developed, Nat. Rev. Drug Discov, vol.1, pp.493-502, 2002.

R. Durbin, S. R. Eddy, A. Krogh, and G. J. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, 1998.