J. Guenet and F. Bonhomme, Wild mice: an ever-increasing contribution to a popular mammalian model, Trends in Genetics, vol.19, issue.1, pp.24-31, 2003.
DOI : 10.1016/S0168-9525(02)00007-0

B. De-gouyon, E. Melanitou, M. Richard, M. Requarth, I. Hahn et al., Genetic analysis of diabetes and insulitis in an interspecific cross of the nonobese diabetic mouse with Mus spretus., Proceedings of the National Academy of Sciences, vol.90, issue.5, pp.901877-1881, 1993.
DOI : 10.1073/pnas.90.5.1877

K. Stephan, I. Smirnova, J. B. Poltorak, and A. , Genetic analysis of the innate immune responses in wild-derived inbred strains of mice, European Journal of Immunology, vol.70, issue.1, pp.212-223, 2007.
DOI : 10.1002/eji.200636156

G. Burgio, M. Baylac, E. Heyer, and X. Montagutelli, Genetic analysis of skull shape variation and morphological integration in the mouse using interspecific recombinant congenic strains between C57BL/6 and mice of the mus spretus species, Evolution, issue.10, pp.632668-2686, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00434926

J. Klose, C. Nock, M. Herrmann, K. Stuhler, K. Marcus et al., Genetic analysis of the mouse brain proteome, Nature Genetics, vol.30, issue.4, pp.385-393, 2002.
DOI : 10.1038/ng861

S. Mikkat, P. Lorenz, C. Scharf, X. Yu, M. Glocker et al., MS characterization of qualitative protein polymorphisms in the spinal cords of inbred mouse strains, PROTEOMICS, vol.3, issue.5, pp.1050-1062, 2010.
DOI : 10.1038/mp.2008.146

P. Ramanathan, I. Martin, P. Thomson, R. Taylor, C. Moran et al., Genomewide Analysis of Secretory Activation in Mouse Models, Journal of Mammary Gland Biology and Neoplasia, vol.103, issue.4
DOI : 10.1007/s10911-007-9052-6

M. Ron, G. Israeli, E. Seroussi, J. Weller, J. Gregg et al., Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle, BMC Genomics, vol.8, issue.1, p.183, 2007.
DOI : 10.1186/1471-2164-8-183

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

N. Boumahrou, A. S. Miranda, G. Henry, C. Panthier, J. Martin et al., The major protein fraction of mouse milk revisited using proven proteomics tools, J Physiol Pharmacol, vol.60, issue.3, pp.113-118, 2009.

C. Bevilacqua, J. Helbling, G. Miranda, and P. Martin, Translational efficiency of casein transcripts in the mammary tissue of lactating ruminants, Reproduction Nutrition Development, vol.46, issue.5, pp.567-578, 2006.
DOI : 10.1051/rnd:2006028

URL : https://hal.archives-ouvertes.fr/hal-00900632

J. Piletz and R. Ganschow, Genetic variation of milk proteins in mice, Biochemical Genetics, vol.199, issue.9-10, pp.9-101023, 1981.
DOI : 10.1007/BF00504265

S. Ragueneau, Early development in mice. IV: Quantity and gross composition of milk in five inbred strains, Physiology & Behavior, vol.40, issue.4, pp.431-435, 1987.
DOI : 10.1016/0031-9384(87)90027-8

L. Riley, M. Zubair, P. Thomson, M. Holt, S. Xavier et al., Lactational performance of Quackenbush Swiss line 5 mice, Journal of Animal Science, vol.84, issue.8, pp.2118-2125, 2006.
DOI : 10.2527/jas.2005-609

P. Martin, P. Ferranti, C. Leroux, and F. Addeo, Non-bovine caseins: quantitative variability and molecular diversity. Advanced Dairy Chemistry: Proteins, pp.277-318, 2003.
DOI : 10.1007/978-1-4419-8602-3_6

M. Rudolph, J. Mcmanaman, L. Hunter, T. Phang, and M. Neville, Functional Development of the Mammary Gland: Use of Expression Profiling and Trajectory Clustering to Reveal Changes in Gene Expression During Pregnancy, Lactation, and Involution, Journal of Mammary Gland Biology and Neoplasia, vol.8, issue.3, pp.287-307, 2003.
DOI : 10.1023/B:JOMG.0000010030.73983.57

J. Piletz, M. Heinlen, and R. Ganschow, Biochemical characterization of a novel whey protein from murine milk, J Biol Chem, vol.256, issue.22, pp.11509-11516, 1981.

S. Ranganathan, K. Simpson, D. Shaw, and K. Nicholas, The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling, Journal of Molecular Graphics and Modelling, vol.17, issue.2, pp.106-113, 1999.
DOI : 10.1016/S1093-3263(99)00023-6

K. Simpson, P. Bird, D. Shaw, and K. Nicholas, Molecular characterisation and hormone-dependent expression of the porcine whey acidic protein gene, Journal of Molecular Endocrinology, vol.20, issue.1, pp.27-35, 1998.
DOI : 10.1677/jme.0.0200027

J. Litersky, C. Scott, and G. Johnson, Phosphorylation, calpain proteolysis and tubulin binding of recombinant human tau isoforms, Brain Research, vol.604, issue.1-2, pp.32-40, 1993.
DOI : 10.1016/0006-8993(93)90349-R

J. Wiltfang, A. Smirnov, B. Schnierstein, G. Kelemen, U. Matthies et al., Improved electrophoretic separation and immunoblotting of beta-amyloid (A??) peptides 1-40, 1-42, and 1-43, Electrophoresis, vol.227, issue.3-4, pp.3-4527, 1997.
DOI : 10.1002/elps.1150180332

A. Triplett, K. Sakamoto, L. Matulka, L. Shen, G. Smith et al., Expression of the whey acidic protein (Wap) is necessary for adequate nourishment of the offspring but not functional differentiation of mammary epithelial cells, genesis, vol.22, issue.1, pp.1-11, 2005.
DOI : 10.1002/gene.20149

L. Hennighausen and A. Sippel, Mouse whey acidic protein is a novel member of the family of ???four-disulfide core??? proteins, Nucleic Acids Research, vol.10, issue.8, p.102677, 1982.
DOI : 10.1093/nar/10.8.2677

L. Miclo, J. Girardet, A. Egito, D. Mollé, P. Martin et al., The primary structure of a low-Mr multiphosphorylated variant of??-casein in equine milk, PROTEOMICS, vol.13, issue.8, pp.1327-1335, 2007.
DOI : 10.1002/pmic.200600683

URL : https://hal.archives-ouvertes.fr/hal-01453906

C. Smith, T. Chu, and B. Nadal-ginard, Scanning and competition between AGs are involved in 3' splice site selection in mammalian introns., Molecular and Cellular Biology, vol.13, issue.8, p.134939, 1993.
DOI : 10.1128/MCB.13.8.4939

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC360135

C. Leroux, N. Mazure, and P. Martin, Mutations away from splice site recognition sequences might cis-modulate alternative splicing of goat alpha s1- casein transcripts. Structural organization of the relevant gene, J Biol Chem, vol.267, issue.9, pp.6147-6157, 1992.

P. Ferranti, A. Malorni, G. Nitti, P. Laezza, R. Pizzano et al., Primary structure of ovine ??sl-caseins: localization of phosphorylation sites and characterization of genetic variants A, C and D*, Journal of Dairy Research, vol.365, issue.02, pp.281-296, 1995.
DOI : 10.1016/0006-291X(83)91575-9

P. Ferranti, S. Lilla, L. Chianese, and F. Addeo, Alternative nonallelic deletion is constitutive of ruminant alpha(s1)-casein, Journal of Protein Chemistry, vol.18, issue.5, pp.595-602, 1999.
DOI : 10.1023/A:1020659518748

P. Martin, G. Brignon, J. Furet, and C. Leroux, -casein is expressed in human mammary epithelial cells during lactation, Le Lait, vol.76, issue.6, pp.523-535, 1996.
DOI : 10.1051/lait:1996641

URL : https://hal.archives-ouvertes.fr/edutice-00109613

P. Martin, M. Szymanowska, L. Zwierzchowski, and C. Leroux, The impact of genetic polymorphisms on the protein composition of ruminant milks, Reproduction Nutrition Development, vol.42, issue.5, pp.433-459, 2002.
DOI : 10.1051/rnd:2002036

URL : https://hal.archives-ouvertes.fr/hal-00900338

K. Lu, M. Lee, H. Yu, Y. Zhou, S. Sandell et al., Molecular cloning, genomic organization, genetic variations, and characterization of murine sterolin genes Abcg5 and Abcg8, The Journal of Lipid Research, vol.43, issue.4, p.565, 2002.

K. Lu, M. Lee, S. Hazard, A. Brooks-wilson, H. Hidaka et al., Two Genes That Map to the STSL Locus Cause Sitosterolemia: Genomic Structure and Spectrum of Mutations Involving Sterolin-1 and Sterolin-2, Encoded by ABCG5 and ABCG8, Respectively, The American Journal of Human Genetics, vol.69, issue.2, pp.278-290, 2001.
DOI : 10.1086/321294

G. Condorelli, R. Bueno, and R. Smith, Two alternatively spliced forms of the human insulin-like growth factor I receptor have distinct biological activities and internalization kinetics, J Biol Chem, vol.269, issue.11, pp.8510-8516, 1994.

K. Vogan, D. Underhill, and P. Gros, An alternative splicing event in the Pax-3 paired domain identifies the linker region as a key determinant of paired domain DNA-binding activity., Molecular and Cellular Biology, vol.16, issue.12, pp.166677-6686, 1996.
DOI : 10.1128/MCB.16.12.6677

M. Hiller and M. Platzer, Widespread and subtle: alternative splicing at short-distance tandem sites, Trends in Genetics, vol.24, issue.5, pp.246-255, 2008.
DOI : 10.1016/j.tig.2008.03.003

L. Johnsen, L. Rasmussen, T. Petersen, and L. Berglund, -casein mRNA transcripts, Biochemical Journal, vol.309, issue.1, p.237, 1995.
DOI : 10.1042/bj3090237

URL : https://hal.archives-ouvertes.fr/hal-00309603

M. Rijnkels, Multispecies comparison of the casein gene loci and evolution of casein gene family, Journal of Mammary Gland Biology and Neoplasia, vol.7, issue.3, pp.327-345, 2002.
DOI : 10.1023/A:1022808918013

D. Lemay, D. Lynn, W. Martin, M. Neville, T. Casey et al., The bovine lactation genome: insights into the evolution of mammalian milk, Genome Biology, vol.10, issue.4, p.43, 2009.
DOI : 10.1186/gb-2009-10-4-r43

J. Mercier, J. Chobert, and F. Addeo, Comparative study of the amino acid sequences of the caseinomacropeptides from seven species, FEBS Letters, vol.51, issue.2, pp.208-214, 1976.
DOI : 10.1016/0014-5793(76)80972-6

A. Capuco and R. Akers, The origin and evolution of lactation, Journal of Biology, vol.8, issue.4, p.37, 2009.
DOI : 10.1186/jbiol139

T. Mikkelsen, M. Wakefield, B. Aken, C. Amemiya, J. Chang et al., Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences, Nature, vol.22, issue.7141, pp.447167-177, 2007.
DOI : 10.1038/nature05805

J. Sharp, C. Lefèvre, and K. Nicholas, Molecular evolution of monotreme and marsupial whey acidic protein genes, Evolution & Development, vol.4, issue.(p, pp.378-392, 2007.
DOI : 10.1111/j.1525-142X.2007.00175.x