M. Hickman, G. Zeng, A. Forche, M. Hirakawa, D. Abbey et al., The 'obligate diploid' Candida 549 albicans forms mating-competent haploids Evidence for mating of the "asexual" 551 yeast Candida albicans in a mammalian host, Nature Hull CM, Raisner RM Science, vol.494, issue.4, pp.55-59307, 2000.

B. Magee and P. Magee, Induction of mating in Candida albicans by construction 553, 2000.

M. Miller and A. Johnson, White-opaque switching in Candida albicans is 555 controlled by mating-type locus homeodomain proteins and allows efficient mating, of MTLa and MTLalpha strains, pp.310-313, 2002.

R. Bennett and A. Johnson, Completion of a parasexual cycle in Candida 558, 2003.

A. Selmecki, A. Forche, and J. Berman, Genomic plasticity of the human fungal pathogen 560

D. Diogo, C. Bouchier, C. Enfert, and M. Bougnoux, Loss of heterozygosity in 562 commensal isolates of the asexual diploid yeast Candida albicans, Fungal Genet. Biol, vol.563, issue.46, pp.159-168, 2009.

A. Forche, P. Magee, A. Selmecki, J. Berman, and M. G. , Evolution in Candida albicans Populations During a Single Passage Through a Mouse Host, Genetics, vol.182, issue.3, pp.799-566, 2009.
DOI : 10.1534/genetics.109.103325

J. Bille and D. Sanglard, A mutation in Tac1p, a transcription factor regulating 569 CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate 570 antifungal resistance in Candida albicans, Genetics, vol.172, pp.2139-2156, 2006.

N. Dunkel, J. Blass, P. Rogers, and J. Morschhauser, Mutations in the multi-drug 572, 2008.

K. Berman and J. , Stress alters rates and types of loss of heterozygosity in Candida 577 albicans. mBio 2, p.13, 2011.

M. Legrand, C. Chan, P. Jauert, and D. Kirkpatrick, Role of DNA Mismatch Repair and Double-Strand Break Repair in Genome Stability and Antifungal Drug Resistance in Candida albicans, Eukaryotic Cell, vol.6, issue.12, pp.2194-2205, 2007.
DOI : 10.1128/EC.00299-07

M. Legrand, C. Chan, P. Jauert, and D. Kirkpatrick, Analysis of base excision and nucleotide excision repair in Candida albicans, Microbiology, vol.154, issue.8, pp.2446-2456, 2008.
DOI : 10.1099/mic.0.2008/017616-0

M. Legrand, C. Chan, P. Jauert, and D. Kirkpatrick, The contribution of the 584 S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in 585, 2011.

C. Albicans-krippleber, R. Enfert, C. Feri, A. Diogo, D. Perin et al., Loll, Fungal Genet. Biol. 586, vol.16, p.587

M. Bougnoux and M. Legrand, A study of the DNA damage checkpoint in 588, 2013.

J. Boeke, F. Lacroute, and G. Fink, A positive selection for mutants lacking 592 orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance, 1984.

A. Forche, G. May, J. Beckerman, S. Kauffman, J. Becker et al., A 595 system for studying genetic changes in Candida albicans during infection, p.596, 2003.

J. Gorman, J. Gorman, and Y. Koltin, Direct selection of galactokinase-negative mutants of Candida albicans using 2-deoxy-galactose, Current Genetics, vol.180, issue.3, pp.203-599, 1992.
DOI : 10.1007/BF00336842

Y. Chaudhari, C. Munro, and C. Enfert, Modular gene over-expression 602 strategies for Candida albicans, Methods Mol. Biol, vol.845, issue.21, pp.227-244, 2012.

S. French, L. Kohn, V. Chen, and A. Johnson, Regulators of Morphogenesis and Fitness PloS one 7:e45912. 607 22, Noble SM, p.608

S. Noble and A. Johnson, Strains and Strategies for Large-Scale Gene Deletion Studies of the Diploid Human Fungal Pathogen Candida albicans, Eukaryotic Cell, vol.4, issue.2, pp.298-614, 2005.
DOI : 10.1128/EC.4.2.298-309.2005

M. Delgado, M. Gil, and D. Gozalbo, Candida albicans TDH3 gene promotes 616 secretion of internal invertase when expressed in Saccharomyces, p.617, 2003.

Y. Schaub, A. Dunkler, A. Walther, and J. Wendland, New pFA-cassettes for PCR-based gene manipulation inCandida albicans, Journal of Basic Microbiology, vol.36, issue.5, pp.416-429, 2006.
DOI : 10.1002/jobm.200510133

R. Wilson, D. Davis, and A. Mitchell, Rapid hypothesis testing with Candida 628, 1999.

P. Lee, I. Broadbent, C. Barelle, and A. Brown, albicans through gene disruption with short homology regions CIp10, an 631 efficient and convenient integrating vector for Candida albicans, J. Bacteriol. Yeast, vol.181, issue.632, pp.1868-629, 2000.

A. Forche, M. Steinbach, and J. Berman, Efficient and rapid identification of 633, 2009.

S. Miyasato, M. Simison, and G. Sherlock, The Candida Genome Database: the 636, 2014.

C. Cuomo, M. Berriman, S. Scherer, B. Magee, M. Whiteway et al., Assembly of the Candida albicans genome into sixteen 641 supercontigs aligned on the eight chromosomes, Genome biology, vol.8, issue.642, pp.52-86, 2007.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-1760, 2009.
DOI : 10.1093/bioinformatics/btp324

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234

B. Stynen, P. Van-dijck, and H. Tournu, A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans, Nucleic Acids Research, vol.38, issue.19, pp.184-654, 1997.
DOI : 10.1093/nar/gkq725

R. Kato and H. Ogawa, An essential gene, ESR1, is required for mitotic cell growth, 658 DNA repair and meiotic recombination in Saccharomyces cerevisiae, p.659, 1994.

B. Zhou and S. Elledge, The DNA damage response: putting checkpoints in 661 perspective, Nature, vol.408, issue.662, pp.433-439, 2000.

D. Muzzey, K. Schwartz, J. Weissman, and G. Sherlock, Assembly of a phased 663, 2013.

J. Gomez-raja, E. Andaluz, B. Magee, R. Calderone, and G. Larriba, A single 666 SNP, G929T (Gly310Val), determines the presence of a functional and a non- 667 functional allele of HIS4 in Candida albicans SC5314: detection of the non-functional 668, 2008.

H. Chou, A. Glory, and C. Bachewich, Orthologues of the anaphase-promoting 670, 2011.

F. Garcia-prieto, J. Gomez-raja, E. Andaluz, R. Calderone, and G. Larriba, Role 673 of the homologous recombination genes RAD51 and RAD59 in the resistance of 674, 2010.

Q. Shi, Y. Wang, X. Zheng, R. Lee, and Y. Wang, Critical Role of DNA Checkpoints in Mediating Genotoxic-Stress-induced Filamentous Growth in Candida albicans, Molecular Biology of the Cell, vol.18, issue.3, pp.815-826, 2007.
DOI : 10.1091/mbc.E06-05-0442

L. Stevenson, B. Kennedy, and E. Harlow, A large-scale overexpression screen 680, 2001.

K. Paffett, J. Clikeman, S. Palmer, and J. Nickoloff, Overexpression of Rad51 685 inhibits double-strand break-induced homologous recombination but does not affect 686, 2005.

C. Richardson, J. Stark, M. Ommundsen, and M. Jasin, Rad51 overexpression 688 promotes alternative double-strand break repair pathways and genome instability, p.689, 2004.
DOI : 10.1038/sj.onc.1207098

K. Schwartz, K. Richards, and D. Botstein, BIM1 Encodes a Microtubule-binding Protein in Yeast, Molecular Biology of the Cell, vol.8, issue.12, pp.2677-2691, 1997.
DOI : 10.1091/mbc.8.12.2677

R. Sopko, D. Huang, N. Preston, G. Chua, B. Papp et al., Mapping Pathways and Phenotypes by Systematic Gene Overexpression, Molecular Cell, vol.21, issue.3, pp.319-330, 2006.
DOI : 10.1016/j.molcel.2005.12.011

URL : http://doi.org/10.1016/j.molcel.2005.12.011

J. Berman and G. Larriba, Rad52 function prevents chromosome loss and 707 truncation in Candida albicans, Mol. Microbiol, vol.79, issue.708, pp.1462-1482, 2011.

A. Forche, K. Alby, D. Schaefer, A. Johnson, J. Berman et al., The 709, 2008.

D. Burke, P. Gasdaska, and L. Hartwell, Dominant effects of tubulin overexpression in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.9, issue.3, pp.1049-1059, 1989.
DOI : 10.1128/MCB.9.3.1049

J. Harper and S. Elledge, The DNA Damage Response: Ten Years After, Molecular Cell, vol.28, issue.5, pp.739-745, 2007.
DOI : 10.1016/j.molcel.2007.11.015

URL : http://doi.org/10.1016/j.molcel.2007.11.015

S. Pfau and A. Amon, Chromosomal instability and aneuploidy in cancer: from yeast to man, EMBO reports, vol.58, issue.6, pp.515-527, 2012.
DOI : 10.1182/blood.V100.1.29

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367249

S. Negrini, V. Gorgoulis, and T. Halazonetis, Genomic instability ??? an evolving hallmark of cancer, Nature Reviews Molecular Cell Biology, vol.406, issue.3, pp.220-228, 2010.
DOI : 10.1038/nrm2858

J. Resnick and M. , Genes required for ionizing radiation resistance in yeast, p.723, 2001.

G. Birrell, G. Giaever, A. Chu, R. Davis, and J. Brown, A genome-wide 725, 2001.

M. Chang, M. Bellaoui, C. Boone, and G. Brown, A genome-wide screen for 728 methyl methanesulfonate-sensitive mutants reveals genes required for S phase 729 progression in the presence of DNA damage, Proc. Natl. Acad. Sci. U. S. A, vol.730, issue.731, pp.16934-16939, 2002.

C. Boone, G. Brown, and P. Hieter, Identification of protein complexes required 739 for efficient sister chromatid cohesion, Mol. Biol. Cell, vol.15, issue.740, pp.1736-1745, 2004.

C. Warren, D. Eckley, M. Lee, J. Hanna, A. Hughes et al., S-Phase Checkpoint Genes Safeguard High-Fidelity Sister Chromatid Cohesion, Molecular Biology of the Cell, vol.15, issue.4, pp.1724-1735, 2003.
DOI : 10.1091/mbc.E03-09-0637

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC379270

M. Andersen, Z. Nelson, E. Hetrick, D. Gottschling, P. Kanellis et al., A Genetic Screen 754 for Increased Loss of Heterozygosity in Saccharomyces cerevisiae A screen for suppressors of gross 758 chromosomal rearrangements identifies a conserved role for PLP in preventing DNA 759 lesions, Genetics PLoS genetics, vol.755, issue.3, pp.1179-1195, 2004.

A. J. Brown, GFP as a quantitative reporter of gene regulation in Candida 772 albicans, Yeast, vol.21, pp.333-340, 2004.