M. Alarcón, B. S. Abrahams, J. L. Stone, J. A. Duvall, J. V. Perederiy et al., Linkage, Association, and Gene-Expression Analyses Identify CNTNAP2 as an Autism-Susceptibility Gene, The American Journal of Human Genetics, vol.82, issue.1, pp.150-159, 2008.
DOI : 10.1016/j.ajhg.2007.09.005

B. Bakkaloglu, B. J. O-'roak, A. Louvi, A. R. Gupta, J. F. Abelson et al., Molecular Cytogenetic Analysis and Resequencing of Contactin Associated Protein-Like 2 in Autism Spectrum Disorders, The American Journal of Human Genetics, vol.82, issue.1, pp.165-173, 2008.
DOI : 10.1016/j.ajhg.2007.09.017

M. K. Belmonte and T. Bourgeron, Fragile X syndrome and autism at the intersection of genetic and neural networks, Nature Neuroscience, vol.117, issue.10, pp.1221-1225, 2006.
DOI : 10.1038/nn1765

S. Bouyain and D. J. Watkins, The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules, Proc. Natl. Acad. Sci. USA, pp.2443-2448, 2010.
DOI : 10.1093/bioinformatics/btn507

S. Bouyain and D. J. Watkins, Identification of tyrosine phosphatase ligands for contactin cell adhesion molecules, Communicative & Integrative Biology, vol.13, issue.3, pp.284-286, 2010.
DOI : 10.1016/S0092-8674(00)80852-1

J. P. Burbach and B. Van-der-zwaag, Contact in the genetics of autism and schizophrenia, Trends in Neurosciences, vol.32, issue.2, pp.69-72, 2009.
DOI : 10.1016/j.tins.2008.11.002

C. E. Cottrell, N. Bir, E. Varga, C. E. Alvarez, S. Bouyain et al., Contactin 4 as an autism susceptibility locus, Autism Research, vol.358, issue.3, pp.189-199, 2011.
DOI : 10.1002/aur.184

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209658

X. Y. Cui, Q. D. Hu, M. Tekaya, Y. Shimoda, B. T. Ang et al., NB-3/Notch1 Pathway via Deltex1 Promotes Neural Progenitor Cell Differentiation into Oligodendrocytes, Journal of Biological Chemistry, vol.279, issue.24, pp.25858-25865, 2004.
DOI : 10.1074/jbc.M313505200

S. E. Ensslen-craig and S. M. Brady-kalnay, Receptor protein tyrosine phosphatases regulate neural development and axon guidance, Developmental Biology, vol.275, issue.1, pp.12-22, 2004.
DOI : 10.1016/j.ydbio.2004.08.009

URL : http://doi.org/10.1016/j.ydbio.2004.08.009

N. Eswar, B. Webb, M. A. Marti-renom, M. S. Madhusudhan, D. Eramian et al., Comparative protein structure modeling using MODELLER, Curr. Protoc. Bioinformatics, vol.15, 2006.

J. Freigang, K. Proba, L. Leder, K. Diederichs, P. Sonderegger et al., The Crystal Structure of the Ligand Binding Module of Axonin-1/TAG-1 Suggests a Zipper Mechanism for Neural Cell Adhesion, Cell, vol.101, issue.4, pp.425-433, 2000.
DOI : 10.1016/S0092-8674(00)80852-1

D. H. Geschwind and P. Levitt, Autism spectrum disorders: developmental disconnection syndromes, Current Opinion in Neurobiology, vol.17, issue.1, pp.103-111, 2007.
DOI : 10.1016/j.conb.2007.01.009

J. T. Glessner, K. Wang, G. Cai, O. Korvatska, C. E. Kim et al., Autism genome-wide copy number variation reveals ubiquitin and neuronal genes, Nature, vol.8, issue.7246, pp.569-573, 2009.
DOI : 10.1038/nature07953

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925224

L. Gollan, D. Salomon, J. L. Salzer, and E. Peles, Caspr regulates the processing of contactin and inhibits its binding to neurofascin, The Journal of Cell Biology, vol.20, issue.6, pp.1213-1218, 2003.
DOI : 10.1083/jcb.142.4.1083

P. Gouet, E. Courcelle, D. I. Stuart, and F. Métoz, ESPript: analysis of multiple sequence alignments in PostScript, Bioinformatics, vol.15, issue.4, pp.305-308, 1999.
DOI : 10.1093/bioinformatics/15.4.305

URL : https://hal.archives-ouvertes.fr/hal-00314288

R. M. Gouveia, V. A. Morais, C. Peixoto, M. Sousa, M. Regalla et al., Production and purification of functional truncated soluble forms of human recombinant L1 cell adhesion glycoprotein from Spodoptera frugiperda Sf9 cells, Protein Expression and Purification, vol.52, issue.1, pp.182-193, 2007.
DOI : 10.1016/j.pep.2006.10.008

M. Hocquemiller, S. Vitry, S. Bigou, J. Bruyère, J. Ausseil et al., GAP43 overexpression and enhanced neurite outgrowth in mucopolysaccharidosis type IIIB cortical neuron cultures, Journal of Neuroscience Research, vol.15, issue.1, pp.202-213, 2010.
DOI : 10.1002/jnr.22190

Z. Huang, Y. Yu, Y. Shimoda, K. Watanabe, and Y. Liu, Loss of neural recognition molecule NB-3 delays the normal projection and terminal branching of developing corticospinal tract axons in the mouse, The Journal of Comparative Neurology, vol.491, issue.6, pp.1227-1245, 2012.
DOI : 10.1002/cne.22772

T. Kaneko-goto, S. Yoshihara, H. Miyazaki, and Y. Yoshihara, BIG-2 Mediates Olfactory Axon Convergence to Target Glomeruli, Neuron, vol.57, issue.6, pp.834-846, 2008.
DOI : 10.1016/j.neuron.2008.01.023

URL : http://doi.org/10.1016/j.neuron.2008.01.023

D. Karagogeos, S. B. Morton, F. Casano, J. Dodd, and T. M. Jessell, Developmental expression of the axonal glycoprotein TAG-1: differential regulation by central and peripheral neurons in vitro, Development, vol.112, pp.51-67, 1991.

M. Labasque and C. Faivre-sarrailh, GPI-anchored proteins at the node of Ranvier, FEBS Letters, vol.36, issue.9, pp.1787-1792, 2010.
DOI : 10.1016/j.febslet.2009.08.025

URL : https://hal.archives-ouvertes.fr/hal-00481487

S. Lamprianou, N. Vacaresse, Y. Suzuki, H. Meziane, J. D. Buxbaum et al., Receptor Protein Tyrosine Phosphatase ?? Is a Marker for Pyramidal Cells and Sensory Neurons in the Nervous System and Is Not Necessary for Normal Development, Molecular and Cellular Biology, vol.26, issue.13, pp.5106-5119, 2006.
DOI : 10.1128/MCB.00101-06

S. Lee, Y. Takeda, H. Kawano, H. Hosoya, M. Nomoto et al., Expression and regulation of a gene encoding neural recognition molecule NB-3 of the contactin/F3 subgroup in mouse brain, Gene, vol.245, issue.2, pp.253-266, 2000.
DOI : 10.1016/S0378-1119(00)00031-7

R. Lierheimer, B. Kunz, L. Vogt, R. Savoca, U. Brodbeck et al., The Neuronal Cell-Adhesion Molecule Axonin-1 is Specifically Released by an Endogenous Glycosylphosphatidylinositol-Specific Phospholipase, European Journal of Biochemistry, vol.204, issue.1-2, pp.502-510, 1997.
DOI : 10.1016/0896-6273(94)90357-3

K. Mikulska, L. Pep?owski, and W. Nowak, Nanomechanics of Ig-like domains of human contactin (BIG-2), Journal of Molecular Modeling, vol.96, issue.9, pp.2313-2323, 2011.
DOI : 10.1007/s00894-011-1010-y

E. M. Morrow, S. Y. Yoo, S. W. Flavell, T. K. Kim, Y. Lin et al., Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry, Science, vol.2, issue.5749, pp.218-223, 2008.
DOI : 10.1126/science.1112070

M. Mörtl, P. Sonderegger, K. Diederichs, and W. Welte, The crystal structure of the ligand-binding module of human TAG-1 suggests a new mode of homophilic interaction, Protein Science, vol.6, issue.10, pp.2174-2183, 2007.
DOI : 10.1110/ps.072802707

K. K. Murai, D. Misner, and B. Ranscht, Contactin Supports Synaptic Plasticity Associated with Hippocampal Long-Term Depression but Not Potentiation, Current Biology, vol.12, issue.3, pp.181-190, 2002.
DOI : 10.1016/S0960-9822(02)00680-2

URL : http://doi.org/10.1016/s0960-9822(02)00680-2

J. Ogawa, H. Kaneko, T. Masuda, S. Nagata, H. Hosoya et al., Novel neural adhesion molecules in the Contactin/F3 subgroup of the immunoglobulin superfamily: isolation and characterization of cDNAs from rat brain, Neuroscience Letters, vol.218, issue.3, pp.173-176, 1996.
DOI : 10.1016/S0304-3940(96)13156-6

J. Ogawa, S. Lee, K. Itoh, S. Nagata, T. Machida et al., Neural recognition molecule NB-2 of the contactin/F3 subgroup in rat: Specificity in neurite outgrowth-promoting activity and restricted expression in the brain regions, Journal of Neuroscience Research, vol.28, issue.2, pp.100-110, 2001.
DOI : 10.1002/jnr.1133

S. Okoyama, M. Ohbayashi, M. Ito, and S. Harada, Neuronal organization of the rat inferior colliculus participating in four major auditory pathways, Hearing Research, vol.218, issue.1-2, pp.72-80, 2006.
DOI : 10.1016/j.heares.2006.04.004

J. Olivo-marin, Extraction of spots in biological images using multiscale products, Pattern Recognition, vol.35, issue.9, pp.1989-1996, 2002.
DOI : 10.1016/S0031-3203(01)00127-3

M. Osterfield, R. Egelund, L. M. Young, and J. G. Flanagan, Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system, Development, vol.135, issue.6, pp.1189-1199, 2008.
DOI : 10.1242/dev.007401

S. Paul and P. J. Lombroso, Receptor and nonreceptor protein tyrosine phosphatases in the nervous system, Cellular and Molecular Life Sciences (CMLS), vol.60, issue.11, pp.2465-2482, 2003.
DOI : 10.1007/s00018-003-3123-7

E. Peles, M. Nativ, P. L. Campbell, T. Sakurai, R. Martinez et al., The carbonic anhydrase domain of receptor tyrosine phosphatase ?? is a functional ligand for the axonal cell recognition molecule contactin, Cell, vol.82, issue.2, pp.251-260, 1995.
DOI : 10.1016/0092-8674(95)90312-7

K. Pierre, B. Dupouy, M. Allard, D. A. Poulain, and D. T. Theodosis, Mobilization of the cell adhesion glycoprotein F3/contactin to axonal surfaces is activity dependent, European Journal of Neuroscience, vol.87, issue.4, pp.645-656, 2001.
DOI : 10.1016/s0306-4522(98)00177-8

J. Roohi, C. Montagna, D. H. Tegay, L. E. Palmer, C. Devincent et al., Disruption of contactin 4 in three subjects with autism spectrum disorder, Journal of Medical Genetics, vol.46, issue.3, pp.176-182, 2009.
DOI : 10.1136/jmg.2008.057505

G. Rougon, S. Olive, P. Durbec, C. Faivre-sarrailh, and G. Gennarini, Functional studies and cellular distribution of the F3 GPI-anchored adhesion molecule, Braz. J. Med. Biol. Res, vol.27, pp.409-414, 1994.

T. Sakurai, M. Lustig, M. Nativ, J. J. Hemperly, J. Schlessinger et al., Induction of Neurite Outgrowth through Contactin and Nr-CAM by Extracellular Regions of Glial Receptor Tyrosine Phosphatase ??, The Journal of Cell Biology, vol.269, issue.4, pp.907-918, 1997.
DOI : 10.1006/mcne.1995.1021

K. Sakurai, M. Toyoshima, H. Ueda, K. Matsubara, Y. Takeda et al., Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse, Developmental Neurobiology, vol.13, issue.12, pp.811-824, 2009.
DOI : 10.1002/dneu.20742

K. Sakurai, M. Toyoshima, Y. Takeda, Y. Shimoda, and K. Watanabe, Synaptic formation in subsets of glutamatergic terminals in the mouse hippocampal formation is affected by a deficiency in the neural cell recognition molecule NB-3, Neuroscience Letters, vol.473, issue.2, pp.102-106, 2010.
DOI : 10.1016/j.neulet.2010.02.027

J. L. Salzer, P. J. Brophy, and E. Peles, Molecular domains of myelinated axons in the peripheral nervous system, Glia, vol.181, issue.Part 8, pp.1532-1540, 2008.
DOI : 10.1002/glia.20750

E. Saus, A. Brunet, L. Armengol, P. Alonso, J. M. Crespo et al., Comprehensive copy number variant (CNV) analysis of neuronal pathways genes in psychiatric disorders identifies rare variants within patients, Journal of Psychiatric Research, vol.44, issue.14, pp.971-978, 2010.
DOI : 10.1016/j.jpsychires.2010.03.007

F. J. Sharom and M. T. Lehto, Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C, Biochemistry and Cell Biology, vol.80, issue.5, pp.535-549, 2002.
DOI : 10.1139/o02-146

Y. Shimoda and K. Watanabe, Contactins, Cell Adhesion & Migration, vol.140, issue.1, pp.64-70, 2009.
DOI : 10.1016/j.ajhg.2007.09.015

Y. Shimoda, F. Koseki, M. Itoh, M. Toyoshima, and K. Watanabe, A cis-complex of NB-2/contactin-5 with amyloid precursor-like protein 1 is localized on the presynaptic membrane, Neuroscience Letters, vol.510, issue.2, pp.148-153, 2012.
DOI : 10.1016/j.neulet.2012.01.026

T. Shintani, N. Maeda, and M. Noda, Receptor-Like Protein Tyrosine Phosphatase ?? (RPTP??), But Not PTP??/RPTP??, Inhibits Nerve-Growth-Factor-Induced Neurite Outgrowth in PC12D Cells, Developmental Neuroscience, vol.23, issue.1, pp.55-69, 2001.
DOI : 10.1159/000048696

E. T. Stoeckli, Ig Superfamily Cell Adhesion Molecules in the Brain, Handb. Exp. Pharmacol, vol.165, pp.373-401, 2004.
DOI : 10.1007/978-3-540-68170-0_12

E. T. Stoeckli, Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the Contactin family, Cell Adhesion & Migration, vol.11, issue.4, pp.523-526, 2010.
DOI : 10.4161/cam.4.4.12733

A. E. Ting and R. E. Pagano, Density-dependent inhibition of cell growth is correlated with the activity of a cell surface phosphatidylinositol-specific phospholipase C, Eur. J. Cell Biol, vol.56, pp.401-406, 1991.

M. Toyoshima, K. Sakurai, K. Shimazaki, Y. Takeda, M. Nakamoto et al., Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem, The Journal of Comparative Neurology, vol.500, issue.4, pp.349-362, 2009.
DOI : 10.1002/cne.21972

M. Toyoshima, K. Sakurai, K. Shimazaki, Y. Takeda, Y. Shimoda et al., Deficiency of neural recognition molecule NB-2 affects the development of glutamatergic auditory pathways from the ventral cochlear nucleus to the superior olivary complex in mouse, Developmental Biology, vol.336, issue.2, pp.192-200, 2009.
DOI : 10.1016/j.ydbio.2009.09.043

F. Valtorta and C. Leoni, Molecular mechanisms of neurite extension, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.354, issue.1381, pp.387-394, 1999.
DOI : 10.1098/rstb.1999.0391

E. Van-daalen, C. Kemner, N. E. Verbeek, B. Van-der-zwaag, T. Dijkhuizen et al., Social responsiveness scale-aided analysis of the clinical impact of copy number variations in autism, neurogenetics, vol.19, issue.4, pp.315-323, 2011.
DOI : 10.1007/s10048-011-0297-2

H. Ye, Y. L. Tan, S. Ponniah, Y. Takeda, S. Q. Wang et al., Neural recognition molecules CHL1 and NB-3 regulate apical dendrite orientation in the neocortex via PTP??, The EMBO Journal, vol.147, issue.1, pp.188-200, 2008.
DOI : 10.1038/sj.emboj.7601939

H. Ye, T. Zhao, Y. L. Tan, J. Liu, C. J. Pallen et al., Receptor-like Protein-tyrosine Phosphatase ?? Enhances Cell Surface Expression of Neural Adhesion Molecule NB-3, Journal of Biological Chemistry, vol.286, issue.29, pp.26071-26080, 2011.
DOI : 10.1074/jbc.M110.214080

Y. Yoshihara, M. Kawasaki, A. Tamada, S. Nagata, H. Kagamiyama et al., Overlapping and differential expression of BIG-2, BIG-1, TAG-1, and F3: Four members of an axon-associated cell adhesion molecule subgroup of the immunoglobulin superfamily, Journal of Neurobiology, vol.204, issue.1, pp.51-69, 1995.
DOI : 10.1002/neu.480280106

A. Zuko, S. Bouyain, B. Van-der-zwaag, and J. P. Burbach, Contactins, Adv. Protein Chem. Struct. Biol, vol.84, pp.143-180, 2011.
DOI : 10.1016/B978-0-12-386483-3.00001-X

. Fig, Comparative effects of secreted Cntn4 Cultures of rat cortical neurons were established from newborn rats (P0?P1) as described in Materials and Methods. Neurons were kept for up to 8 days in culture (DIV) The same densities of HEK293 cells were added 48?72 hours before the end of culture, in all conditions (see Materials and Methods) The length of the longest neurite per neuron, the total number of roots, and the segments were followed over time in all conditions At the end of culture, neurons were fixed and immunostained with an anti-MAP2 antibody. Quantification was performed using Acapella software. Numbers of neurons analyzed are indicated in each graph. A two-dimensional representation showing the number of roots versus number of segments illustrates the evolution of neuronal trees over the different co-culture periods. Data are expressed as percent of control mean obtained in the absence of Cntn. Slope values and the Pearson's correlation coefficients are directly indicated in the graphs, Contactins and neuritogenesis S1 Biology Open Movie 1. Flexible V loop in human CNTN5 Ig1?4 . Three-dimensional structure of human CNTN5 Ig1?4 after homology modeling using the mouse Cntn4 Ig1?4 as a template The flexible V loop in human CNTN5 Ig1?4 is located within Ig2 and Ig3 domains and can adopt distinct positions. Supplementary Material Oriane, 2010.

. Fig, Comparative effects of secreted Cntn4 Cultures of rat cortical neurons were established from newborn rats (P0?P1) as described in Materials and Methods. Neurons were kept for up to 8 days in culture (DIV) The same densities of HEK293 cells were added 48?72 hours before the end of culture, in all conditions (see Materials and Methods) The length of the longest neurite per neuron, the total number of roots, and the segments were followed over time in all conditions At the end of culture, neurons were fixed and immunostained with an anti-MAP2 antibody. Quantification was performed using Acapella software. Numbers of neurons analyzed are indicated in each graph. A two-dimensional representation showing the number of roots versus number of segments illustrates the evolution of neuronal trees over the different co-culture periods. Data are expressed as percent of control mean obtained in the absence of Cntn. Slope values and the Pearson's correlation coefficients are directly indicated in the graphs, The flexible V loop in human CNTN5 Ig1?4 is located within Ig2 and Ig3 domains and can adopt distinct positions, 2010.