K. Abarenkov, H. Nilsson, R. Larsson, and K. , The UNITE database for molecular identification of fungi - recent updates and future perspectives, New Phytologist, vol.51, issue.2, pp.281-286, 2010.
DOI : 10.1111/j.1469-8137.2009.03160.x

C. Angebault, F. Djossou, and S. Abélanetab´abélanet, Candida albicans Is Not Always the Preferential Yeast Colonizing Humans: A Study in Wayampi Amerindians, The Journal of Infectious Diseases, vol.208, issue.10, pp.1705-1721, 2013.
DOI : 10.1093/infdis/jit389

M. Arumugam, J. Raes, and E. Pelletier, Enterotypes of the human gut microbiome, Nature, vol.106, issue.7346, pp.174-80, 2011.
DOI : 10.1038/nature09944

URL : https://hal.archives-ouvertes.fr/cea-00903625

S. Bates, S. Ahrendt, and H. Bik, Meeting Report: Fungal ITS Workshop (October 2012), Standards in Genomic Sciences, vol.8, issue.1, pp.118-141, 2012.
DOI : 10.4056/sigs.3737409

URL : http://doi.org/10.4056/sigs.3737409

E. Bellemain, T. Carlsen, and C. Brochmann, ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases, BMC Microbiology, vol.10, issue.1, p.189, 2010.
DOI : 10.1186/1471-2180-10-189

URL : https://hal.archives-ouvertes.fr/hal-00784435

R. Berg, P. Bernasconi, and D. Fowler, Inhibition of Candida albicans Translocation from the Gastrointestinal Tract of Mice by Oral Administration of Saccharomyces boulardii, Journal of Infectious Diseases, vol.168, issue.5, pp.1314-1322, 1993.
DOI : 10.1093/infdis/168.5.1314

R. Blaschke-hellmessen, und ihre Konsequenzen, Mycoses, vol.39, issue.Suppl. 1, pp.31-37, 1998.
DOI : 10.1111/j.1439-0507.1998.tb00598.x

N. Bokulich and D. Mills, Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities, Applied and Environmental Microbiology, vol.79, issue.8, pp.2519-2545, 2013.
DOI : 10.1128/AEM.03870-12

B. Braun, W. Head, and M. Wang, Identification and characterization of TUP1-regulated genes in Candida albicans, Genetics, vol.156, pp.31-44, 2000.

G. Brown, D. Denning, and N. Gow, Hidden Killers: Human Fungal Infections, Science Translational Medicine, vol.14, issue.2, pp.165-178, 2012.
DOI : 10.1258/0956462981922728

A. Carvalho, G. Giovannini, D. Luca, and A. , Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis, Cellular and Molecular Immunology, vol.176, issue.3, pp.276-86, 2012.
DOI : 10.1016/j.immuni.2009.06.020

C. Chen, K. Pande, and S. French, An Iron Homeostasis Regulatory Circuit with Reciprocal Roles in Candida albicans Commensalism and Pathogenesis, Cell Host & Microbe, vol.10, issue.2, pp.118-153, 2011.
DOI : 10.1016/j.chom.2011.07.005

C. Clancy, S. Cheng, and M. Nguyen, Animal Models of Candidiasis, Methods Mol Biol, vol.499, pp.65-76, 2009.
DOI : 10.1007/978-1-60327-151-6_8

F. Cuskin, E. Lowe, and M. Temple, Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism, Nature, vol.69, issue.7533, pp.165-174, 2015.
DOI : 10.1038/nature13995

S. Cypowyj, C. Picard, and L. Maródimar´maródi, Immunity to infection in IL-17-deficient mice and humans, European Journal of Immunology, vol.8, issue.972, pp.2246-54, 2012.
DOI : 10.1002/eji.201242605

L. David, C. Maurice, and R. Carmody, Diet rapidly and reproducibly alters the human gut microbiome, Nature, vol.24, issue.7484, pp.559-63, 2014.
DOI : 10.1111/j.1365-294X.1993.tb00005.x

D. Luca, A. Zelante, T. , D. Angelo, and C. , IL-22 defines a novel immune pathway of antifungal resistance, Mucosal Immunology, vol.119, issue.4, pp.361-73, 2010.
DOI : 10.1016/j.mib.2006.06.001

G. Demirel, I. Celik, and O. Erdeve, Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants, European Journal of Pediatrics, vol.57, issue.Suppl 9
DOI : 10.1007/s00431-013-2041-4

S. Dollive, G. Peterfreund, and S. Sherrill-mix, A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples, Genome Biology, vol.13, issue.7, p.60, 2012.
DOI : 10.1016/j.protis.2010.04.002

E. Downward, J. Falkowski, N. Mason, and K. , Modulation of Post-Antibiotic Bacterial Community Reassembly and Host Response by Candida albicans, Scientific Reports, vol.69, issue.1, p.2191, 2013.
DOI : 10.1128/IAI.69.5.2957-2963.2001

S. Gaffen, Structure and signalling in the IL-17 receptor family, Nature Reviews Immunology, vol.452, issue.8, pp.556-67, 2009.
DOI : 10.1038/nri2586

A. Gaì-es, A. Conduchéconduch´conduché, and J. Bernad, PPAR? controls dectin-1 expression required for host antifungal defense against Candida albicans, PLoS Pathog, vol.6, p.1000714, 2010.

A. Gladiator and S. Leibundgut-landmann, Innate Lymphoid Cells: New Players in IL-17-Mediated Antifungal Immunity, PLoS Pathogens, vol.12, issue.12, p.1003763, 2013.
DOI : 10.1371/journal.ppat.1003763

N. Gouba and M. Drancourt, Digestive tract mycobiota: A source of infection, M??decine et Maladies Infectieuses, vol.45, issue.1-2, pp.9-16, 2015.
DOI : 10.1016/j.medmal.2015.01.007

N. Gow, F. Van-de-veerdonk, and A. Brown, Candida albicans morphogenesis and host defence: discriminating invasion from colonization, Nature Reviews Microbiology, vol.139, pp.112-134, 2011.
DOI : 10.1038/nrmicro2711

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624162

J. Hoeflinger, D. Coleman, and S. Oh, colonization of the human oro-gastrointestinal tract, FEMS Microbiology Letters, vol.357, issue.1, pp.10-15, 2014.
DOI : 10.1111/1574-6968.12500

C. Hoffmann, S. Dollive, and S. Grunberg, Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents, PLoS ONE, vol.38, issue.6, p.66019, 2013.
DOI : 10.1371/journal.pone.0066019.s014

B. Hube, D. Sanglard, and F. Odds, Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence, Infect Immun, vol.65, pp.3529-3567, 1997.

M. Huppert, J. Cazin, and H. Smith, Pathogenesis of Candida albicans infection following antibiotic therapy. III. The effect of antibiotics on the incidence of Candida albicans in the intestinal tract of mice, J Bacteriol, vol.70, pp.440-447, 1955.

I. Iliev, V. Funari, and K. Taylor, Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis, Science, vol.73, issue.5, pp.1314-1321, 2012.
DOI : 10.1086/379378

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432565

S. Jawhara and D. Poulain, in a mouse model of chemically-induced colitis, Medical Mycology, vol.45, issue.8, pp.691-700, 2007.
DOI : 10.1080/13693780701523013

E. Kernbauer, Y. Ding, and K. Cadwell, An enteric virus can replace the beneficial function of commensal bacteria, Nature, vol.12, pp.94-102, 2014.
DOI : 10.1128/JVI.02096-06

A. Koh, Murine Models of Candida Gastrointestinal Colonization and Dissemination, Eukaryotic Cell, vol.12, issue.11, pp.1416-1438, 2013.
DOI : 10.1128/EC.00196-13

K. , U. Nilsson, R. Abarenkov, and K. , Towards a unified paradigm for sequence-based identification of fungi, Mol Ecol, vol.22, pp.5271-5278, 2013.

S. Kumar, A. Bansal, and A. Chakrabarti, Evaluation of Efficacy of Probiotics in Prevention of Candida Colonization in a PICU???A Randomized Controlled Trial*, Critical Care Medicine, vol.41, issue.2, pp.565-72, 2013.
DOI : 10.1097/CCM.0b013e31826a409c

M. Latuga, J. Ellis, and C. Cotton, Beyond Bacteria: A Study of the Enteric Microbial Consortium in Extremely Low Birth Weight Infants, PLoS ONE, vol.31, issue.12, p.27858, 2011.
DOI : 10.1371/journal.pone.0027858.s002

B. Lindahl, R. Nilsson, and L. Tedersoo, Fungal community analysis by high-throughput sequencing of amplified markers - a user's guide, New Phytologist, vol.63, issue.1, pp.288-99, 2013.
DOI : 10.1111/nph.12243

T. Loan, A. Nguyen, and S. Vieira-silva, How informative is the mouse for human gut microbiota research, Dis Model Mech, vol.8, pp.1-16, 2015.

K. Mason, J. Downward, and N. Falkowski, Interplay between the Gastric Bacterial Microbiota and Candida albicans during Postantibiotic Recolonization and Gastritis, Infection and Immunity, vol.80, issue.1, pp.150-158, 2012.
DOI : 10.1128/IAI.05162-11

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3255670

K. Mason, J. Downward, and K. Mason, Candida albicans and Bacterial Microbiota Interactions in the Cecum during Recolonization following Broad-Spectrum Antibiotic Therapy, Infection and Immunity, vol.80, issue.10, pp.3371-80, 2012.
DOI : 10.1128/IAI.00449-12

B. Mochon, J. Ye, and M. Kayala, Serological Profiling of a Candida albicans Protein Microarray Reveals Permanent Host-Pathogen Interplay and Stage-Specific Responses during Candidemia, PLoS Pathogens, vol.9, issue.3, p.1000827, 2010.
DOI : 10.1371/journal.ppat.1000827.s008

D. Moyes, C. Shen, and C. Murciano, Protection Against Epithelial Damage During Candida albicans Infection Is Mediated by PI3K/Akt and Mammalian Target of Rapamycin Signaling, The Journal of Infectious Diseases, vol.209, issue.11, pp.1816-1842, 2014.
DOI : 10.1093/infdis/jit824

J. Naglik, D. Moyes, W. , and B. , Candida albicans interactions with epithelial cells and mucosal immunity, Microbes and Infection, vol.13, issue.12-13, pp.963-76, 2011.
DOI : 10.1016/j.micinf.2011.06.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185145

J. Norman, S. Handley, and H. Virgin, Kingdom-Agnostic Metagenomics and the Importance of Complete Characterization of Enteric Microbial Communities, Gastroenterology, vol.146, issue.6, pp.1459-69, 2014.
DOI : 10.1053/j.gastro.2014.02.001

M. Noverr and G. Huffnagle, Regulation of Candida albicans Morphogenesis by Fatty Acid Metabolites, Infection and Immunity, vol.72, issue.11, pp.6206-210, 2004.
DOI : 10.1128/IAI.72.11.6206-6210.2004

M. Opik, A. Vanatoa, and E. Vanatoa, The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota), New Phytologist, vol.46, issue.1, pp.223-264, 2010.
DOI : 10.1111/j.1469-8137.2010.03334.x

K. Pande, C. Chen, and S. Noble, Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism, Nature Genetics, vol.162, issue.9, pp.1088-91, 2013.
DOI : 10.1093/nar/gkr945

P. , J. Kumamoto, C. Johnson, and A. , Candida albicans commensalism and pathogenicity are intertwined traits directed by a tightly knit transcriptional regulatory circuit, PLoS Biol, vol.11, p.1001510, 2013.

J. Pierce, D. Dignard, and M. Whiteway, Normal Adaptation of Candida albicans to the Murine Gastrointestinal Tract Requires Efg1p-Dependent Regulation of Metabolic and Host Defense Genes, Eukaryotic Cell, vol.12, issue.1, pp.37-49, 2013.
DOI : 10.1128/EC.00236-12

J. Pierce and C. Kumamoto, Variation in Candida albicans EFG1 Expression Enables Host-Dependent Changes in Colonizing Fungal Populations, mBio, vol.3, issue.4, pp.1-8, 2012.
DOI : 10.1128/mBio.00117-12

D. Prieto, E. Románrom´román, and I. Correia, The HOG Pathway Is Critical for the Colonization of the Mouse Gastrointestinal Tract by Candida albicans, PLoS ONE, vol.6, issue.1, p.87128, 2014.
DOI : 10.1371/journal.pone.0087128.s005

E. Pruesse, C. Quast, and K. Knittel, SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucleic Acids Research, vol.35, issue.21, pp.7188-96, 2007.
DOI : 10.1093/nar/gkm864

A. Puel, S. Cypowyj, and J. Bustamante, Chronic Mucocutaneous Candidiasis in Humans with Inborn Errors of Interleukin-17 Immunity, Science, vol.2, issue.52, pp.65-73, 2011.
DOI : 10.1126/scitranslmed.3001107

J. Qin, R. Li, and J. Raes, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.13, issue.7285, pp.59-65, 2010.
DOI : 10.1038/nature08821

URL : https://hal.archives-ouvertes.fr/cea-00908974

S. Rakoff-nahoum, J. Paglino, and F. Eslami-varzaneh, Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis, Cell, vol.118, issue.2, pp.229-270, 2004.
DOI : 10.1016/j.cell.2004.07.002

L. Romani, Animal models for candidiasis. Chapter 19, Unit 19, Curr Protoc Immunol, vol.6, 2001.

L. Romani, Immunity to fungal infections, Nature Reviews Immunology, vol.68, issue.4, pp.275-88, 2011.
DOI : 10.1038/nri2939

L. Romani, F. Bistoni, and P. Puccetti, Fungi, dendritic cells and receptors: a host perspective of fungal virulence, Trends in Microbiology, vol.10, issue.11, pp.508-522, 2002.
DOI : 10.1016/S0966-842X(02)02460-5

M. Romeo, D. Romeo, and L. Trovato, Role of probiotics in the prevention of the enteric colonization by Candida in preterm newborns: incidence of late-onset sepsis and neurological outcome, Journal of Perinatology, vol.20, issue.1, pp.63-72, 2011.
DOI : 10.1001/jama.292.19.2357

A. Roy, J. Chaudhuri, and D. Sarkar, Role of enteric supplementation of probiotics on late-onset sepsis by Candida species in preterm low birth weight neonates: a randomized, double blind, placebo-controlled trial, N Am J Med Sci, vol.6, pp.50-57, 2014.

G. Samonis, E. Anaissie, and B. Rosenbaum, A model of sustained gastrointestinal colonization by Candida albicans in healthy adult mice, Infect Immun, vol.58, pp.1514-1521, 1990.

G. Samonis, M. Falagas, and S. Lionakis, experimental colonization of the murine gut, Medical Mycology, vol.49, issue.4, pp.395-404, 2011.
DOI : 10.3109/13693786.2010.533203

P. Scanlan and J. Marchesi, Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces, The ISME Journal, vol.70, issue.12, pp.1183-93, 2008.
DOI : 10.1099/mic.0.26899-0

M. Schinabeck, L. Long, and M. Hossain, Rabbit Model of Candida albicans Biofilm Infection: Liposomal Amphotericin B Antifungal Lock Therapy, Antimicrobial Agents and Chemotherapy, vol.48, issue.5, pp.1727-1759, 2004.
DOI : 10.1128/AAC.48.5.1727-1732.2004

C. Schoch, K. Seifert, and S. Huhndorf, Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi, Proceedings of the National Academy of Sciences, vol.75, issue.23, pp.6241-6247, 2012.
DOI : 10.1128/AEM.01541-09

D. Schofield, C. Westwater, and T. Warner, lipase gene expression during alimentary tract colonization and infection, FEMS Microbiology Letters, vol.244, issue.2, pp.359-65, 2005.
DOI : 10.1016/j.femsle.2005.02.015

J. Shankar, N. Solis, and S. Mounaud, Using Bayesian modelling to investigate factors governing antibiotic-induced Candida albicans colonization of the GI tract, Scientific Reports, vol.5, issue.1, p.8131, 2015.
DOI : 10.1504/IJMMNO.2014.059942

L. Tao, H. Du, and G. Guan, Discovery of a ???White-Gray-Opaque??? Tristable Phenotypic Switching System in Candida albicans: Roles of Non-genetic Diversity in Host Adaptation, PLoS Biology, vol.5, issue.15, p.1001830, 2014.
DOI : 10.1371/journal.pbio.1001830.s014

J. Thygesen, H. Glerup, and B. Tarp, Saccharomyces boulardii fungemia caused by treatment with a probioticum, Case Reports, vol.2012, issue.mar26 1, p.620114412, 2012.
DOI : 10.1136/bcr.06.2011.4412

D. Underhill and I. Iliev, The mycobiota: interactions between commensal fungi and the host immune system, Nature Reviews Immunology, vol.66, issue.6, pp.405-421, 2014.
DOI : 10.1093/cid/cit722

J. Van-cutsem and D. Thienpont, infection in guinea-pigs, Medical Mycology, vol.9, issue.1, pp.17-20, 1971.
DOI : 10.1080/00362177185190061

S. Vautier, R. Drummond, and K. Chen, colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity, Cellular Microbiology, vol.23, issue.Suppl. 1, pp.445-50, 2015.
DOI : 10.1111/cmi.12388

S. Vautier, R. Drummond, and P. Redelinghuys, Dectin-1 Is Not Required for Controlling Candida albicans Colonization of the Gastrointestinal Tract, Infection and Immunity, vol.80, issue.12, pp.4216-4238, 2012.
DOI : 10.1128/IAI.00559-12

L. Waggoner-fountain, M. Walker, and R. Hollis, Vertical and Horizontal Transmission of Unique Candida Species to Premature Newborns, Clinical Infectious Diseases, vol.22, issue.5, pp.803-811, 1996.
DOI : 10.1093/clinids/22.5.803

S. White, A. Rosenbach, and P. Lephart, Self-Regulation of Candida albicans Population Size during GI Colonization, PLoS Pathogens, vol.67, issue.12, pp.1866-78, 2007.
DOI : 0019-9567(1999)067[3649:ILCFFP]2.0.CO;2

V. Wood, R. Gwilliam, and M. Rajandream, The genome sequence of Schizosaccharomyces pombe, Nature, vol.415, issue.6874, pp.871-80, 2002.
DOI : 10.1038/nature724

N. Yamaguchi, K. Sonoyama, and H. Kikuchi, Gastric colonization of Candida albicans differs in mice fed commercial and purified diets, J Nutr, vol.135, pp.109-124, 2005.

T. Yatsunenko, F. Rey, and M. Manary, Human gut microbiome viewed across age and geography, Nature, vol.2, pp.222-229, 2012.
DOI : 10.1038/nature11053

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376388

T. Zelante, R. Iannitti, and C. Cunha, Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22, Immunity, vol.39, issue.2, pp.372-85, 2013.
DOI : 10.1016/j.immuni.2013.08.003

URL : http://doi.org/10.1016/j.immuni.2013.08.003