M. Pfaller and D. Diekema, Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem, Clinical Microbiology Reviews, vol.20, issue.1, pp.133-163, 2007.
DOI : 10.1128/CMR.00029-06

C. Kumamoto and M. Vinces, Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence, Cellular Microbiology, vol.64, issue.11, pp.1546-1554, 2005.
DOI : 10.1111/j.1462-5822.2005.00616.x

I. Ene, S. Brunke, A. Brown, and B. Hube, Metabolism in Fungal Pathogenesis, Cold Spring Harbor Perspectives in Medicine, vol.4, issue.12, 2014.
DOI : 10.1101/cshperspect.a019695

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4292087

C. Kvaal, T. Srikantha, and D. Soll, Misexpression of the white-phasespecific gene WH11 in the opaque phase of Candida albicans affects switching and virulence, Infect Immun, vol.65, pp.4468-4475, 1997.

F. Mayer, D. Wilson, and B. Hube, pathogenicity mechanisms, Virulence, vol.156, issue.2, pp.119-128, 2013.
DOI : 10.1016/j.drudis.2008.11.013

F. Van-de-veerdonk, T. Plantinga, A. Hoischen, S. Smeekens, and L. Joosten, Mutations in Autosomal Dominant Chronic Mucocutaneous Candidiasis, New England Journal of Medicine, vol.365, issue.1, pp.54-61, 2011.
DOI : 10.1056/NEJMoa1100102

F. Van-enckevort, M. Netea, A. Hermus, C. Sweep, and J. Meis, Increased susceptibility to systemic candidiasis in interleukin-6 deficient mice, Med Mycol, vol.37, pp.419-426, 1999.

T. White, M. Pfaller, M. Rinaldi, J. Smith, and S. Redding, from an HIV-infected patient, Oral Diseases, vol.187, issue.S1, pp.102-109, 1997.
DOI : 10.1111/j.1601-0825.1997.tb00336.x

E. Rustchenko-bulgac, F. Sherman, and J. Hicks, Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of Candida albicans., Journal of Bacteriology, vol.172, issue.3, pp.1276-1283, 1990.
DOI : 10.1128/jb.172.3.1276-1283.1990

J. Shin, M. Park, J. Song, D. Shin, and S. Jung, Microevolution of Candida albicans Strains during Catheter-Related Candidemia, Journal of Clinical Microbiology, vol.42, issue.9, pp.4025-4031, 2004.
DOI : 10.1128/JCM.42.9.4025-4031.2004

A. Tsong, B. Tuch, H. Li, and A. Johnson, Evolution of alternative transcriptional circuits with identical logic, Nature, vol.241, issue.7110, pp.415-420, 2006.
DOI : 10.1038/nature05099

B. Tuch, D. Galgoczy, A. Hernday, H. Li, and A. Johnson, The Evolution of Combinatorial Gene Regulation in Fungi, PLoS Biology, vol.425, issue.2, p.38, 2008.
DOI : 10.1371/journal.pbio.0060038.sd002

A. Forche, P. Magee, A. Selmecki, and J. Berman, Evolution in Candida albicans Populations During a Single Passage Through a Mouse Host, Genetics, vol.182, issue.3, pp.799-811, 2009.
DOI : 10.1534/genetics.109.103325

P. Sudbery, Growth of Candida albicans hyphae, Nature Reviews Microbiology, vol.5, issue.10, pp.737-748, 2011.
DOI : 10.1038/nrmicro2636

I. Jacobsen, D. Wilson, B. Wä-chtler, S. Brunke, and J. Naglik, dimorphism as a therapeutic target, Expert Review of Anti-infective Therapy, vol.10, issue.1, pp.85-93, 2012.
DOI : 10.1586/eri.11.152

S. Filler and D. Sheppard, Fungal Invasion of Normally Non-Phagocytic Host Cells, PLoS Pathogens, vol.7, issue.12, p.129, 2006.
DOI : 1286-4579(2005)007[0875:IAPCOA]2.0.CO;2

B. Wä-chtler, D. Wilson, K. Haedicke, F. Dalle, and B. Hube, From Attachment to Damage: Defined Genes of Candida albicans Mediate Adhesion, Invasion and Damage during Interaction with Oral Epithelial Cells, PLoS ONE, vol.25, issue.Pt 2, p.17046, 2011.
DOI : 10.1371/journal.pone.0017046.s007

M. Wellington, K. Koselny, F. Sutterwala, and D. Krysan, Candida albicans Triggers NLRP3-Mediated Pyroptosis in Macrophages, Eukaryotic Cell, vol.13, issue.2, pp.329-340, 2014.
DOI : 10.1128/EC.00336-13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910967

N. Uwamahoro, J. Verma-gaur, H. Shen, Y. Qu, and R. Lewis, The Pathogen Candida albicans Hijacks Pyroptosis for Escape from Macrophages, mBio, vol.5, issue.2, pp.3-00014, 2014.
DOI : 10.1128/mBio.00003-14

URL : http://doi.org/10.1128/mbio.00003-14

M. Lorenz, J. Bender, and G. Fink, Transcriptional Response of Candida albicans upon Internalization by Macrophages, Eukaryotic Cell, vol.3, issue.5, pp.1076-1087, 2004.
DOI : 10.1128/EC.3.5.1076-1087.2004

N. Gow, F. Van-de-veerdonk, A. Brown, and M. Netea, Candida albicans morphogenesis and host defence: discriminating invasion from colonization, Nature Reviews Microbiology, vol.139, pp.112-122, 2011.
DOI : 10.1038/nrmicro2711

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624162

H. Lo, J. Köhler, B. Didomenico, D. Loebenberg, and A. Cacciapuoti, Nonfilamentous C. albicans Mutants Are Avirulent, Cell, vol.90, issue.5, pp.939-949, 1997.
DOI : 10.1016/S0092-8674(00)80358-X

URL : http://doi.org/10.1016/s0092-8674(00)80358-x

V. Stoldt, A. Sonneborn, C. Leuker, and J. Ernst, Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi, The EMBO Journal, vol.16, issue.8, pp.1982-1991, 1997.
DOI : 10.1093/emboj/16.8.1982

T. Doedt, S. Krishnamurthy, D. Bockmühl, B. Tebarth, and C. Stempel, APSES Proteins Regulate Morphogenesis and Metabolism in Candida albicans, Molecular Biology of the Cell, vol.15, issue.7, pp.3167-3180, 2004.
DOI : 10.1091/mbc.E03-11-0782

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC452574

S. Martin and J. Konopka, Lipid Raft Polarization Contributes to Hyphal Growth in Candida albicans, Eukaryotic Cell, vol.3, issue.3, pp.675-684, 2004.
DOI : 10.1128/EC.3.3.675-684.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC420133

L. Merson-davies and F. Odds, A Morphology Index for Characterization of Cell Shape in Candida albicans, Microbiology, vol.135, issue.11, pp.3143-3152, 1989.
DOI : 10.1099/00221287-135-11-3143

R. Martin, G. Moran, I. Jacobsen, A. Heyken, and J. Domey, The Candida albicans-Specific Gene EED1 Encodes a Key Regulator of Hyphal Extension, PLoS ONE, vol.6, issue.4, p.18394, 2011.
DOI : 10.1371/journal.pone.0018394.s008

X. Zhao, S. Oh, G. Cheng, C. Green, and J. Nuessen, ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p, Microbiology, vol.150, issue.7, pp.2415-2428, 2004.
DOI : 10.1099/mic.0.26943-0

C. Nobile, E. Fox, J. Nett, T. Sorrells, and Q. Mitrovich, A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans, Cell, vol.148, issue.1-2, pp.126-138, 2012.
DOI : 10.1016/j.cell.2011.10.048

URL : http://doi.org/10.1016/j.cell.2011.10.048

D. Brown, J. Giusani, A. Chen, X. Kumamoto, and C. , Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene, Molecular Microbiology, vol.89, issue.4, pp.651-662, 1999.
DOI : 10.1093/emboj/16.8.1982

M. Banerjee, D. Thompson, A. Lazzell, P. Carlisle, and C. Pierce, UME6, a Novel Filament-specific Regulator of Candida albicans Hyphal Extension and Virulence, Molecular Biology of the Cell, vol.19, issue.4, pp.1354-1365, 2008.
DOI : 10.1091/mbc.E07-11-1110

M. Zavrel, O. Majer, K. Kuchler, and S. Rupp, Transcription Factor Efg1 Shows a Haploinsufficiency Phenotype in Modulating the Cell Wall Architecture and Immunogenicity of Candida albicans, Eukaryotic Cell, vol.11, issue.2, pp.129-140, 2012.
DOI : 10.1128/EC.05206-11

N. Gow and B. Hube, Importance of the Candida albicans cell wall during commensalism and infection, Current Opinion in Microbiology, vol.15, issue.4, pp.406-412, 2012.
DOI : 10.1016/j.mib.2012.04.005

B. Eisman, R. Alonso-monge, E. Roman, D. Arana, and C. Nombela, The Cek1 and Hog1 Mitogen-Activated Protein Kinases Play Complementary Roles in Cell Wall Biogenesis and Chlamydospore Formation in the Fungal Pathogen Candida albicans, Eukaryotic Cell, vol.5, issue.2, pp.347-358, 2006.
DOI : 10.1128/EC.5.2.347-358.2006

F. Navarro-garcia, R. Alonso-monge, H. Rico, J. Pla, and R. Sentandreu, A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans, Microbiology, vol.144, issue.2, pp.411-424, 1998.
DOI : 10.1099/00221287-144-2-411

E. Roman, C. Nombela, and J. Pla, The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans, Molecular and Cellular Biology, vol.25, issue.23, pp.10611-10627, 2005.
DOI : 10.1128/MCB.25.23.10611-10627.2005

V. Bruno, Z. Wang, S. Marjani, G. Euskirchen, and J. Martin, Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq, Genome Research, vol.20, issue.10, pp.1451-1458, 2010.
DOI : 10.1101/gr.109553.110

R. Martin, D. Albrecht-eckardt, S. Brunke, B. Hube, and K. Hünniger, A Core Filamentation Response Network in Candida albicans Is Restricted to Eight Genes, PLoS ONE, vol.181, issue.3, p.58613, 2013.
DOI : 10.1371/journal.pone.0058613.s001

J. Pierce, D. Dignard, M. Whiteway, and C. Kumamoto, Normal Adaptation of Candida albicans to the Murine Gastrointestinal Tract Requires Efg1p-Dependent Regulation of Metabolic and Host Defense Genes, Eukaryotic Cell, vol.12, issue.1, pp.37-49, 2013.
DOI : 10.1128/EC.00236-12

Y. Samaranayake, B. Cheung, J. Yau, S. Yeung, and L. Samaranayake, Human Serum Promotes Candida albicans Biofilm Growth and Virulence Gene Expression on Silicone Biomaterial, PLoS ONE, vol.78, issue.5, p.62902, 2013.
DOI : 10.1371/journal.pone.0062902.t005

URL : http://doi.org/10.1371/journal.pone.0062902

H. Hope, C. Schmauch, R. Arkowitz, and M. Bassilana, The Candida albicans ELMO homologue functions together with Rac1 and Dck1, upstream of the MAP Kinase Cek1, in invasive filamentous growth, Molecular Microbiology, vol.1, issue.1, pp.1572-1590, 2010.
DOI : 10.1111/j.1365-2958.2010.07186.x

URL : https://hal.archives-ouvertes.fr/hal-00497183

B. Braun, D. Kadosh, and A. Johnson, NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction, The EMBO Journal, vol.20, issue.17, pp.4753-4761, 2001.
DOI : 10.1093/emboj/20.17.4753

A. Murad, P. Leng, M. Straffon, J. Wishart, and S. Macaskill, NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans, The EMBO Journal, vol.20, issue.17, pp.4742-4752, 2001.
DOI : 10.1093/emboj/20.17.4742

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125592

A. Forche, D. Abbey, T. Pisithkul, M. Weinzierl, and T. Ringstrom, Stress Alters Rates and Types of Loss of Heterozygosity in Candida albicans, mBio, vol.2, issue.4, 2011.
DOI : 10.1128/mBio.00129-11

A. Forche, M. Steinbach, and J. Berman, allelic status using SNP-RFLP, FEMS Yeast Research, vol.9, issue.7, pp.1061-1069, 2009.
DOI : 10.1111/j.1567-1364.2009.00542.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763041

W. Fonzi and M. Irwin, Isogenic strain construction and gene mapping in Candida albicans, Genetics, vol.134, pp.717-728, 1993.

A. Murad, P. Lee, I. Broadbent, C. Barelle, and A. Brown, CIp10, an efficient and convenient integrating vector forCandida albicans, Yeast, vol.48, issue.4, pp.325-327, 2000.
DOI : 10.1002/1097-0061(20000315)16:4<325::AID-YEA538>3.0.CO;2-#

D. Inglis, M. Arnaud, J. Binkley, P. Shah, and M. Skrzypek, The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata, Nucleic Acids Research, vol.40, issue.D1, pp.667-674, 2012.
DOI : 10.1093/nar/gkr945

L. Hoyer, The ALS gene family of Candida albicans, Trends in Microbiology, vol.9, issue.4, pp.176-180, 2001.
DOI : 10.1016/S0966-842X(01)01984-9

S. Kuchin, P. Yeghiayan, and M. Carlson, Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast., Proceedings of the National Academy of Sciences, vol.92, issue.9, pp.4006-4010, 1995.
DOI : 10.1073/pnas.92.9.4006

C. Nelson, S. Goto, K. Lund, W. Hung, and I. Sadowski, Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12, Nature, vol.3, issue.6919, pp.187-190, 2003.
DOI : 10.1128/MCB.20.11.3880-3886.2000

B. Nolen, S. Taylor, and G. Ghosh, Regulation of Protein Kinases, Molecular Cell, vol.15, issue.5, pp.661-675, 2004.
DOI : 10.1016/j.molcel.2004.08.024

O. Reuss, A. Vik, R. Kolter, and J. Morschhauser, The SAT1 flipper, an optimized tool for gene disruption in Candida albicans, Gene, vol.341, pp.119-127, 2004.
DOI : 10.1016/j.gene.2004.06.021

A. Selmecki, K. Dulmage, L. Cowen, J. Anderson, and J. Berman, Acquisition of Aneuploidy Provides Increased Fitness during the Evolution of Antifungal Drug Resistance, PLoS Genetics, vol.179, issue.2, p.1000705, 2009.
DOI : 10.1371/journal.pgen.1000705.s009

H. Liu, J. Köhler, and G. Fink, Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog, Science, vol.266, issue.5191, pp.1723-1726, 1994.
DOI : 10.1126/science.7992058

D. Bockmühl and J. Ernst, A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans, Genetics, vol.157, pp.1523-1530, 2001.

E. Leberer, D. Harcus, I. Broadbent, K. Clark, and D. Dignard, Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans, Proceedings of the National Academy of Sciences, vol.12, issue.2, pp.13217-13222, 1996.
DOI : 10.1111/j.1574-6968.1995.tb07413.x

W. Jung and L. Stateva, The cAMP phosphodiesterase encoded by CaPDE2 is required for hyphal development in Candida albicans, Microbiology, vol.149, issue.10, pp.2961-2976, 2003.
DOI : 10.1099/mic.0.26517-0

R. Castilla, S. Passeron, and M. Cantore, N-Acetyl-d-Glucosamine Induces Germination in Candida albicans through a Mechanism Sensitive to Inhibitors of cAMP-Dependent Protein Kinase, Cellular Signalling, vol.10, issue.10, pp.713-719, 1998.
DOI : 10.1016/S0898-6568(98)00015-1

T. Klengel, W. Liang, J. Chaloupka, C. Ruoff, and K. Schröppel, Fungal Adenylyl Cyclase Integrates CO2 Sensing with cAMP Signaling and Virulence, Current Biology, vol.15, issue.22, pp.2021-2026, 2005.
DOI : 10.1016/j.cub.2005.10.040

URL : http://doi.org/10.1016/j.cub.2005.11.043

A. Davis-hanna, A. Piispanen, L. Stateva, and D. Hogan, Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis, Molecular Microbiology, vol.437, issue.1, pp.47-62, 2008.
DOI : 10.1111/j.1365-2958.2007.06013.x

Y. Lu, C. Su, A. Wang, and H. Liu, Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance, PLoS Biology, vol.5, issue.Pt 10, p.1001105, 2011.
DOI : 10.1371/journal.pbio.1001105.s006

K. Zakikhany, J. Naglik, A. Schmidt-westhausen, G. Holland, and M. Schaller, In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination, Cellular Microbiology, vol.3, issue.12, pp.2938-2954, 2007.
DOI : 10.1111/j.1462-5822.2007.01009.x

F. Navarro-garcia, B. Eisman, S. Fiuza, C. Nombela, and J. Pla, The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans, Microbiology, vol.151, issue.8, pp.2737-2749, 2005.
DOI : 10.1099/mic.0.28038-0

M. Galán-diez, D. Arana, D. Serrano-gomez, L. Kremer, and J. Casasnovas, Candida albicans ??-Glucan Exposure Is Controlled by the Fungal CEK1-Mediated Mitogen-Activated Protein Kinase Pathway That Modulates Immune Responses Triggered through Dectin-1, Infection and Immunity, vol.78, issue.4, pp.1426-1436, 2010.
DOI : 10.1128/IAI.00989-09

A. Schweizer, S. Rupp, B. Taylor, M. Rollinghoff, and K. Schröppel, The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans, Molecular Microbiology, vol.23, issue.3, pp.435-445, 2000.
DOI : 10.1046/j.1365-2958.2000.01874.x

I. Cleary, A. Lazzell, C. Monteagudo, D. Thomas, and S. Saville, BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence, Molecular Microbiology, vol.20, issue.3, pp.557-573, 2012.
DOI : 10.1111/j.1365-2958.2012.08127.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402693

D. Davis, R. Wilson, and A. Mitchell, RIM101-Dependent and -Independent Pathways Govern pH Responses in Candida albicans, Molecular and Cellular Biology, vol.20, issue.3, pp.971-978, 2000.
DOI : 10.1128/MCB.20.3.971-978.2000

T. Wimalasena, B. Enjalbert, T. Guillemette, A. Plumridge, and S. Budge, Impact of the unfolded protein response upon genome-wide expression patterns, and the role of Hac1 in the polarized growth, of Candida albicans, Fungal Genetics and Biology, vol.45, issue.9, pp.1235-1247, 2008.
DOI : 10.1016/j.fgb.2008.06.001

L. Sharkey, M. Mcnemar, S. Saporito-irwin, P. Sypherd, and W. Fonzi, HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1, J Bacteriol, vol.181, pp.5273-5279, 1999.

A. Selmecki, M. Gerami-nejad, C. Paulson, A. Forche, and J. Berman, An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1, Molecular Microbiology, vol.41, issue.3, pp.624-641, 2008.
DOI : 10.1534/genetics.104.033167

M. Arbour, E. Epp, H. Hogues, A. Sellam, and C. Lacroix, mutants, FEMS Yeast Research, vol.9, issue.7, pp.1070-1077, 2009.
DOI : 10.1111/j.1567-1364.2009.00563.x

S. Cheng, M. Nguyen, Z. Zhang, H. Jia, and M. Handfield, Evaluation of the Roles of Four Candida albicans Genes in Virulence by Using Gene Disruption Strains That Express URA3 from the Native Locus, Infection and Immunity, vol.71, issue.10, pp.6101-6103, 2003.
DOI : 10.1128/IAI.71.10.6101-6103.2003

P. Sundstrom, J. Cutler, and J. Staab, Reevaluation of the Role of HWP1 in Systemic Candidiasis by Use of Candida albicans Strains with Selectable Marker URA3 Targeted to the ENO1 Locus, Infection and Immunity, vol.70, issue.6, pp.3281-3283, 2002.
DOI : 10.1128/IAI.70.6.3281-3283.2002

L. Sharkey, W. Liao, A. Ghosh, and W. Fonzi, Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans, Microbiology, vol.151, issue.4, pp.1061-1071, 2005.
DOI : 10.1099/mic.0.27487-0

L. Myers and R. Kornberg, Mediator of Transcriptional Regulation, Annual Review of Biochemistry, vol.69, issue.1, pp.729-749, 2000.
DOI : 10.1146/annurev.biochem.69.1.729

B. Lewis and D. Reinberg, The mediator coactivator complex: functional and physical roles in transcriptional regulation, Journal of Cell Science, vol.116, issue.18, pp.3667-3675, 2003.
DOI : 10.1242/jcs.00734

S. Raithatha, T. Su, P. Lourenco, S. Goto, and I. Sadowski, Cdk8 Regulates Stability of the Transcription Factor Phd1 To Control Pseudohyphal Differentiation of Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.32, issue.3, pp.664-674, 2012.
DOI : 10.1128/MCB.05420-11

J. Schüller and N. Lehming, The Cyclin in the RNA Polymerase Holoenzyme Is a Target for the Transcriptional Repressor Tup1p in <i>Saccharomyces cerevisiae</i>, Journal of Molecular Microbiology and Biotechnology, vol.5, issue.4, pp.199-205, 2003.
DOI : 10.1159/000071071

S. Green and A. Johnson, Promoter-dependent Roles for the Srb10 Cyclin-dependent Kinase and the Hda1 Deacetylase in Tup1-mediated Repression in Saccharomyces cerevisiae, Molecular Biology of the Cell, vol.15, issue.9, pp.4191-4202, 2004.
DOI : 10.1091/mbc.E04-05-0412

S. Kuchin and M. Carlson, Functional Relationships of Srb10-Srb11 Kinase, Carboxy-Terminal Domain Kinase CTDK-I, and Transcriptional Corepressor Ssn6-Tup1, Molecular and Cellular Biology, vol.18, issue.3, pp.1163-1171, 1998.
DOI : 10.1128/MCB.18.3.1163

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC108829/pdf

Y. Chang, S. Howard, and P. Herman, The Ras/PKA Signaling Pathway Directly Targets the Srb9 Protein, a Component of the General RNA Polymerase II Transcription Apparatus, Molecular Cell, vol.15, issue.1, pp.107-116, 2004.
DOI : 10.1016/j.molcel.2004.05.021

S. Brunke, K. Seider, D. Fischer, I. Jacobsen, and L. Kasper, One Small Step for a Yeast - Microevolution within Macrophages Renders Candida glabrata Hypervirulent Due to a Single Point Mutation, PLoS Pathogens, vol.18, issue.10, 2014.
DOI : 10.1371/journal.ppat.1004478.s014

URL : https://hal.archives-ouvertes.fr/pasteur-01518441

F. Mayer, D. Wilson, I. Jacobsen, P. Miramón, and K. Grosse, The Novel Candida albicans Transporter Dur31 Is a Multi-Stage Pathogenicity Factor, PLoS Pathogens, vol.198, issue.3, p.1002592, 2012.
DOI : 10.1371/journal.ppat.1002592.s007

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-408, 2001.
DOI : 10.1006/meth.2001.1262

Y. Kong, Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies, Genomics, vol.98, issue.2, pp.152-153, 2011.
DOI : 10.1016/j.ygeno.2011.05.009

C. Trapnell, L. Pachter, and S. Salzberg, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, vol.25, issue.9, pp.1105-1111, 2009.
DOI : 10.1093/bioinformatics/btp120

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672628

M. Robinson, D. Mccarthy, and G. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, issue.1, pp.139-140, 2010.
DOI : 10.1093/bioinformatics/btp616

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biology, vol.11, issue.10, p.106, 2010.
DOI : 10.1186/gb-2010-11-10-r106

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218662/pdf

E. Fazius, V. Shelest, and E. Shelest, SiTaR: a novel tool for transcription factor binding site prediction, Bioinformatics, vol.27, issue.20, pp.2806-2811, 2011.
DOI : 10.1093/bioinformatics/btr492

G. Van-der-auwera, O. Mauricio, C. Hatl, R. Poplin, and G. Angel, From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline, Current Protocols in Bioinformatics, vol.29, pp.1-11, 2013.
DOI : 10.1002/0471250953.bi1110s43

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-1760, 2009.
DOI : 10.1093/bioinformatics/btp324

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234

F. Sievers, A. Wilm, D. Dineen, T. Gibson, and K. Karplus, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Molecular Systems Biology, vol.7, issue.1, p.539, 2011.
DOI : 10.1093/nar/gkn174

S. Ossowski, K. Schneeberger, R. Clark, C. Lanz, and N. Warthmann, Sequencing of natural strains of Arabidopsis thaliana with short reads, Genome Research, vol.18, issue.12, pp.2024-2033, 2008.
DOI : 10.1101/gr.080200.108

S. Akoulitchev, S. Chuikov, and D. Reinberg, TFIIH is negatively regulated by cdk8-containing mediator complexes, Nature, vol.407, pp.102-106, 2000.