P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proc. Natl. Acad. Sci, 2011.
DOI : 10.1016/j.smim.2010.02.002

O. Disson, S. Grayo, E. Huillet, G. Nikitas, F. Langa-vives et al., Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis, Nature, vol.37, issue.7216, pp.1114-1118, 2008.
DOI : 10.1038/nature07303

J. Pizarro-cerdá, A. Kühbacher, and P. Cossart, Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view, Cold Spring Harb, Perspect. Med, vol.2, 2012.

E. Gouin, M. D. Welch, and P. Cossart, Actin-based motility of intracellular pathogens, Current Opinion in Microbiology, vol.8, issue.1, pp.35-45, 2005.
DOI : 10.1016/j.mib.2004.12.013

G. Nikitas, C. Deschamps, O. Disson, T. Niault, P. Cossart et al., across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin, The Journal of Experimental Medicine, vol.276, issue.11, pp.2263-2277, 2011.
DOI : 10.1016/S0092-8674(00)00071-4

C. L. Birmingham, V. Canadien, N. A. Kaniuk, B. E. Steinberg, D. E. Higgins et al., Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles, Nature, vol.99, issue.7176, pp.350-354, 2008.
DOI : 10.4161/auto.4450

D. Cabanes, P. Dehoux, O. Dussurget, L. Frangeul, and P. Cossart, Surface proteins and the pathogenic potential of Listeria monocytogenes, Trends in Microbiology, vol.10, issue.5, pp.238-245, 2002.
DOI : 10.1016/S0966-842X(02)02342-9

J. Mengaud, H. Ohayon, P. Gounon, R. Mege, and P. Cossart, E-Cadherin Is the Receptor for Internalin, a Surface Protein Required for Entry of L. monocytogenes into Epithelial Cells, Cell, vol.84, issue.6, pp.923-932, 1996.
DOI : 10.1016/S0092-8674(00)81070-3

M. Lecuit, S. Vandormael-pournin, J. Lefort, M. Huerre, P. Gounon et al., A Transgenic Model for Listeriosis: Role of Internalin in Crossing the Intestinal Barrier, Science, vol.292, issue.5522, pp.1722-1725, 2001.
DOI : 10.1126/science.1059852

M. Lecuit, D. M. Nelson, S. D. Smith, M. Khun, M. Huerre et al., Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: Role of internalin interaction with trophoblast E-cadherin, Proceedings of the National Academy of Sciences, vol.285, issue.1, pp.6152-6157, 2004.
DOI : 10.1007/s004410050625

Y. Shen, M. Naujokas, M. Park, and K. Ireton, InlB-Dependent Internalization of Listeria Is Mediated by the Met Receptor Tyrosine Kinase, Cell, vol.103, issue.3, pp.501-510, 2000.
DOI : 10.1016/S0092-8674(00)00141-0

]. S. Seveau, into host cells, The Journal of Cell Biology, vol.327, issue.5, pp.743-753, 2004.
DOI : 10.1126/science.1068539

M. Bonazzi, L. Vasudevan, A. Mallet, M. Sachse, A. Sartori et al., Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization, The Journal of Cell Biology, vol.195, issue.3, pp.525-536, 2011.
DOI : 10.1091/mbc.E04-09-0774

P. Cossart and A. Helenius, Endocytosis of Viruses and Bacteria, Cold Spring Harb, Perspect. Biol, vol.6, issue.8, p.25085912, 2014.

J. Pizarro-cerdá, M. Bonazzi, and P. Cossart, Clathrin-mediated endocytosis: What works for small, also works for big, BioEssays, vol.418, issue.Pt 12, pp.496-504, 2010.
DOI : 10.1002/bies.200900172

J. Pizarro-cerdá and P. Cossart, Membrane Trafficking and Lifestyle: The Exception or the Rule?, Annual Review of Cell and Developmental Biology, vol.25, issue.1, pp.649-670, 2009.
DOI : 10.1146/annurev.cellbio.042308.113331

M. Bonazzi, A. Kühbacher, A. Toledo-arana, A. Mallet, L. Vasudevan et al., A Common Clathrin-Mediated Machinery Co-ordinates Cell-Cell Adhesion and Bacterial Internalization, Traffic, vol.4, issue.12, pp.1653-1666, 2012.
DOI : 10.1091/mbc.4.6.647

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760411

G. Gessain, Y. H. Tsai, L. Travier, M. Bonazzi, S. Grayo et al., PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes, The Journal of Cell Biology, vol.208, issue.3, pp.165-183, 2015.
DOI : 10.1084/jem.20141406

URL : https://hal.archives-ouvertes.fr/pasteur-01128770

K. Ireton, B. Payrastre, and P. Cossart, Protein InlB Is an Agonist of Mammalian Phosphoinositide 3-Kinase, Journal of Biological Chemistry, vol.10, issue.24, pp.17025-17032, 1999.
DOI : 10.1126/science.274.5295.2115

H. Dokainish, B. Gavicherla, Y. Shen, and K. Ireton, The carboxyl-terminal SH3 domain of the mammalian adaptor CrkII promotes internalization of Listeria monocytogenes through activation of host phosphoinositide 3-kinase, Cellular Microbiology, vol.15, issue.10, pp.2497-2516, 2007.
DOI : 10.1038/sj.onc.1204173

E. Veiga and P. Cossart, Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells, Nature Cell Biology, vol.16, issue.9, pp.894-900, 2005.
DOI : 10.1046/j.1365-2958.1997.4621825.x

E. Veiga, J. A. Guttman, M. Bonazzi, E. Boucrot, A. Toledo-arana et al., Invasive and Adherent Bacterial Pathogens Co-Opt Host Clathrin for Infection, Cell Host & Microbe, vol.2, issue.5, pp.340-351, 2007.
DOI : 10.1016/j.chom.2007.10.001

URL : http://doi.org/10.1016/j.chom.2007.10.001

K. Ireton, B. Payrastre, H. Chap, W. Ogawa, H. Sakaue et al., A Role for Phosphoinositide 3-Kinase in Bacterial Invasion, Science, vol.274, issue.5288, pp.780-782, 1996.
DOI : 10.1126/science.274.5288.780

S. Seveau, T. N. Tham, B. Payrastre, A. D. Hoppe, J. A. Swanson et al., A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway, Cellular Microbiology, vol.11, issue.3, pp.790-803, 2007.
DOI : 10.1126/science.1068539

H. Bierne, H. Miki, M. Innocenti, G. Scita, F. B. Gertler et al., WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor, Journal of Cell Science, vol.118, issue.7, pp.1537-1547, 2005.
DOI : 10.1242/jcs.02285

H. Bierne, E. Gouin, P. Roux, P. Caroni, H. L. Yin et al., -induced phagocytosis, The Journal of Cell Biology, vol.151, issue.1, pp.101-112, 2001.
DOI : 10.1083/jcb.151.5.1119

URL : https://hal.archives-ouvertes.fr/hal-00898551

M. D. Welch, A. H. Depace, S. Verma, A. Iwamatsu, and T. J. Mitchison, The Human Arp2/3 Complex Is Composed of Evolutionarily Conserved Subunits and Is Localized to Cellular Regions of Dynamic Actin Filament Assembly, The Journal of Cell Biology, vol.101, issue.2, pp.375-384, 1997.
DOI : 10.1038/378578a0

A. Kühbacher, M. Emmenlauer, P. Rämö, N. Kafai, C. Dehio et al., Genome-wide siRNA screen identifies complementary signaling pathways involved in Listeria infection and reveals different actin nucleation mechanisms during Listeria cell invasion and actin comet tail formation, pp.598-613, 2015.

S. Mostowy and P. Cossart, Septins: the fourth component of the cytoskeleton, Nature Reviews Molecular Cell Biology, vol.22, pp.183-194, 2012.
DOI : 10.1016/j.cub.2011.11.034

S. Mostowy, S. Janel, C. Forestier, C. Roduit, S. Kasas et al., A Role for Septins in the Interaction between the Listeria monocytogenes Invasion Protein InlB and the Met Receptor, Biophysical Journal, vol.100, issue.8, pp.1949-1959, 2011.
DOI : 10.1016/j.bpj.2011.02.040

J. Pizarro-cerdá, R. Jonquières, E. Gouin, J. Vandekerckhove, J. Garin et al., Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes, Cellular Microbiology, vol.59, issue.2, pp.101-115, 2002.
DOI : 10.1038/35052055

. Pizarro-cerdá, Septin 11 restricts InlB-mediated invasion by Listeria, J. Biol. Chem, vol.284, pp.11613-11621, 2009.

S. Mostowy, T. N. Tham, A. Danckaert, S. Guadagnini, S. Boisson-dupuis et al., Septins Regulate Bacterial Entry into Host Cells, PLoS ONE, vol.15, issue.1, 2009.
DOI : 10.1371/journal.pone.0004196.s003

URL : http://doi.org/10.1371/journal.pone.0004196

J. Pizarro-cerdá, B. Payrastre, Y. Wang, E. Veiga, H. L. Yin et al., Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells, Cellular Microbiology, vol.31, issue.10, pp.2381-2390, 2007.
DOI : 10.1074/jbc.M206860200

J. Pizarro-cerdá, A. Kühbacher, and P. Cossart, Phosphoinositides and host???pathogen interactions, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1851, issue.6, 2014.
DOI : 10.1016/j.bbalip.2014.09.011

P. Rämö, A. Drewek, C. Arrieumerlou, N. Beerenwinkel, H. Ben-tekaya et al., Simultaneous analysis of large-scale RNAi screens for pathogen entry, BMC Genom, vol.15, issue.1162, 2014.

T. N. Tham, E. Gouin, E. Rubinstein, C. Boucheix, P. Cossart et al., Tetraspanin CD81 Is Required for Listeria monocytogenes Invasion, Infection and Immunity, vol.78, issue.1, pp.204-20900661, 2010.
DOI : 10.1128/IAI.00661-09

URL : http://iai.asm.org/content/78/1/204.full.pdf

O. Silvie, E. Rubinstein, J. Franetich, M. Prenant, E. Belnoue et al., Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity, Nature Medicine, vol.6, issue.1, pp.93-96, 2003.
DOI : 10.1016/0309-1651(82)90187-4

S. B. Kapadia, H. Barth, T. Baumert, J. A. Mckeating, and F. V. Chisari, Initiation of Hepatitis C Virus Infection Is Dependent on Cholesterol and Cooperativity between CD81 and Scavenger Receptor B Type I, Journal of Virology, vol.81, issue.1, pp.374-38301134, 2006.
DOI : 10.1128/JVI.01134-06

G. Martinez-del-hoyo, M. Ramirez-huesca, S. Levy, C. Boucheix, E. Rubinstein et al., Infection through Rac-Dependent Inhibition of Proinflammatory Mediator Release and Activation of Cytotoxic T Cells, The Journal of Immunology, vol.194, issue.12, pp.6090-6101, 2015.
DOI : 10.4049/jimmunol.1402957

A. Kühbacher, D. Dambournet, A. Echard, P. Cossart, and J. Pizarro-cerdá, Infection, Journal of Biological Chemistry, vol.41, issue.16, pp.13128-13136, 2012.
DOI : 10.1038/emboj.2011.60

R. Singh, A. Jamieson, and P. , GILT is a critical host factor for Listeria monocytogenes infection, Nature, vol.8, issue.7217, pp.1244-1247, 2008.
DOI : 10.1093/infdis/142.4.594

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775488

K. E. Beauregard, K. D. Lee, R. J. Collier, and J. A. Swanson, pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes, J. Exp. Med, pp.186-1159, 1997.

R. Henry, L. Shaughnessy, M. J. Loessner, C. Alberti-segui, D. E. Higgins et al., Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes, Cellular Microbiology, vol.257, issue.1, 2006.
DOI : 10.1021/cr010142r

L. M. Shaughnessy, A. D. Hoppe, K. A. Christensen, and J. A. Swanson, Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles, Cellular Microbiology, vol.366, issue.5, pp.781-792, 2006.
DOI : 10.1083/jcb.130.4.821

G. A. Smith, S. Marquis, N. C. Jones, D. A. Johnston, H. Portnoy et al., The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread, Infect. Immun, pp.63-4231, 1995.

S. Dramsi and P. Cossart, Listeriolysin O-Mediated Calcium Influx Potentiates Entry of Listeria monocytogenes into the Human Hep-2 Epithelial Cell Line, Infection and Immunity, vol.71, issue.6, pp.71-3614, 2003.
DOI : 10.1128/IAI.71.6.3614-3618.2003

S. Vadia, E. Arnett, A. Haghighat, E. M. Wilson-kubalek, R. K. Tweten et al., The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes, PLoS Pathogens, vol.13, issue.11, 2011.
DOI : 10.1371/journal.ppat.1002356.s017

C. Forestier, C. Machu, C. Loussert, P. Pescher, and G. F. Späth, Imaging Host Cell-Leishmania Interaction Dynamics Implicates Parasite Motility, Lysosome Recruitment, and Host Cell Wounding in the Infection Process, Cell Host & Microbe, vol.9, issue.4, pp.319-330, 2011.
DOI : 10.1016/j.chom.2011.03.011

URL : https://hal.archives-ouvertes.fr/pasteur-01433561

M. C. Fernandes, M. Cortez, A. R. Flannery, C. Tam, R. A. Mortara et al., subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion, The Journal of Experimental Medicine, vol.112, issue.5, pp.909-921, 2011.
DOI : 10.1083/jcb.140.1.39

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092353/pdf

D. Ribet, M. Hamon, E. Gouin, M. Nahori, F. Impens et al., Listeria monocytogenes impairs SUMOylation for efficient infection, Nature, vol.22, issue.7292, pp.1192-1195, 2010.
DOI : 10.1038/nature08963

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627292

M. A. Hamon, E. Batsché, B. Régnault, T. N. Tham, S. Seveau et al., Histone modifications induced by a family of bacterial toxins, Proceedings of the National Academy of Sciences, vol.282, issue.20, pp.13467-13472, 2007.
DOI : 10.1074/jbc.M610926200

F. Stavru, F. Bouillaud, A. Sartori, D. Ricquier, and P. Cossart, Listeria monocytogenes transiently alters mitochondrial dynamics during infection, Proc. Natl. Acad. Sci, pp.3612-3617, 2011.
DOI : 10.1016/j.febslet.2006.03.057

URL : http://www.pnas.org/content/108/9/3612.full.pdf

C. Kocks, E. Gouin, M. Tabouret, P. Berche, H. Ohayon et al., L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein, Cell, vol.68, issue.3, pp.521-531, 1992.
DOI : 10.1016/0092-8674(92)90188-I

M. D. Welch, J. Rosenblatt, J. Skoble, D. A. Portnoy, and T. J. Mitchison, Interaction of Human Arp2/3 Complex and the Listeria monocytogenes ActA Protein in Actin Filament Nucleation, Science, vol.281, issue.5373, pp.105-108, 1998.
DOI : 10.1126/science.281.5373.105

R. Boujemaa-paterski, E. Gouin, G. Hansen, S. Samarin, C. Le-clainche et al., Listeria Protein ActA Mimics WASP Family Proteins:?? It Activates Filament Barbed End Branching by Arp2/3 Complex, Biochemistry, vol.40, issue.38, pp.11390-11404, 2001.
DOI : 10.1021/bi010486b

J. V. Abella, C. Galloni, J. Pernier, D. J. Barry, S. Kjaer et al., Isoform diversity in the Arp2/3 complex determines actin filament dynamics, Nature Cell Biology, vol.55, issue.1, pp.76-86, 2015.
DOI : 10.1016/j.jsb.2005.06.002

URL : https://hal.archives-ouvertes.fr/hal-01461985

M. Van-troys, A. Lambrechts, V. David, H. Demol, M. Puype et al., The actin propulsive machinery: The proteome of Listeria monocytogenes tails, Biochemical and Biophysical Research Communications, vol.375, issue.2, pp.194-199, 2008.
DOI : 10.1016/j.bbrc.2008.07.152

K. A. Rich, C. Burkett, and P. Webster, Cytoplasmic bacteria can be targets for autophagy, Cellular Microbiology, vol.38, issue.7, pp.455-468, 2003.
DOI : 10.1177/38.4.2319125

C. L. Birmingham, V. Canadien, E. Gouin, E. B. Troy, T. Yoshimori et al., Evades Killing by Autophagy During Colonization of Host Cells, Listeria monocytogenes evades killing by autophagy during colonization of host cells, pp.442-451, 2007.
DOI : 10.4161/auto.4450

Y. Yoshikawa, M. Ogawa, T. Hain, M. Yoshida, M. Fukumatsu et al., Listeria monocytogenes ActA-mediated escape from autophagic recognition, Nature Cell Biology, vol.113, issue.10, pp.1233-1240, 2009.
DOI : 10.1038/ni.1634

B. F. Py, M. M. Lipinski, and J. Yuan, Intracellular Growth in the Early Phase of Primary Infection, Autophagy, vol.3, issue.2, pp.117-125, 2007.
DOI : 10.4161/auto.3618

L. Dortet, S. Mostowy, A. S. Louaka, E. Gouin, M. Nahori et al., Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy, PLoS Pathogens, vol.77, issue.8, 2011.
DOI : 10.1371/journal.ppat.1002168.s009

J. R. Robbins, A. I. Barth, H. Marquis, E. L. De-hostos, W. J. Nelson et al., Exploits Normal Host Cell Processes to Spread from Cell to Cell???, The Journal of Cell Biology, vol.266, issue.6, pp.1333-1350, 1999.
DOI : 10.1002/cm.970300307

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785326/pdf

D. M. Monack and J. A. Theriot, Actin-based motility is sufficient for bacterial membrane protrusion formation and host cell uptake, Cellular Microbiology, vol.23, issue.9, pp.633-647, 2001.
DOI : 10.1128/jb.176.8.2362-2373.1994

J. Wang, J. E. King, M. Goldrick, M. Lowe, F. B. Gertler et al., Lamellipodin Is Important for Cell-to-Cell Spread and Actin-Based Motility in Listeria monocytogenes, Infection and Immunity, vol.83, issue.9, pp.3740-374800193, 2015.
DOI : 10.1128/IAI.00193-15

S. Pust, H. Morrison, J. Wehland, A. S. Sechi, and P. Herrlich, Listeria monocytogenes exploits ERM protein functions to efficiently spread from cell to cell, The EMBO Journal, vol.145, issue.6, pp.1287-1300, 2005.
DOI : 10.1091/mbc.6.3.247

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC556399

R. Chong, R. Squires, R. Swiss, and H. Agaisse, RNAi Screen Reveals Host Cell Kinases Specifically Involved in Listeria monocytogenes Spread from Cell to Cell, PLoS ONE, vol.5, issue.8, 2011.
DOI : 10.1371/journal.pone.0023399.t001

T. Rajabian, B. Gavicherla, M. Heisig, S. Müller-altrock, W. Goebel et al., The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria, Nature Cell Biology, vol.279, issue.10, pp.1212-1218, 2009.
DOI : 10.1046/j.1365-2958.2003.03639.x

M. A. Czuczman, R. Fattouh, J. M. Van-rijn, V. Canadien, S. Osborne et al., Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread, Nature, vol.3, issue.7499, pp.1-17, 2014.
DOI : 10.1046/j.1462-5822.2001.00087.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151619

C. Alberti-segui, K. R. Goeden, and D. E. Higgins, Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread, Cellular Microbiology, vol.60, issue.1, pp.179-195, 2007.
DOI : 10.1016/0005-2736(75)90044-9

C. L. Carvalho, I. L. De-carvalho, L. Zé-zé, M. S. Núncio, and E. L. Duarte, Comparative immunology, microbiology and infectious diseases, comparative immunology, Microbiol. Infect. Dis, vol.37, pp.85-96, 2014.

P. Keim, A. Johansson, and D. M. Wagner, Molecular Epidemiology, Evolution, and Ecology of Francisella, Annals of the New York Academy of Sciences, vol.1105, issue.1, pp.1105-1135, 2007.
DOI : 10.1196/annals.1409.011

D. T. Dennis, T. V. Inglesby, D. A. Henderson, J. G. Bartlett, M. S. Ascher et al., Tularemia as a Biological Weapon, JAMA, vol.285, issue.21, pp.2763-2773, 2001.
DOI : 10.1001/jama.285.21.2763

H. M. Rowe and J. F. Huntley, From the Outside-In: The Francisella tularensis Envelope and Virulence, Frontiers in Cellular and Infection Microbiology, vol.23, issue.129, 2015.
DOI : 10.1016/j.str.2015.03.025

M. Santic, M. Molmeret, K. E. Klose, and Y. A. Kwaik, Francisella tularensis travels a novel, twisted road within macrophages, Trends in Microbiology, vol.14, issue.1, pp.37-44, 2006.
DOI : 10.1016/j.tim.2005.11.008

G. B. Moreau and B. J. Mann, into host cells, Virulence, vol.176, issue.8, pp.826-832, 2014.
DOI : 10.4049/jimmunol.0903790

L. S. Schlesinger, C. G. Bellinger-kawahara, N. R. Payne, and M. A. Horwitz, Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3, J. Immunol, pp.144-2771, 1990.

D. L. Clemens, B. Y. Lee, and M. A. Horwitz, Francisella tularensis Enters Macrophages via a Novel Process Involving Pseudopod Loops, Infection and Immunity, vol.73, issue.9, pp.5892-5902, 2005.
DOI : 10.1128/IAI.73.9.5892-5902.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1231130

B. Tamilselvam and S. Daefler, Francisella Targets Cholesterol-Rich Host Cell Membrane Domains for Entry into Macrophages, The Journal of Immunology, vol.180, issue.12, pp.8262-8271, 2008.
DOI : 10.4049/jimmunol.180.12.8262

URL : http://www.jimmunol.org/content/jimmunol/180/12/8262.full.pdf

J. Celli and T. C. Zahrt, Mechanisms of Francisella tularensis intracellular pathogenesis, Cold Spring Harb

A. Chong, T. D. Wehrly, V. Nair, E. R. Fischer, J. R. Barker et al., The Early Phagosomal Stage of Francisella tularensis Determines Optimal Phagosomal Escape and Francisella Pathogenicity Island Protein Expression, Infection and Immunity, vol.76, issue.12, pp.5488-549900682, 2008.
DOI : 10.1128/IAI.00682-08

M. Santic, R. Asare, I. Skrobonja, S. Jones, and Y. A. Kwaik, Acquisition of the Vacuolar ATPase Proton Pump and Phagosome Acidification Are Essential for Escape of Francisella tularensis into the Macrophage Cytosol, Infection and Immunity, vol.76, issue.6, pp.2671-267700185, 2008.
DOI : 10.1128/IAI.00185-08

D. L. Clemens, B. Y. Lee, and M. A. Horwitz, Virulent and Avirulent Strains of Francisella tularensis Prevent Acidification and Maturation of Their Phagosomes and Escape into the Cytoplasm in Human Macrophages, Infection and Immunity, vol.72, issue.6, pp.3204-3217, 2004.
DOI : 10.1128/IAI.72.6.3204-3217.2004

R. L. Mccaffrey, J. T. Schwartz, S. R. Lindemann, J. G. Moreland, B. W. Buchan et al., Multiple mechanisms of NADPH oxidase inhibition by type A and type B Francisella tularensis, Journal of Leukocyte Biology, vol.88, issue.4, pp.791-805, 2010.
DOI : 10.1189/jlb.1209811

H. Geier and J. Celli, Phagocytic Receptors Dictate Phagosomal Escape and Intracellular Proliferation of Francisella tularensis, Infection and Immunity, vol.79, issue.6, pp.2204-2214, 2011.
DOI : 10.1128/IAI.01382-10

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125850

J. Dieppedale, G. Gesbert, E. Ramond, C. Chhuon, I. Dubail et al., Pathogenesis, Molecular & Cellular Proteomics, vol.787, issue.8, pp.2278-2292, 2013.
DOI : 10.1016/j.chom.2011.06.004

M. Santic, M. Molmeret, K. E. Klose, S. Jones, and Y. A. Kwaik, The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm, Cellular Microbiology, vol.70, issue.7, pp.969-979, 2005.
DOI : 10.1001/jama.1925.02660430001001

A. Brotcke and D. M. Monack, Identification of fevR, a Novel Regulator of Virulence Gene Expression in Francisella novicida, Infection and Immunity, vol.76, issue.8, pp.3473-3480, 2008.
DOI : 10.1128/IAI.00430-08

D. L. Clemens, P. Ge, B. Lee, M. A. Horwitz, and Z. H. Zhou, Atomic Structure of T6SS Reveals Interlaced Array Essential to Function, Cell, vol.160, issue.5, pp.940-951, 2015.
DOI : 10.1016/j.cell.2015.02.005

M. Barel, E. Ramond, G. Gesbert, and A. Charbit, The complex amino acid diet of Francisella in infected macrophages, Frontiers in Cellular and Infection Microbiology, vol.104, issue.86, pp.1-5, 2015.
DOI : 10.1073/pnas.0609675104

S. Steele, J. Brunton, B. Ziehr, S. Taft-benz, N. Moorman et al., Francisella tularensis Harvests Nutrients Derived via ATG5-Independent Autophagy to Support Intracellular Growth, PLoS Pathogens, vol.452, issue.(2), 2013.
DOI : 10.1371/journal.ppat.1003562.s007

URL : http://doi.org/10.1371/journal.ppat.1003562

C. Checroun, T. D. Wehrly, E. R. Fischer, S. F. Hayes, and J. Celli, Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication, Proceedings of the National Academy of Sciences, vol.64, issue.10, pp.14578-14583, 2006.
DOI : 10.1128/AEM.70.12.7511-7519.2004

E. Meunier, P. Wallet, R. F. Dreier, S. Costanzo, L. Anton et al., Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida, Nature Immunology, vol.16, issue.5, pp.476-484, 2015.
DOI : 10.1371/journal.ppat.1003414

S. Steele, L. Radlinski, S. Taft-benz, J. Brunton, and T. H. Kawula, Author response, eLife, vol.3, 2016.
DOI : 10.7554/eLife.10625.019

K. L. Kotloff, J. P. Winickoff, B. Ivanoff, J. D. Clemens, D. L. Swerdlow et al., Global burden of Shigella infections: implications for vaccine development and implementation of control strategies, Bull. World Health Org, pp.77-651, 1999.

A. Phalipon and P. J. Sansonetti, Shigella???s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival?, Immunology and Cell Biology, vol.3, issue.2, pp.119-129, 2007.
DOI : 10.1038/ni1102-1033

C. Buchrieser, P. Glaser, C. Rusniok, H. Nedjari, H. D-'hauteville et al., The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri, Molecular Microbiology, vol.11, issue.4, pp.38-760, 2000.
DOI : 10.1038/358167a0

C. Parsot, Shigella type III secretion effectors: how, where, when, for what purposes?, Current Opinion in Microbiology, vol.12, issue.1, pp.110-116, 2009.
DOI : 10.1016/j.mib.2008.12.002

J. Enninga, J. Mounier, P. Sansonetti, and G. Tran-van-nhieu, Secretion of type III effectors into host cells in real time, Nature Methods, vol.16, issue.12, pp.959-965, 2005.
DOI : 10.1038/nmeth804

S. Romero, G. Grompone, N. Carayol, J. Mounier, S. Guadagnini et al., ATP-Mediated Erk1/2 Activation Stimulates Bacterial Capture by Filopodia, which Precedes Shigella Invasion of Epithelial Cells, Cell Host & Microbe, vol.9, issue.6, pp.508-519, 1996.
DOI : 10.1016/j.chom.2011.05.005

URL : https://hal.archives-ouvertes.fr/pasteur-00685251

J. Mounier, G. Boncompain, L. Senerovic, T. Lagache, F. Chrétien et al., Shigella Effector IpaB-Induced Cholesterol Relocation Disrupts the Golgi Complex and Recycling Network to Inhibit Host Cell Secretion, Cell Host & Microbe, vol.12, issue.3, pp.381-389, 2012.
DOI : 10.1016/j.chom.2012.07.010

A. B. Zumsteg, C. Goosmann, V. Brinkmann, R. Morona, and A. Zychlinsky, IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis, Cell Host Microbe, vol.15, pp.435-445, 2014.

F. Lafont, G. T. Nhieu, K. Hanada, P. Sansonetti, and F. G. Goot, Initial steps of Shigella infection depend on the cholesterol/sphingolipid raft-mediated CD44-IpaB interaction, The EMBO Journal, vol.21, issue.17, pp.4449-4457, 2002.
DOI : 10.1093/emboj/cdf457

F. G. Van-der and . Goot, Rafts Can Trigger Contact-mediated Secretion of Bacterial Effectors via a Lipid-based Mechanism, Journal of Biological Chemistry, vol.115, issue.46, pp.47792-47798, 2004.
DOI : 10.1046/j.1365-2958.2003.03598.x

A. Skoudy, J. Mounier, A. Aruffo, H. Ohayon, P. Gounon et al., CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells, Cellular Microbiology, vol.154, issue.1, pp.19-33, 2000.
DOI : 10.1126/science.283.5410.2092

P. Cossart and P. J. Sansonetti, Bacterial Invasion: The Paradigms of Enteroinvasive Pathogens, Science, vol.304, issue.5668, pp.242-248, 2004.
DOI : 10.1126/science.1090124

N. Ramarao, C. Le-clainche, T. Izard, R. Bourdet-sicard, E. Ageron et al., IpaA carboxyl-terminal domain, FEBS Letters, vol.175, issue.5, pp.853-857, 2007.
DOI : 10.1083/jcb.200605091

K. A. Demali, A. L. Jue, and K. Burridge, Entry, Journal of Biological Chemistry, vol.125, issue.51, pp.39534-39541, 2006.
DOI : 10.1038/ncb1262

J. Mounier, M. R. Popoff, J. Enninga, M. C. Frame, P. J. Sansonetti et al., The IpaC Carboxyterminal Effector Domain Mediates Src-Dependent Actin Polymerization during Shigella Invasion of Epithelial Cells, PLoS Pathogens, vol.581, issue.1, 2009.
DOI : 10.1371/journal.ppat.1000271.s009

L. Bougnères, S. E. Girardin, S. A. Weed, A. V. Karginov, J. Olivo-marin et al., invasion of epithelial cells, The Journal of Cell Biology, vol.11, issue.2, pp.225-235, 2004.
DOI : 10.1073/pnas.97.16.9076

K. Ohya, Y. Handa, M. Ogawa, M. Suzuki, and C. Sasakawa, Effector Protein Involved in Bacterial Invasion of Host Cells, Journal of Biological Chemistry, vol.4, issue.25, pp.24022-24034, 2005.
DOI : 10.1016/0022-2836(80)90283-1

Y. Handa, M. Suzuki, K. Ohya, H. Iwai, N. Ishijima et al., Shigella IpgB1 promotes bacterial entry through the ELMO???Dock180 machinery, Nature Cell Biology, vol.20, issue.1, pp.121-128, 2006.
DOI : 10.1128/MCB.16.4.1770

S. Ehsani, J. C. Santos, C. D. Rodrigues, R. Henriques, L. Audry et al., Hierarchies of Host Factor Dynamics at the Entry Site of Shigella flexneri during Host Cell Invasion, Infection and Immunity, vol.80, issue.7, pp.2548-255706391, 2012.
DOI : 10.1128/IAI.06391-11

N. M. Alto, F. Shao, C. S. Lazar, R. L. Brost, G. Chua et al., Identification of a Bacterial Type III Effector Family with G Protein Mimicry Functions, Cell, vol.124, issue.1, pp.133-145, 2006.
DOI : 10.1016/j.cell.2005.10.031

R. C. Orchard and N. M. Alto, Mimicking GEFs: a common theme for bacterial pathogens, Cellular Microbiology, vol.323, issue.1, pp.10-18, 2011.
DOI : 10.1126/science.1166382

M. Ogawa, Y. Handa, H. Ashida, M. Suzuki, and C. Sasakawa, The versatility of Shigella effectors, Nature Reviews Microbiology, vol.68, issue.1, pp.11-16, 2008.
DOI : 10.4161/auto.4450

S. Yoshida, E. Katayama, A. Kuwae, H. Mimuro, T. Suzuki et al., Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization, The EMBO Journal, vol.21, issue.12, pp.2923-2935, 2002.
DOI : 10.1093/emboj/cdf319

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC126072

R. D. Hayward, R. J. Cain, E. J. Mcghie, N. Phillips, M. J. Garner et al., Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells, Molecular Microbiology, vol.115, issue.3, pp.590-603, 2005.
DOI : 10.1021/bi982497j

N. High, J. Mounier, M. C. Prevost, and P. J. Sansonetti, IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole, EMBO J, vol.11, pp.1991-1999, 1992.

A. Blocker, P. Gounon, E. Larquet, K. Niebuhr, V. Cabiaux et al., Inserts Ipab and Ipac into Host Membranes, The Journal of Cell Biology, vol.11, issue.3, pp.683-693, 1999.
DOI : 10.1111/j.1365-2958.1994.tb00341.x

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151192/pdf

J. Du, A. Z. Reeves, J. A. Klein, D. J. Twedt, L. A. Knodler et al., The type III secretion system apparatus determines the intracellular niche of bacterial pathogens, Proceedings of the National Academy of Sciences, vol.88, issue.5, pp.1-6, 2016.
DOI : 10.1111/j.1365-2958.2010.07248.x

S. Paetzold, S. Lourido, B. Raupach, and A. Zychlinsky, Shigella flexneri Phagosomal Escape Is Independent of Invasion, Infection and Immunity, vol.75, issue.10, pp.4826-4830, 2007.
DOI : 10.1128/IAI.00454-07

I. Paz, M. Sachse, N. Dupont, J. Mounier, C. Cederfur et al., Galectin-3, a marker for vacuole lysis by invasive pathogens, Cellular Microbiology, vol.358, issue.2, pp.530-544, 2010.
DOI : 10.4049/jimmunol.166.12.7309

URL : https://hal.archives-ouvertes.fr/hal-00486248

K. Ray, A. Bobard, A. Danckaert, I. Paz-haftel, C. Clair et al., Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time, Cellular Microbiology, vol.279, issue.11, pp.545-556, 2010.
DOI : 10.1016/j.tim.2007.10.002

N. Mellouk, A. Weiner, N. Aulner, C. Schmitt, M. Elbaum et al., Shigella Subverts the Host Recycling Compartment to Rupture Its Vacuole, Cell Host & Microbe, vol.16, issue.4, pp.517-530, 2014.
DOI : 10.1016/j.chom.2014.09.005

URL : https://hal.archives-ouvertes.fr/pasteur-01113365

A. Weiner, N. Mellouk, N. Lopez-montero, Y. Chang, C. Souque et al., Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells, PLOS Pathogens, vol.4, issue.5, 2016.
DOI : 10.1371/journal.ppat.1005602.s014

URL : http://doi.org/10.1371/journal.ppat.1005602

N. Dupont, S. Lacas-gervais, J. Bertout, I. Paz, B. Freche et al., Shigella Phagocytic Vacuolar Membrane Remnants Participate in the Cellular Response to Pathogen Invasion and Are Regulated by Autophagy, Cell Host & Microbe, vol.6, issue.2, pp.137-149, 2009.
DOI : 10.1016/j.chom.2009.07.005

J. M. Stevens, E. E. Galyov, and M. P. Stevens, Actin-dependent movement of bacterial pathogens, Nature Reviews Microbiology, vol.63, issue.2, pp.91-101, 2006.
DOI : 10.1038/nrmicro1320

K. Ray, B. Marteyn, P. J. Sansonetti, and C. M. Tang, Life on the inside: the intracellular lifestyle of cytosolic bacteria, Nature Reviews Microbiology, vol.46, issue.5, pp.333-340, 2009.
DOI : 10.4161/auto.6246

S. Mostowy, M. Bonazzi, M. A. Hamon, T. N. Tham, A. Mallet et al., Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures, Cell Host & Microbe, vol.8, issue.5, pp.433-444, 2010.
DOI : 10.1016/j.chom.2010.10.009

URL : https://hal.archives-ouvertes.fr/pasteur-01376115

A. Mcnally, N. R. Thomson, S. Reuter, and B. W. Wren, 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution, Nature Reviews Microbiology, vol.49, issue.3, pp.177-190, 2016.
DOI : 10.1128/JCM.00064-11

A. Grützkau, C. Hanski, H. Hahn, and E. O. Riecken, Involvement of M cells in the bacterial invasion of Peyer's patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria., Gut, vol.31, issue.9, pp.31-1011, 1990.
DOI : 10.1136/gut.31.9.1011

J. C. Pepe and V. L. Miller, Yersinia enterocolitica invasin: a primary role in the initiation of infection., Proceedings of the National Academy of Sciences, vol.90, issue.14, pp.90-6473, 1993.
DOI : 10.1073/pnas.90.14.6473

M. A. Clark, B. H. Hirst, and M. A. Jepson, M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells, Infect. Immun, pp.66-1237, 1998.

R. R. Isberg, D. L. Voorhis, and S. Falkow, Identification of invasin: A protein that allows enteric bacteria to penetrate cultured mammalian cells, Cell, vol.50, issue.5, pp.769-778, 1987.
DOI : 10.1016/0092-8674(87)90335-7

M. A. Alrutz and R. R. Isberg, Involvement of focal adhesion kinase in invasin-mediated uptake, Proceedings of the National Academy of Sciences, vol.140, issue.1, pp.95-13658, 1998.
DOI : 10.1083/jcb.140.1.211

P. J. Bruce-staskal, C. L. Weidow, J. J. Gibson, and A. H. Bouton, Cas Fak and Pyk2 function in diverse signaling cascades to promote Yersinia uptake, J. Cell Sci, vol.115, pp.2689-2700, 2002.

M. A. Alrutz, A. Srivastava, K. W. Wong, C. D. Souza-schorey, M. Tang et al., Efficient uptake of Yersinia pseudotuberculosis via integrin receptors involves a Rac1-Arp 2/3 pathway that bypasses N-WASP function, Molecular Microbiology, vol.9, issue.3, pp.42-689, 2001.
DOI : 10.1128/jb.169.12.5708-5714.1987

K. W. Wong and R. R. Isberg, Integrin???mediated Bacterial Uptake, The Journal of Experimental Medicine, vol.115, issue.4, pp.603-614, 2003.
DOI : 10.1074/jbc.M104917200

H. Sarantis, D. M. Balkin, P. De-camilli, R. R. Isberg, J. H. Brumell et al., Yersinia Entry into Host Cells Requires Rab5-Dependent Dephosphorylation of PI(4,5)P2 and Membrane Scission, Cell Host & Microbe, vol.11, issue.2, pp.117-128, 2012.
DOI : 10.1016/j.chom.2012.01.010

A. Deuretzbacher, N. Czymmeck, R. Reimer, K. Trülzsch, K. Gaus et al., ??1 Integrin-Dependent Engulfment of Yersinia enterocolitica by Macrophages Is Coupled to the Activation of Autophagy and Suppressed by Type III Protein Secretion, The Journal of Immunology, vol.183, issue.9, pp.5847-5860, 2009.
DOI : 10.4049/jimmunol.0804242

C. Pujol, K. A. Klein, G. A. Romanov, L. E. Palmer, C. Cirota et al., Yersinia pestis Can Reside in Autophagosomes and Avoid Xenophagy in Murine Macrophages by Preventing Vacuole Acidification, Infection and Immunity, vol.77, issue.6, pp.2251-226100068, 2009.
DOI : 10.1128/IAI.00068-09

URL : http://iai.asm.org/content/77/6/2251.full.pdf

M. G. Connor, A. R. Pulsifer, C. T. Price, Y. Abu-kwaik, and M. B. Lawrenz, Yersinia pestis Requires Host Rab1b for Survival in Macrophages, PLOS Pathogens, vol.101, issue.38, 2015.
DOI : 10.1371/journal.ppat.1005241.s004

URL : http://doi.org/10.1371/journal.ppat.1005241

K. Moreau, S. Lacas-gervais, N. Fujita, F. Sebbane, T. Yoshimori et al., Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages, Cellular Microbiology, vol.23, issue.2, pp.1108-1123, 2010.
DOI : 10.4161/auto.2829

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2010.01456.x/pdf

L. Ligeon, K. Moreau, N. Barois, A. Bongiovanni, D. Lacorre et al., to LC3-associated pathways involving single- or double-membrane vacuoles, Autophagy, vol.58, issue.9, pp.1588-1602, 2014.
DOI : 10.1242/jcs.00467

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206537

J. H. Curfs, J. F. Meis, J. A. Fransen, H. A. Van-der-lee, and J. A. , Interactions of Yersinia enterocolitica with polarized human intestinal Caco-2 cells, Medical Microbiology and Immunology, vol.184, issue.3, pp.123-127, 1995.
DOI : 10.1007/BF00224348

G. R. Cornelis, The Yersinia Ysc???Yop 'Type III' weaponry, Nature Reviews Molecular Cell Biology, vol.8, issue.10, pp.742-754, 2002.
DOI : 10.1038/nsb1101-974

C. Persson, N. Carballeira, H. Wolf-watz, and M. Fallman, and FAK, and the associated accumulation of these proteins in peripheral focal adhesions, The EMBO Journal, vol.267, issue.9, pp.2307-2318, 1997.
DOI : 10.1083/jcb.116.1.197

U. , V. Pawel-rammingen, M. V. Telepnev, G. Schmidt, K. Aktories et al., GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure, Mol. Microbiol, pp.36-737, 2000.

G. I. Viboud, E. Mejia, and J. B. Bliska, Comparison of YopE and YopT activities in counteracting host signalling responses to Yersinia pseudotuberculosis infection, Cellular Microbiology, vol.174, issue.9, pp.1504-1515, 2006.
DOI : 10.1074/jbc.274.41.29289

E. Groves, K. Rittinger, M. Amstutz, S. Berry, D. W. Holden et al., Effector YopO Blocks Fc?? Receptor-mediated Phagocytosis, Journal of Biological Chemistry, vol.173, issue.6, pp.4087-4098, 2010.
DOI : 10.1083/jcb.119.3.617

Y. Ke, Y. Tan, N. Wei, F. Yang, H. Yang et al., protein kinase A phosphorylates vasodilator-stimulated phosphoprotein to modify the host cytoskeleton, Cellular Microbiology, vol.38, issue.4, pp.473-485, 2014.
DOI : 10.1093/nar/gkq536

F. Shao, P. O. Vacratsis, Z. Bao, K. E. Bowers, C. A. Fierke et al., Biochemical characterization of the Yersinia YopT protease: Cleavage site and recognition elements in Rho GTPases, Proc. Natl. Acad. Sci, pp.904-909, 2003.
DOI : 10.1074/jbc.M101763200

D. S. Chorev, O. Moscovitz, B. Geiger, and M. Sharon, Regulation of focal adhesion formation by a vinculin-Arp2/3 hybrid complex, Nature Communications, vol.40, pp.1-11, 2014.
DOI : 10.1021/ac035406j