P. Cossart, Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes, Proceedings of the National Academy of Sciences, vol.22, issue.3, pp.19484-19491, 2011.
DOI : 10.1016/j.smim.2010.02.002

J. Quereda, G. Portillo, F. Pucciarelli, and M. , Listeria monocytogenes remodels the cell surface in the blood-stage, Environ Microbiol Rep, 2016.

P. Cotter, L. Draper, E. Lawton, K. Daly, D. Groeger et al., Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes, PLoS Pathogens, vol.278, issue.9, 2008.
DOI : 10.1371/journal.ppat.1000144.s003

J. Quereda, O. Dussurget, M. Nahori, A. Ghozlane, S. Volant et al., strains alters the host intestinal microbiota to favor infection, Proceedings of the National Academy of Sciences, vol.57, issue.1, pp.5706-5711, 2016.
DOI : 10.1186/s13059-014-0550-8

URL : https://hal.archives-ouvertes.fr/hal-01533881

J. Quereda, P. Cossart, and J. Pizarro-cerdá, Role of Listeria monocytogenes exotoxins in virulence. Microb Toxins https, 2016.

E. Molloy, P. Cotter, C. Hill, D. Mitchell, and R. Ross, Streptolysin S-like virulence factors: the continuing sagA, Nature Reviews Microbiology, vol.6, issue.9, pp.670-681, 2011.
DOI : 10.1016/S1074-5521(99)80126-4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928602

S. Lee, D. Mitchell, A. Markley, M. Hensler, D. Gonzalez et al., Discovery of a widely distributed toxin biosynthetic gene cluster, Proceedings of the National Academy of Sciences, vol.6, issue.5, pp.5879-5884, 2008.
DOI : 10.1016/S1074-5521(99)80076-3

J. Alouf, Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin), Pharmacology & Therapeutics, vol.11, issue.3, pp.661-717, 1980.
DOI : 10.1016/0163-7258(80)90045-5

D. Higashi, N. Biais, D. Donahue, J. Mayfield, C. Tessier et al., Activation of band 3 mediates group A Streptococcus streptolysin S-based beta-haemolysis, Nature Microbiology, vol.5, issue.2, p.15004, 2016.
DOI : 10.1016/S0378-1119(98)00396-5

V. Datta, S. Myskowski, L. Kwinn, D. Chiem, N. Varki et al., Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection, Molecular Microbiology, vol.17, issue.Suppl. 2, pp.681-695, 2005.
DOI : 10.1093/nar/17.9.3469

O. Goldmann, I. Sastalla, M. Wos-oxley, M. Rohde, and E. Medina, induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway, Cellular Microbiology, vol.358, issue.4, pp.138-155, 2009.
DOI : 10.1093/clinids/5.Supplement_4.S723

D. Mitchell, S. Lee, M. Pence, A. Markley, J. Limm et al., Structural and Functional Dissection of the Heterocyclic Peptide Cytotoxin Streptolysin S, Journal of Biological Chemistry, vol.93, issue.19, pp.13004-13012, 2009.
DOI : 10.1021/bi0354942

E. Molloy, S. Casjens, C. Cox, T. Maxson, N. Ethridge et al., Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family, BMC Microbiology, vol.47, issue.5, p.141, 2015.
DOI : 10.1046/j.1365-2958.2003.03386.x

R. Flaherty, J. Puricelli, D. Higashi, C. Park, and S. Lee, Streptolysin S promotes programmed cell death and enhances inflammatory signaling in epithelial keratinocytes during group A Streptococcus Quereda, 2015.
DOI : 10.1128/iai.00611-15

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4567650

F. Stavru, C. Archambaud, and P. Cossart, Cell biology and immunology of Listeria monocytogenes infections: novel insights, Immunological Reviews, vol.69, issue.1, pp.160-184, 2011.
DOI : 10.1128/IAI.69.3.1795-1807.2001

C. Guinane, C. Piper, L. Draper, O. Connor, P. Hill et al., Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius, Applied and Environmental Microbiology, vol.81, issue.22, pp.7851-7859, 2015.
DOI : 10.1128/AEM.02339-15

S. Betschel, S. Borgia, N. Barg, D. Low, D. Azavedo et al., Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S, Infect Immun, vol.66, pp.1671-1679, 1998.

M. Fontaine, J. Lee, and M. Kehoe, Combined Contributions of Streptolysin O and Streptolysin S to Virulence of Serotype M5 Streptococcus pyogenes Strain Manfredo, Infection and Immunity, vol.71, issue.7, pp.3857-3865, 2003.
DOI : 10.1128/IAI.71.7.3857-3865.2003

N. Engleberg, A. Heath, K. Vardaman, and V. Dirita, Contribution of CsrR-Regulated Virulence Factors to the Progress and Outcome of Murine Skin Infections by Streptococcus pyogenes, Infection and Immunity, vol.72, issue.2, pp.623-628, 2004.
DOI : 10.1128/IAI.72.2.623-628.2004

M. Maury, Y. Tsai, C. Charlier, M. Touchon, V. Chenal-francisque et al., Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity, Nature Genetics, vol.8, issue.3, pp.308-313, 2016.
DOI : 10.1186/1471-2180-8-96

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768348

A. Moura, A. Criscuolo, H. Pouseele, M. Maury, A. Leclercq et al., Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nature Microbiology, vol.2, p.16185, 2016.
DOI : 10.1093/nar/gku1196

URL : https://hal.archives-ouvertes.fr/pasteur-01415883

V. Briones, M. Blanco, A. Marco, N. Prats, J. Fernández-garayzábal et al., Biliary excretion as possible origin of Listeria monocytogenes in fecal carriers, Am J Vet Res, vol.53, pp.191-193, 1992.

J. Hardy, J. Margolis, and C. Contag, Induced Biliary Excretion of Listeria monocytogenes, Infection and Immunity, vol.74, issue.3, pp.1819-1827, 2006.
DOI : 10.1128/IAI.74.3.1819-1827.2006

URL : http://iai.asm.org/content/74/3/1819.full.pdf

M. Linnan, L. Mascola, X. Lou, V. Goulet, S. May et al., Epidemic Listeriosis Associated with Mexican-Style Cheese, New England Journal of Medicine, vol.319, issue.13, pp.823-828, 1988.
DOI : 10.1056/NEJM198809293191303

H. Beug, A. Von-kirchbach, G. Döderlein, J. Conscience, and T. Graf, Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation, Cell, vol.18, issue.2, pp.375-3900092, 1979.
DOI : 10.1016/0092-8674(79)90057-6

M. Arnaud, A. Chastanet, and M. Débarbouillé, New Vector for Efficient Allelic Replacement in Naturally Nontransformable, Low-GC-Content, Gram-Positive Bacteria, Applied and Environmental Microbiology, vol.70, issue.11, pp.6887-6891, 2004.
DOI : 10.1128/AEM.70.11.6887-6891.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC525206

K. Nightingale, S. Milillo, R. Ivy, A. Ho, H. Oliver et al., Listeria monocytogenes F2365 Carries Several Authentic Mutations Potentially Leading to Truncated Gene Products, Including InlB, and Demonstrates Atypical Phenotypic Characteristics, Journal of Food Protection, vol.70, issue.2, pp.482-488, 2007.
DOI : 10.4315/0362-028X-70.2.482

H. Hohenberg, K. Mannweiler, and M. Müller, High-pressure freezing of cell suspensions in cellulose capillary tubes, Journal of Microscopy, vol.25, issue.Supplement, pp.34-43, 1994.
DOI : 10.1002/jemt.1070250402

D. Balestrino, M. Hamon, L. Dortet, M. Nahori, J. Pizarro-cerda et al., Single-Cell Techniques Using Chromosomally Tagged Fluorescent Bacteria To Study Listeria monocytogenes Infection Processes, Applied and Environmental Microbiology, vol.76, issue.11, pp.3625-363602612, 2010.
DOI : 10.1128/AEM.02612-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876438