D. Ribet, C. , and P. , How bacterial pathogens colonize their hosts and invade deeper tissues, Microbes and Infection, vol.17, issue.3, pp.173-183, 2015.
DOI : 10.1016/j.micinf.2015.01.004

URL : https://hal.archives-ouvertes.fr/pasteur-01115526

J. Pizarro-cerdá, A. Kühbacher, C. , P. L. Dussurget, and O. , Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Cytosolic innate immune sensing and signaling upon infection, 2012.

M. De-souza-santos and K. Orth, Cellular Microbiology, vol.5, issue.2, pp.164-173, 2015.
DOI : 10.1128/mBio.01639-14

M. D. Welch, W. , and M. , Arp2/3-Mediated Actin-Based Motility: A Tail of Pathogen Abuse, Cell Host & Microbe, vol.14, issue.3, pp.242-255, 2013.
DOI : 10.1016/j.chom.2013.08.011

D. J. David, C. , and P. , Recent advances in understanding Listeria monocytogenes infection: the importance of subcellular and physiological context, F1000Research, vol.2, 1000.
DOI : 10.1128/mSystems.00186-16

URL : https://hal.archives-ouvertes.fr/pasteur-01574995

M. A. Hamon, D. Ribet, F. Stavru, C. , and P. , Listeriolysin O: the Swiss army knife of Listeria, Trends in Microbiology, vol.20, issue.8, pp.360-368, 2012.
DOI : 10.1016/j.tim.2012.04.006

D. Ribet, M. Hamon, E. Gouin, M. A. Nahori, F. Impens et al., Listeria monocytogenes impairs SUMOylation for efficient infection, Nature, vol.22, issue.7292, pp.1192-1195, 2010.
DOI : 10.1038/nature08963

F. Stavru, F. Bouillaud, A. Sartori, D. Ricquier, C. et al., transiently alters mitochondrial dynamics during infection, Proceedings of the National Academy of Sciences, vol.64, issue.ra47, pp.3612-3617, 2011.
DOI : 10.1016/j.febslet.2006.03.057

R. Henry, L. Shaughnessy, M. J. Loessner, C. Alberti-segui, D. E. Higgins et al., Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes, Cellular Microbiology, vol.257, issue.1, pp.107-119, 2006.
DOI : 10.1021/cr010142r

J. Mengaud, C. Braun-breton, C. , and P. , Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor?, Molecular Microbiology, vol.65, issue.2, pp.367-372, 1991.
DOI : 10.1016/0003-9861(78)90480-0

J. A. Vazquez-boland, C. Kocks, S. Dramsi, H. Ohayon, C. Geoffroy et al., Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cellto-cell spread, Infect. Immun, vol.60, pp.219-230, 1992.

A. Lebreton, G. Lakisic, V. Job, L. Fritsch, T. N. Tham et al., A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response, Science, vol.11, issue.6, pp.1319-1321, 2011.
DOI : 10.1111/j.1469-0691.2005.01146.x

URL : https://hal.archives-ouvertes.fr/cea-00819299

T. Rajabian, B. Gavicherla, M. Heisig, S. Müller-altrock, W. Goebel et al., The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria, Nature Cell Biology, vol.279, issue.10, pp.1212-1218, 2009.
DOI : 10.1046/j.1365-2958.2003.03639.x

L. A. Rigano, G. C. Dowd, Y. Wang, and K. Ireton, antagonizes the human GTPase Cdc42 to promote bacterial spread, Cellular Microbiology, vol.14, issue.7, pp.1068-1079, 2014.
DOI : 10.1128/CMR.14.3.584-640.2001

E. Gouin, M. Adib-conquy, D. Balestrino, M. Nahori, V. Villiers et al., The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the I??B kinase subunit IKK??, Proceedings of the National Academy of Sciences, vol.9, issue.10, pp.17333-17338, 2010.
DOI : 10.1016/j.micinf.2007.05.005

URL : https://hal.archives-ouvertes.fr/hal-01901815

C. Bécavin, M. Koutero, N. Tchitchek, F. Cerutti, P. Lechat et al., ABSTRACT, mSystems, vol.2, issue.2, pp.186-202, 2017.
DOI : 10.1128/mSystems.00186-16

M. M. Maury, Y. H. Tsai, C. Charlier, M. Touchon, V. Chenal-francisque et al., Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity, Nature Genetics, vol.8, issue.3, pp.308-313, 2016.
DOI : 10.1186/1471-2180-8-96

URL : https://hal.archives-ouvertes.fr/pasteur-02170775

C. Bécavin, C. Bouchier, P. Lechat, C. Archambaud, S. Creno et al., Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity Retromer and sorting nexins in endosomal sorting, CrossRef Medline 20. Gallon, M., and Cullen, pp.969-983, 2014.

D. Balestrino, M. A. Hamon, L. Dortet, M. Nahori, J. Pizarro-cerda et al., Single-Cell Techniques Using Chromosomally Tagged Fluorescent Bacteria To Study Listeria monocytogenes Infection Processes, Applied and Environmental Microbiology, vol.76, issue.11, pp.3625-3636, 2010.
DOI : 10.1128/AEM.02612-09

URL : https://hal.archives-ouvertes.fr/hal-01901824

C. Archambaud, E. Gouin, J. Pizarro-cerda, P. Cossart, and O. Dussurget, Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes, Molecular Microbiology, vol.20, issue.Part 3, pp.383-396, 2005.
DOI : 10.1128/jb.174.3.947-952.1992

O. Disson, S. Grayo, E. Huillet, G. Nikitas, F. Langa-vives et al., Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis, Nature, vol.37, issue.7216, pp.1114-1118, 2008.
DOI : 10.1038/nature07303

A. Kuhbacher, M. Emmenlauer, P. Rämo, N. Kafai, C. Dehio et al., Cell Invasion and Actin Comet Tail Formation, mBio, vol.6, issue.3, pp.598-613, 2015.
DOI : 10.1128/mBio.00598-15

URL : https://hal.archives-ouvertes.fr/pasteur-01165213

A. Kühbacher, P. Cossart, and J. Pizarro-cerdá, Internalization Assays for Listeria monocytogenes, Methods Mol. Biol, vol.1157, pp.167-178, 2014.
DOI : 10.1007/978-1-4939-0703-8_14

, CrossRef Medline

T. Wassmer, N. Attar, M. Harterink, J. R. Van-weering, C. J. Traer et al., The retromer coat complex coordinates endosomal Lmo1656 interacts with the SNX?, BAR complex J. Biol. Chem, issue.24, pp.293-9265, 2009.

I. J. Mcgough and P. J. Cullen, sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network Clathrin is not required for SNX-BAR-retromer-mediated carrier formation, Dev. Cell J. Cell Sci, vol.17, issue.126, pp.110-122, 2013.

E. Sierecki, L. M. Stevers, N. Giles, M. E. Polinkovsky, M. Moustaqil et al., by AlphaScreen and Single-molecule Spectroscopy, Molecular & Cellular Proteomics, vol.114, issue.9, pp.2233-2245, 2014.
DOI : 10.1074/jbc.M700283200

A. Roberts, K. Nightingale, G. Jeffers, E. Fortes, J. M. Kongo et al., Genetic and phenotypic characterization of Listeria monocytogenes lineage III, Microbiology, vol.152, issue.3, pp.685-693, 2006.
DOI : 10.1099/mic.0.28503-0

R. H. Orsi, H. C. Den-bakker, and M. Wiedmann, Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics, International Journal of Medical Microbiology, vol.301, issue.2, pp.79-96, 2011.
DOI : 10.1016/j.ijmm.2010.05.002

Z. Zhou, A. Mccann, E. Litrup, R. Murphy, M. Cormican et al., Neutral Genomic Microevolution of a Recently Emerged Pathogen, Salmonella enterica Serovar Agona, PLoS Genetics, vol.114, issue.4, p.1003471, 2013.
DOI : 10.1371/journal.pgen.1003471.s028

M. P. Mccusker, K. Hokamp, J. F. Buckley, P. G. Wall, M. Martins et al., Complete Genome Sequence of Salmonella enterica Serovar Agona Pulsed-Field Type SAGOXB.0066, Cause of a 2008 Pan-European Outbreak, Genome Announcements, vol.139, issue.8, pp.1219-1232, 2014.
DOI : 10.1017/S0950268810002360

M. Hoffmann, J. Payne, R. J. Roberts, M. W. Allard, E. W. Brown et al., Serovar Agona 460004 2-1, Associated with a Multistate Outbreak in the United States: TABLE??1??, Genome Announcements, vol.3, issue.4, pp.690-705, 2015.
DOI : 10.1093/nar/gkr485

E. Veiga, C. , and P. , Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells, Nature Cell Biology, vol.25, issue.9, pp.894-900, 2005.
DOI : 10.1046/j.1365-2958.1997.4621825.x

J. Pizarro-cerdá, B. Payrastre, Y. J. Wang, E. Veiga, H. L. Yin et al., Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells, Cellular Microbiology, vol.31, issue.10, pp.2381-2390, 2007.
DOI : 10.1074/jbc.M206860200

, CrossRef Medline

H. Van-ngo, M. Bhalla, D. Chen, and K. Ireton, A role for host cell exocytosis in InlB-mediated internalization of Listeria monocytogenes, Cell. Microbiol, vol.19, pp.524-528, 2017.

J. Lou, X. Li, W. Huang, J. Liang, M. Zheng et al., SNX10 promotes phagosome maturation in macrophages and protects mice against <i>Listeria monocytogenes</i> infection, Oncotarget, vol.8, issue.33, pp.53935-53947, 2017.
DOI : 10.18632/oncotarget.19644

K. M. Mirrashidi, C. A. Elwell, E. Verschueren, J. R. Johnson, A. Frando et al., Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection, Cell Host & Microbe, vol.18, issue.1, pp.109-121, 2015.
DOI : 10.1016/j.chom.2015.06.004

B. Paul, H. S. Kim, M. C. Kerr, W. M. Huston, R. D. Teasdale et al., Structural basis for the hijacking of endosomal sorting nexin proteins by Chlamydia trachomatis. eLife 6, e22311 CrossRef Medline 40 Chlamydia interfere with an interaction between the mannose-6-phos- phate receptor and sorting nexins to counteract host restriction, Elife, vol.6, p.22709, 2017.

Q. Sun, X. Yong, X. Sun, F. Yang, Z. Dai et al., Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE, Signal Transduction and Targeted Therapy, vol.11, 2017.
DOI : 10.1107/S0021889805038987

J. K. Malet, P. Cossart, R. , and D. , Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins, e12682 CrossRef Medline 43. Liss, V., and Hensel, M. (2015) Take the tube: remodelling of the endosomal system by intracellular Salmonella enterica, pp.639-647, 2016.
DOI : 10.1038/cdd.2009.184

URL : https://hal.archives-ouvertes.fr/pasteur-01574071

M. V. Bujny, P. A. Ewels, S. Humphrey, N. Attar, M. A. Jepson et al., Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection, Journal of Cell Science, vol.121, issue.12, pp.2027-2036, 2008.
DOI : 10.1242/jcs.018432

URL : http://jcs.biologists.org/content/joces/121/12/2027.full.pdf

V. Braun, A. Wong, M. Landekic, W. J. Hong, S. Grinstein et al., Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole, Cellular Microbiology, vol.99, issue.9, pp.1352-1367, 2010.
DOI : 10.1007/978-1-4615-4143-1_28

, CrossRef Medline

K. Mcgourty, T. L. Thurston, S. A. Matthews, L. Pinaud, L. J. Mota et al., Salmonella Inhibits Retrograde Trafficking of Mannose-6-Phosphate Receptors and Lysosome Function, Science, vol.40, issue.6, pp.963-967, 2012.
DOI : 10.1093/oxfordjournals.jbchem.a022396

S. Vorwerk, V. Krieger, J. Deiwick, M. Hensel, N. R. Hansmeier et al., Molecular & Cellular Proteomics, vol.99, issue.1, pp.81-92, 2008.
DOI : 10.1242/jcs.00949

C. Archambaud, M. A. Nahori, G. Soubigou, C. Bécavin, L. Laval et al., Impact of lactobacilli on orally acquired listeriosis, Proceedings of the National Academy of Sciences, vol.19, issue.2, pp.16684-16689, 2012.
DOI : 10.1093/bioinformatics/19.2.185

URL : https://hal.archives-ouvertes.fr/hal-01003361

M. Lecuit, S. Vandormael-pournin, J. Lefort, M. Huerre, P. Gounon et al., A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier Icy: an open bioimage informatics platform for extended reproducible research, CrossRef Medline 51. de Chaumont, ISG15 counteract Listeria monocytogenes infection. eLife 4, e06848 CrossRef Medline Lmo1656 interacts with the SNX?BAR complex, pp.1722-1725, 2001.