J. R. Franco, P. P. Simarro, A. Diarra, and J. G. Jannin, Epidemiology of human African trypanosomiasis, Clin Epidemiol, vol.6, p.25125985, 2014.

B. Rotureau and J. Van-den-abbeele, Through the dark continent: African trypanosome development in the tsetse fly, Front Cell Infect Microbiol, vol.3, p.24066283, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01371315

P. Buscher, G. Cecchi, V. Jamonneau, and G. Priotto, Human African trypanosomiasis, Lancet, vol.390, p.28673422, 2017.

J. Pepin and N. Khonde, Relapses following treatment of early-stage Trypanosoma brucei gambiense sleeping sickness with a combination of pentamidine and suramin, Trans R Soc Trop Med Hyg, vol.90, p.8761585, 1996.

M. Ngoyi, D. Lejon, V. Pyana, P. Boelaert, M. Ilunga et al., How to shorten patient followup after treatment for Trypanosoma brucei gambiense sleeping sickness, J Infect Dis, vol.201, pp.453-463, 2010.

J. L. Frezil, Application of xenodiagnosis in the detection of T. gambiense trypanosomiasis in immunologically suspect patients, Bull Soc Pathol Exot Filiales, vol.64, p.5172722, 1971.

W. Toukam, C. M. Solano, P. Bengaly, Z. Jamonneau, V. Bucheton et al., Experimental evaluation of xenodiagnosis to detect trypanosomes at low parasitaemia levels in infected hosts, Parasite, vol.18, p.22091459, 2011.

G. Caljon, N. Van-reet, D. Trez, C. Vermeersch, M. Perez-morga et al., The dermis as a delivery site of Trypanosoma brucei for tsetse flies, PLoS Pathog, vol.12, p.27441553, 2016.

P. Capewell, C. Cren-travaille, F. Marchesi, P. Johnston, C. Clucas et al., The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes, Elife, vol.5, p.27653219, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01371190

S. Trindade, F. Rijo-ferreira, T. Carvalho, D. Pinto-neves, F. Guegan et al., Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice, Cell Host Microbe, vol.19, p.27237364, 2016.

K. Fenn and K. R. Matthews, The cell biology of Trypanosoma brucei differentiation, Curr Opin Microbiol, vol.10, p.17997129, 2007.

E. Bursell, Tsetse-fly physiology. A review of recent advances and current aims, Bull World Health Organ, vol.28, p.14017193, 1963.

D. A. Norden and D. J. Paterson, Carbohydrate metabolism in flight muscle of the tsetse fly (Glossina) and the blowfly (Sarcophaga), Comp Biochem Physiol, vol.31, p.4312541, 1969.

. International-glossina-genome-initiative, Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis, Science, vol.344, p.24763584, 2014.

N. Lamour, L. Riviere, V. Coustou, G. H. Coombs, M. P. Barrett et al., Proline metabolism in procyclic Trypanosoma brucei is down-regulated in the presence of glucose, J Biol Chem, vol.280, p.15665328, 2005.

B. S. Mantilla, L. Marchese, A. Casas-sanchez, N. A. Dyer, N. Ejeh et al., Proline metabolism is essential for Trypanosoma brucei brucei survival in the tsetse vector, PLoS Pathog, vol.13, p.28114403, 2017.

V. Coustou, M. Biran, M. Breton, F. Guegan, L. Riviere et al., Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei, J Biol Chem, vol.283, p.18430732, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00318595

V. Coustou, S. Besteiro, M. Biran, P. Diolez, V. Bouchaud et al., ATP generation in the Trypanosoma brucei procyclic form: Cytosolic substrate level phosphorylation is essential, but not oxidative phosphorylation, J Biol Chem, vol.278, p.14506274, 2003.

V. Hannaert, F. Bringaud, F. R. Opperdoes, and P. A. Michels, Evolution of energy metabolism and its compartmentation in Kinetoplastida, Kinetoplastid Biol Dis, vol.2, p.14613499, 2003.

A. B. Clarkson and F. H. Brohn, Trypanosomiasis: an approach to chemotherapy by the inhibition of carbohydrate catabolism, Science, vol.194, p.986688, 1976.

N. Visser and F. R. Opperdoes, Glycolysis in Trypanosoma brucei, Eur J Biochem, vol.103, p.6766864, 1980.

J. R. Haanstra, A. Van-tuijl, J. Van-dam, W. Van-winden, A. G. Tielens et al., Proliferating bloodstream-form Trypanosoma brucei use a negligible part of consumed glucose for anabolic processes, Int J Parasitol, vol.42, p.22580731, 2012.

M. Mazet, P. Morand, M. Biran, G. Bouyssou, P. Courtois et al., Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability, PLoS Negl Trop Dis, vol.7, p.24367711, 2013.

D. Spitznagel, C. Ebikeme, M. Biran, N. N. Bringaud, F. Henehan et al., Alanine aminotransferase of Trypanosoma brucei-a key role in proline metabolism in procyclic life forms, FEBS J, vol.276, pp.7187-7199, 2009.

D. J. Creek, M. Mazet, F. Achcar, J. Anderson, D. H. Kim et al., Probing the Metabolic Network in Bloodstream-Form Trypanosoma brucei Using Untargeted, Metabolomics PLoS Pathog, vol.11, p.25775470, 2015.

D. J. Creek, B. Nijagal, D. H. Kim, F. Rojas, K. R. Matthews et al., Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei, Antimicrob Agents Chemother, vol.57, p.23571546, 2013.

F. Bringaud, M. Biran, Y. Millerioux, M. Wargnies, S. Allmann et al., Combining reverse genetics and NMR-based metabolomics unravels trypanosome-specific metabolic pathways, Mol Microbiol, vol.96, p.25753950, 2015.

Y. Millerioux, C. Ebikeme, M. Biran, P. Morand, G. Bouyssou et al., The threonine degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid biosynthesis is under metabolic control, Mol Microbiol, vol.90, p.23899193, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01101378

C. Nihei, Y. Fukai, and K. , Trypanosome alternative oxidase as a target of chemotherapy, Biochim Biophys Acta, vol.1587, p.12084465, 2002.

D. P. Nolan and H. P. Voorheis, The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase, Eur J Biochem, vol.209, p.1327770, 1992.

A. Zikova, A. Schnaufer, R. A. Dalley, A. K. Panigrahi, and K. D. Stuart, The F(0)F(1)-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei, PLoS Pathog, vol.5, p.19436713, 2009.

F. R. Opperdoes, Compartmentation of carbohydrate metabolism in trypanosomes, Annu Rev Microbiol, vol.41, p.3120638, 1987.

K. Ziegelbauer, G. Rudenko, R. Kieft, and P. Overath, Genomic organization of an invariant surface glycoprotein gene family of Trypanosoma brucei, Mol Biochem Parasitol, vol.69, p.7723788, 1995.

S. Alsford, S. Eckert, N. Baker, L. Glover, A. Sanchez-flores et al., High-throughput decoding of antitrypanosomal drug efficacy and resistance, Nature, vol.482, p.22278056, 2012.

J. F. Ryley, Comparative metabolism of bloodstream and culture forms of Trypanosoma rhodesiense, Biochem J, vol.9, p.13983265, 1962.

A. H. Fairlamb, F. R. Opperdoes, and P. Borst, New approach to screening drugs for activity against African trypanosomes, Nature, vol.265, p.834274, 1977.

J. K. Kiaira and M. R. Njogu, Oligomycin-sensitivity of hexose-sugar catabolism in the bloodstream form of Trypanosoma brucei brucei, Biotechnol Appl Biochem, vol.20, p.7818804, 1994.

B. M. Bakker, P. A. Michels, F. R. Opperdoes, and H. V. Westerhoff, Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes, J Biol Chem, vol.272, p.9013556, 1997.

L. Jeacock, N. Baker, N. Wiedemar, P. Maser, and D. Horn, Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity, PLoS Pathog, vol.13, p.28358927, 2017.

P. A. Jansson, U. Smith, and P. Lonnroth, Interstitial glycerol concentration measured by microdialysis in two subcutaneous regions in humans, Am J Physiol, vol.258, p.2193533, 1990.

J. S. Samra, C. L. Ravell, S. L. Giles, P. Arner, and K. N. Frayn, Interstitial glycerol concentration in human skeletal muscle and adipose tissue is close to the concentration in blood, Clin Sci (Lond), vol.90, pp.453-456, 1996.

K. Gunasekera, D. Wuthrich, S. Braga-lagache, M. Heller, and T. Ochsenreiter, Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry, BMC Genomics, vol.13, p.23067041, 2012.

Y. Yabu, A. Yoshida, T. Suzuki, C. Nihei, K. Kawai et al., The efficacy of ascofuranone in a consecutive treatment on Trypanosoma brucei brucei in mice, Parasitol Int, vol.52, p.12798927, 2003.

J. Fang and D. S. Beattie, Alternative oxidase present in procyclic Trypanosoma brucei may ast to lower the mitochondrial production of superoxide, Arch Biochem Biophys, vol.14, pp.294-302, 2003.

H. C. Dodson, M. T. Morris, and J. C. Morris, Glycerol 3-phosphate alters Trypanosoma brucei hexokinase activity in response to environmental change, J Biol Chem, vol.286, p.21813651, 2011.

D. J. Hammond and I. B. Bowman, Trypanosoma brucei: the effect of glycerol on the anaerobic metabolism of glucose, Mol Biochem Parasitol, vol.2, p.7464860, 1980.

M. Ohashi-suzuki, Y. Yabu, S. Ohshima, K. Nakamura, Y. Kido et al., Differential kinetic activities of glycerol kinase among African trypanosome species: phylogenetic and therapeutic implications, J Vet Med Sci, vol.73, p.21187682, 2011.

R. Eisenthal and A. Panes, The aerobic/anaerobic transition of glucose metabolism in Trypanosoma brucei, FEBS Lett, vol.181, p.3972106, 1985.

D. G. Maggs, R. Jacob, F. Rife, R. Lange, P. Leone et al., Interstitial fluid concentrations of glycerol, glucose, and amino acids in human quadricep muscle and adipose tissue. Evidence for significant lipolysis in skeletal muscle, J Clin Invest, vol.96, p.7615807, 1995.

E. T. Vestergaard, N. Moller, and J. O. Jorgensen, Acute peripheral tissue effects of ghrelin on interstitial levels of glucose, glycerol, and lactate: a microdialysis study in healthy human subjects, Am J Physiol Endocrinol Metab, vol.304, p.23592479, 2013.

M. Romero-mdel, D. Sabater, J. A. Fernandez-lopez, X. Remesar, and M. Alemany, Glycerol Production from Glucose and Fructose by 3T3-L1 Cells: A Mechanism of Adipocyte Defense from Excess Substrate, PLoS One, vol.10, p.26426115, 2015.

F. Rotondo, A. C. Ho-palma, X. Remesar, J. A. Fernandez-lopez, M. Romero et al., Glycerol is synthesized and secreted by adipocytes to dispose of excess glucose, via glycerogenesis and increased acyl-glycerol turnover, Sci Rep, vol.7, p.28827624, 2017.

H. P. Voorheis, The effect of T. brucei (S-42) on host carbohydrate metabolism: liver production and peripheral tissue utilization of glucose, Trans R Soc Trop Med Hyg, vol.63, p.5789071, 1969.

Y. Wang, J. Utzinger, J. Saric, J. V. Li, J. Burckhardt et al., Global metabolic responses of mice to Trypanosoma brucei brucei infection, Proc Natl Acad Sci U S A, vol.105, p.18413599, 2008.

H. B. Tanowitz, P. E. Scherer, M. M. Mota, and L. M. Figueiredo, Adipose Tissue: A Safe Haven for Parasites?, Trends Parasitol, vol.33, p.28007406, 2017.

Y. Bechah, J. Verneau, B. Amara, A. Barry, A. O. Lepolard et al., Persistence of Coxiella burnetii, the agent of Q fever, in murine adipose tissue, PLoS One, vol.9, p.24835240, 2014.

I. Hauslein, F. Cantet, S. Reschke, F. Chen, M. Bonazzi et al., Multiple Substrate Usage of Coxiella burnetii to Feed a Bipartite Metabolic Network, Front Cell Infect Microbiol, vol.7, p.28706879, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01999348

E. A. Saada, S. F. Demarco, M. M. Shimogawa, and K. L. Hill, With a Little Help from My Friends"-Social Motility in Trypanosoma brucei, PLoS Pathog, vol.11, p.26679190, 2015.

E. Wirtz, S. Leal, C. Ochatt, and G. A. Cross, A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei, Mol Biochem Parasitol, vol.99, p.10215027, 1999.

H. Hirumi and K. Hirumi, Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers, J Parasitol, vol.75, p.2614608, 1989.

R. Brun and M. Schonenberger, Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium, Acta Trop, vol.36, p.43092, 1979.

H. Ngo, C. Tschudi, K. Gull, and E. Ullu, Double-stranded RNA induces mRNA degradation in Trypanosoma brucei, Proc Natl Acad Sci USA, vol.95, p.9843950, 1998.

F. Bringaud, D. R. Robinson, S. Barradeau, N. Biteau, D. Baltz et al., Characterization and disruption of a new Trypanosoma brucei repetitive flagellum protein, using double-stranded RNA inhibition, Mol Biochem Parasitol, vol.111, p.11163437, 2000.

E. Harlow and D. Lane, Antibodies: a laboratory manual, 1988.

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

F. Bringaud, S. Peyruchaud, D. Baltz, C. Giroud, L. Simpson et al., Molecular characterization of the mitochondrial heat shock protein 60 gene from Trypanosoma brucei, Mol Biochem Parasitol, vol.74, p.8719252, 1995.

K. Ziegelbauer and P. Overath, Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei, J Biol Chem, vol.267, p.1587855, 1992.

M. Chaudhuri, W. Ajayi, and G. C. Hill, Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase, Mol Biochem Parasitol, vol.95, p.9763289, 1998.

M. Heuillet, F. Bellvert, E. Cahoreau, F. Letisse, P. Millard et al., Methodology for the Validation of Isotopic Analyses by Mass Spectrometry in Stable-Isotope Labeling Experiments, Anal Chem, vol.90, p.29260858, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01886456

P. Millard, F. Letisse, S. Sokol, and J. C. Portais, IsoCor: correcting MS data in isotope labeling experiments, Bioinformatics, vol.28, p.22419781, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268343

S. Allmann, M. Mazet, N. Ziebart, G. Bouyssou, L. Fouillen et al., Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei, PLoS One, vol.9, p.25493940, 2014.

L. Kall, J. D. Canterbury, J. Weston, W. S. Noble, and M. J. Maccoss, Semi-supervised learning for peptide identification from shotgun proteomics datasets, Nat Methods, vol.4, p.17952086, 2007.

E. W. Deutsch, A. Csordas, Z. Sun, A. Jarnuczak, Y. Perez-riverol et al., The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition, Nucleic Acids Res, vol.45, p.27924013, 2017.